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1. Введение

1.1. Лоренц-инвариантность

В релятивистской теории пространство и время объединяются в четырехмерное пространство Мин-
ковского, снабженное метрикой ηµν . Преобразования Лоренца есть обратимые линейные преобразо-
вания координат, сохраняющие интервал между событиями:

x′µ = Lµνx
ν (1)

Условие, которому должна удовлетворять матрица L, чтобы быть лоренцевским преобразованием:

LTηL = η (2)

Здесь η-матрица, компоненты которой равны ηµν .

Инвариантность законов природы относительно преобразований Лоренца проверена с высокой
точностью в различных экспериментах и играет важную роль в современной физике. Например, из
условия Лоренц-инвариантности теории струн вытекает фиксированная размерность пространства-
времени. Теория струн не может быть хорошей лоренц-инвариантной квантовой теорией для лю-
бой произвольной размерности. Так, в теории суперструн это требование фиксирует размерность
пространства-времени значением D = 10 [2].

1.2. Нарушение Лоренц-инвариантности

Однако сохраняется возможность того, что Лоренц-инвариантность не является точной: мы можем
допустить нарушение симметрии относительно преобразований Лоренца без противоречий с совре-
менными данными, а именно, на очень высоких энергиях, недоступных современным ускорителям.

1.3. Постановка задачи

В курсовой работе исследована упрощенная модель свободной частицы в теории с нарушенной
Лоренц-инвариантностью, рассмотрена модель связанного состояния в такой теории, которое об-
разуется при взаимодействии двух частиц с притягивающим потенциалом.

2. Свободная частица
Одним из эффектов нарушения Лоренц-инвариантности является модификация связи между энер-
гией и импульсом элементарных частиц. Напомним, что в Лоренц-инвариантном случае существует
следующая связь: E2 = m2 + p2. Рассмотрим видоизмененное соотношение:

E2 = m2 + p2 +
p4

M2
, m�M (3)

2.1. Лагранжиан

2.1.1. Одномерный случай

Запишем Гамильтониан:

H = E =

√
m2 + p2 +

p4

M2
(4)
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Воспользуемся уравнением Гамильтона:

v = q̇ =
∂H

∂p
(5)

Дифференцируя, получаем:

v =
p+ 2p3

M2√
m2 + p4

M2 + p2
(6)

Сделаем обратное преобразование Лежандра:

L(q, q̇, t) = pẋ−H(q, p, t) = pv − E =
p4

M2 −m2√
m2 + p4

M2 + p2
(7)

В общем функция Лагранжа зависит от обобщенных координат и скоростей. Импульс, как функ-
ция от скорости, содержится неявно в уравнении Гамильтона. Попробуем его решить:

q̇ =
∂H

∂p
⇒ v

√
m2 + p2 +

p4

M2
= p+

2p3

M2

Преобразовывая, получаем кубическое (относительно t = p2) уравнение:

4

M4
t3 +

(4− v2)
M2

t2 + (1− v2)t−m2v2 = 0 (8)

Уравнение (8) можно решать точно, однако мы будем искать решение в виде

p2 =
m2v2

1− v2
+

δ

M2
(9)

Заметим, что первый член в (9) является точным решением в случае M2 →∞.

Подставляя это выражение в уравнение и пренебрегая степенями M , больше 2, получаем:

m2v2

1− v2
+

4m4v4

M2(1− v2)2
− m2v4

1− v2
− m4v6

M2(1− v2)2
−m2v2 +

δ

M2
− δv2

M2
= 0

Выражаем δ:

δ =
m4v4(v2 − 4)

(1− v2)3
(10)

Тогда:

p2 =
m2v2

1− v2
+
m4v4 (v2 − 4)

M2 (1− v2)3
(11)

Остается подставить p2 в (7) и получить громоздкое выражение для L, которое здесь не будет
приведено. Введем для удобства параметр k, определяемый следующим образом:

k = 1/M , k → 0
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Подставляя M = 1/k в выражение для Лагранжиана и раскладывая в ряд по k, получаем:

L = −m
√
1− v2 − m3v4

2M2(1− v2)
√
1− v2

+ o(k3) (12)

Заметим, что первое слагаемое является Лагранжианом свободной релятивистской частицы.

Убедимся, что полученный Лагранжиан с нужной точностью соответствует заданному дисперси-
онному соотношению, т.е. что выполняется с нужной точностью равенство

E2 − p4

M2
− p2 −m2 =

(
v
∂L

∂v
− L

)2

− 1

M2

(
∂L

∂v

)4

−
(
∂L

∂v

)2

−m2 = 0 (13)

Подставляя выражение для Лагранжиана и его производной в левую часть (13), получаем:

E2 − p4

M2
− p2 −m2 =

m6(16v6 − 7v8)

4M4(v2 − 1)4
+ o(k5) (14)

2.1.2. Трехмерный случай

В этом случае логика построения Лагранжиана не меняется.

Уравнения Гамильтона:

q̇j =
∂H

∂pj
(15)

vj =
pj +

2pjp
2

M2√
m2 + p2 + p4

M2

(16)

Обратное преобразование Лежандра:

L = piq̇i −H =
p4

M2 −m2√
m2 + p2 + p4

M2

(17)

Из уравнений Гамильтона получаем уравнение, аналогичное соответствующему в одномерном
случае.

v2
(
m2 + p2 +

p4

M2

)
= p2

(
1 +

2p2

M2

)2

(18)

Таким образом

L = −m
√

1− |v|2 − m3|v|4

2M2(1− |v|2)3/2
(19)

2.2. Преобразования Лоренца

Действие:

S =

∫
Ldt =

∫ (
−m

√
1− |v|2 − m3|v|4

2M2(1− |v|2)3/2

)
dt

Разбиваем интеграл на Лоренц-инвариантное действие и добавку:
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S = −m
∫ √

1− |v|2dt−
∫

m3|v|4

2M2(1− |v|2)3/2
dt (20)

Посмотрим как преобразуется добавка при преобразованиях Лоренца ([5]):

v =
1

1 + (u, v′)

[
u +

v′

γ
+

γ

1 + γ
(u, v′)u

]
(21)

dt = γ(1 + (u, v′))dt′ (22)

Пусть α = (u, v′). Тогда:

v =
1

1 + α

[
u +

v′

γ
+

γα

1 + γ
u
]

dt = γ(1 + α)dt′

Квадрат скорости:

|v|2 = 1

(1 + α)2

[
u +

v′

γ
+

γα

1 + γ
u
]2

|v|2 = 1

(1 + α)2

[
|u|2 + 2αγ|u|2

1 + γ
+
α2γ2|u|2

(1 + γ)2
+
|v′|2

γ2
+

2α2

1 + γ
+

2α

γ

]
(23)

Введем два вектора: n – задает выделенное направление, m – задает направление движения:

n =
u
|u|

(24)

m =
v′

|v′|
(25)

α = (u, v′) = |u||v′|(n,m) = |u||v′|β, где введено обозначение β = (n,m).

После записи преобразований Лоренца раскладываем добавочный Лагранжиан (v′ → 0):

L(v′) = a+ bv′ + cv′2 + dv′3 + ev′4 + fv′5 + ...

L(0) =
m3u4

2M2(u2 − 1)2

a = L(0)

L′(0) =
2m3u3

(
1− u2 +

√
1− u2

)
β

M2 (1− u2)5/2
(√

1− u2 + 1
)

b = L′(0)

L′′(0) =
m3u2 ((4β2 − 1)u2 + 8β2 + 4)

2M2 (u2 − 1)2
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c =
1

2
L′′(0)

L′′′(0) =
6m3u ((2β2 + 1)u2 + 2) β

M2 (u2 − 1)2

d =
1

6
L′′′(0)

L(4)(0) =
3m3 ((8β4 + 8β2 − 1)u4 + 8 (8β2 + 1)u2 + 8)

2M2(u2 − 1)2

e =
1

24
L4(0)

Остановимся на членах второго порядка.

Учитывая, что v′ → 0, получаем Лагранжиан :

L′(v′) =
mv′2

2
− 2m3u3(1− u2 +

√
1− u2)β

M2(1− u2)5/2(
√
1− u2 + 1)

v − m3u2((4β2 − 1)u2 + 8β2 + 4)

4M2(u2 − 1)2
v2 (26)

Или же, вспоминая определение β, запишем первое слагаемое в другом виде:

L′(v′) =
mv′2

2
− 2m3u3(1− u2 +

√
1− u2)

M2(1− u2)5/2(
√
1− u2 + 1)

(n, v′)− m3u2((4β2 − 1)u2 + 8β2 + 4)

4M2(u2 − 1)2
v′2 (27)

Аналогично поступаем с последним слагаемым. Получим:

L′(v′) =
[m
2
−m3t1

]
v′2 −m3t2(n, v′)−m3[t3 + t4](u, v′)2 (28)

Здесь tj-коэффициенты, зависящие от u и M :

t1 =
u2(4− u2)

4M2(u2 − 1)2

t2 =
2u3(1− u2 +

√
1− u2)

M2(1− u2)5/2(
√
1− u2 + 1)

t3 =
2u2

M2(u2 − 1)2

t4 =
u4

M2(u2 − 1)2

В данной системе отсчета будет выделенное направление вдоль вектора n.

В силу нарушения Лоренц-инвариантности не все системы отсчета эквивалентны.
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3. Система взаимодействующих частиц

3.1. С.Ц.М.

Рассмотрим систему, состоящую из двух частиц при наличии притягивающего потенциала U(r):

L = L1 + L2 − U(r)

U(r) = −α
r

Лагранжиан системы взаимодействующих частиц (считаем M одинаковой для обеих частиц):

L =
[m1

2
−m3

1t1

]
v21−m3

1t2(n, v1)−m3
1[t3+t4](u, v1)

2+
[m2

2
−m3

2t1

]
v22−m3

2t2(n, v2)−m3
2[t3+t4](u, v2)

2−U

Перейдем в систему центра масс:
r1 = R− m2r

m1 +m2

r2 = R +
m1r

m1 +m2

v1 = V − m2v
m1 +m2

v2 = V +
m1v

m1 +m2

Учитывая, что n, V – постоянные векторы, а добавление константы к Лагранжиану не меняет
уравнения движения, получаем вид Лагранжиана в системе центра масс:

L =
µv2

2
+ k1v

2 + k2(n, v) + k3(n, v)2 − U(r) (29)

Здесь:

k1 = −µm1m2t1

k2 = m1m2(m1 −m2) [t2 + 2(n,V)]

k3 = m1m2µ[t3 + t4]

Опустили следующие слагаемые:
1
2
(m1 +m2)V

2, −(m3
1 +m3

2)t1V
2, −(m3

1 +m3
2)t2(n,V), −(m3

1 +m3
2) [t3 + t4] (n,V)2.
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3.2. Уравнения движения

Уравнения Лагранжа:

d

dt

(
∂L

∂v

)
=
∂L

∂r
(30)

∂L

∂r
= k2 grad(n, v) + k3 grad(n, v)2 − gradU (31)

∂L

∂v
= µv + 2k1v + k2n + 2k3(n, v)n (32)

(!) n-постоянный (при заданном u) вектор, определяющий выделенное направление. Дифферен-
цирование по r в (31) производится при постоянном v. Тогда:

µv̇ = −2k1v̇ − 2k3(n, v̇)n− gradU (33)
µẍ = −2k1ẍ− 2k3ẍ−

∂U

∂x

µÿ = −2k1ÿ −
∂U

∂y
.

Член с k1 можно интерпретировать как поправку к массе.

Т.к. k1 = −µm1m2t1 < 0, надо следить, чтобы поправка не стала больше самой массы, что дает
ограничение на γ. Вспоминая, что t1 = u2(4−u2)

4M2(u2−1)2 , в пределе γ →∞ получаем: t1 = 3γ4

4M2 . Отсюда:

γ4 <
2M2

3m1m2

Этот результат надо понимать в следующем смысле: если неравенство не будет выполнено, то
вышеприведенные разложения некорректны. Потребуются высшие члены этих разложений

Член с k3 приводит к неоднородному движению по почти эллиптической орбите.
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