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Аннотация
В курсовой работе рассматривается новая космологическая модель, в которой стандартная
инфляция заменена фазой расширения с нарушением светоподобного условия энергодоми-
нантности (null energy condition, NEC): Ḣ � H. Модель основана на недавно предложенных
теориях с галилеоном (galileon-theories), в которых нарушается NEC, однако решение систе-
мы уравнений, описывающих динамику эволюции Вселенной, существует. Решение с нару-
шением NEC описывают Вселенную с пространством Минковского при t −→ −∞, параметр
Хаббла которой увеличивается с течением времени.
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Глава 1

Введение

По современным представлениям экстраполяция наблюдаемого расширения Вселенной
назад во времени при использовании общей теории относительности и некоторых других
альтернативных теорий гравитации приводит к бесконечной плотности и температуре веще-
ства Вселенной в конечный момент времени в прошлом. С уменьшением размеров Вселенной
растёт плотность энергии, пока в конечном итоге не наступает так называемая «Планковская
эпоха», температура вещества в этот момент достигает ≈ 1032 К (Планковская температура),
а плотность вещества ≈ 1093 г/см3(Планковская плотность).

Главный аргумент, лежащий в основе всех этих предположений, состоит в том, что тензор
энергии-импульса Tµν удовлетворяет условию NEC, которое постулирует, что для любого
светоподобного вектора kµ справедливо неравенство

Tµνk
µkν ≥ 0. (1.1)

Для идеальной жидкости, приближения, хорошо описывающего Вселенную на больших мас-
штабах, это неравенство эквивалентно условию

ρ+ p ≥ 0, (1.2)

где ρ и p - плотность энергии и давление вещества соответственно.
Для метрики Фридмана это означает, что плотность энергии, а, следовательно, и пара-

метр Хаббла H, уменьшаются с расширением Вселенной, так как согласно условию ковари-
антного сохранения тензора энергии импульса

ρ̇ = −3H (ρ+ p) . (1.3)

В соответствие с современными экспериментальными данными плотность энергии и дав-
ление материи во Вселенной удовлетворяют условию ρ + p ≈ 0. Отсюда, однако, не следует
обязательное выполнение NEC, так как сумма плотности энергии и давления могут быть как
больше, так и меньше нуля. Таким образом, космологические модели с нарушением NEC не
противоречат экспериментальным данным.

Если допустить нарушение NEC, перед нами открывается возможность построения нестан-
дартных космологических моделей. В частности, возможно построение модели, в которой экс-
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траполяция Вселенной назад во времени необязательно приводит к росту плотности энергии,
температуры и давления материи.

Есть и другие доводы в пользу теорий с нарушением NEC. Например, выполнение силь-
ного условия энергодоминантности (strong energy condition, SEC) означает, что для любого
времениподобного вектора Xµ справедливо неравенство(

Tµν −
1

2
Tgµν

)
Xν ≥ 0, (1.4)

в случае идеальной жидкости это эквивалентно условию

ρ+ 3p ≥ 0. (1.5)

Согласно этому неравенству расширение Вселенной происходит с замедлением ä ≤ 0, но
современные наблюдения говорят об обратном: Вселенная расширяется с ускорением. Нару-
шение SEC происходило и в прошлом, в частности, в период инфляции – наиболее правдопо-
добной теории ранней Вселенной. Если принять во внимание необходимость отказа от SEC
для сохранения теории инфляции, то не означает ли это, что отказ от NEC также повлечёт
за собой создание новых теорий, которые станут превалирующими в будущем?

В данной работе рассматривается космологическая модель, в которой наблюдается силь-
ное нарушение NEC. Пространство Вселенной в данной модели асимптотически стремится
к пространству Минковского при t −→ −∞. С течением времени Вселенная расширяется,
параметр Хаббла и плотность энергии растут. При этом растёт, стремясь к бесконечности,
производная параметра Хаббла по времени Ḣ. Таким образом, с увеличением времени в
предложенной космологической модели увеличивается степень нарушения NEC.

Глава 2

Действие. Уравнение поля

Построение космологической модели начнём с введения лагранжиана

L = F (Y ) e4π +G (Y )�π · e2π, (2.1)

где
Y = e−2π (∂π)2

�π = gµν∇µ∇νπ =
1√
−g

∂µ
(√
−ggµν∂νπ

)
(∂π)2 = gµν∇µπ∇νπ = gµν∂µπ∂νπ.

(2.2)
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Лагранжиан инвариантен относительно преобразований дилатации

xµ → λxµ, π → π − lnλ. (2.3)

Получим уравнение поля из вариации действия этого поля

δSπ = δ

∫
d4x
√
g
[
F (Y ) e4π +G (Y )�π · e2π

]
= 0. (2.4)

При варьировании, интегрируя по частям и учитывая, что на границах интегрирования ва-
риация поля равна нулю, можно получить следующие равенства

2F
′
e2π∂µπ∂µ (δπ) = −2∂µ

(
F

′
e2π∂µπ

)
δπ

2G
′
∂µπ∂ (δπ)�π = −2∂µ

(
G

′
∂µπ�π

)
δπ

Gδ (�π) e2π = �
(
e2πG

)
δπ.

(2.5)

Опуская промежуточные выкладки, напишем уравнение поля, полученное в результате
вариации действия

4e4πF − 2e2π (∂π)2 F
′ − 2∂µ

(
e2πF

′
∂µπ
)
+ 2e2π�π ·G+

+�
(
e2πG

)
− 2�π · (∂π)2G′ − 2∂µ

(
�π ·G′

∂µπ
)
= 0.

(2.6)

Скалярное поле π пространственно однородно, поэтому единственная входящая в уравнение
производная от π, отличная от нуля, – это производная от π по времени. Запишем уравнение
поля, рассматривая все производные, входящие в уравнение, как производные по времени.
Будем при этом учитывать гравитацию, то есть рассматривать уравнение в метрике Фрид-
мана. Принимая всё это во внимание получим

∂µπ = ∂0π = π̇

�π =
1√
−g

∂0
(
g00
√
−g∂0π

)
=

1

a3
(
3a2ȧπ̇ + a3π̈

)
= 3

ȧ

a
π̇ + π̈,

(2.7)

т.к. g00 = g00 = 1 и g = −a6, где a - масштабный фактор.
Тогда уравнение поля будет выглядеть так

4e4πF − 6e2πF
′
π̇2 − 4F

′′
π̇2π̈ − 6

ȧ

a
e2πF

′
π̇ − 2e2πF

′
π̈ + 12

ȧ

a
e2πGπ̇ + 4e2πGπ̈ − 12

ȧ

a
G

′
π3−

−4G′
π̇2π̈ − 6

ä

a
G

′
π̇2 + 12

ȧ

a
e−2πG

′′
π̇5 − 12

ȧ

a
G

′′
π̇3π̈ − 12

(
ȧ

a

)2

G
′
π̇2 − 12

ȧ

a
G

′
π̇π̈+

+4e−2πG
′′
π̇6 − 4e−2πG

′′
π̇4π̈ − 4G

′
π̇4 + 4e2πGπ̇2 + 4F

′′
π̇4 = 0.

(2.8)

5



Глава 3

Тензор энергии-импульса. Уравнения
Фридмана

3.1 Тензор энергии-импульса

Для получения полной системы уравнений необходимо также вывести уравнения Фрид-

мана, в которые входят
ȧ

a
и
ä

a
. Для этого сначала получим выражение для тензора энергии-

импульса поля π. Для нахождения тензора энергии-импульса вычислим вариационную про-
изводную от лагранжевой плотности функционала действия по метрическому тензору

Tµν =
2√
−g

δ (
√
−gL)

δgµν
.

Варьируя лагранжиан, получим формулу для тензора энергии-импульса поля π:

Tµν = 2e2πF
′
∂µπ∂νπ − gµνe4πF + 2G

′
�π∂µπ∂νπ + gµνg

λρ∂λ∂ρ
(
e2πG

)
−

−2∂µ∂ν
(
e2πG

)
.

(3.1)

Это равенство не является окончательным: поскольку тензор энергии-импульса по опреде-
лению является симметричным, симметризуем его

−2∂µπ∂ν
(
e2πG

)
= −∂µπ∂ν

(
e2πG

)
− ∂νπ∂µ

(
e2πG

)
−

−∂µπ∂ν
(
e2πG

)
+ ∂νπ∂µ

(
e2πG

)︸ ︷︷ ︸
= 0

. (3.2)

Тогда тензор энергии-импульса запишется следующим образом

Tµν = 2e2πF
′
∂µπ∂νπ − gµνe4πF + 2G

′
�π∂µπ∂νπ − ∂µπ∂ν

(
e2πG

)
−

−∂νπ∂µ
(
e2πG

)
+ gµνg

λρ∂λ∂ρ
(
e2πG

)
.

(3.3)

3.2 Уравнения Фридмана.

Как и раньше, единственная производная от π, отличная от нуля, – это производная от
π по времени в силу пространственной однородности поля. Рассмотрим отдельно временные
и пространственные компоненты тензора.
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При рассмотрении временной компоненты тензора все производные, входящие в уравне-
ние (3.1), станут производными по времени, а временная компонента метрического тензора
в метрике Фридмана равна единице

g00 = g00 = 1.

Также учтём, что �π в метрике Фридмана равен

�π = 3
ȧ

a
π̇ + π̈.

С учётом вышесказанного получим выражение для временной компоненты тензора энергии-
импульса

T00 = 2G
′
π̇4 + 2e2π

(
F

′ −G
)
π̇2 + 6

ȧ

a
G

′
π̇3 − e4πF. (3.4)

Аналогичным образом рассмотрим пространственную компоненту тензора. Так как поле про-
странственно однородно, то единственными ненулевыми слагаемыми, входящими в уравне-
ние (3.1) в случае пространственных координат, будут второе и последнее слагаемые. Про-
странственная компонента метрического тензора в метрике Фридмана

gij = −a2γij,

где γij - метрика трёхмерной плоскости.
Пространственная компонента тензора энергии-импульса

Tij = a2γije
4πF − 2a2γijG

′
π̇2π̈ − 2a2γije

2πGπ̇2. (3.5)

Как известно, тензор энергии-импульса для макроскопического состояния изотропного
вещества в пространстве Минковского равен

Tµν = (p+ ρ)uµuν − pgµν , (3.6)

где uµ - вектор 4-скорости. Тогда нулевая компонента тензора энергии-импульса равна

T00 = (p+ ρ)u0u0 − pg00 = ρ, (3.7)

а пространственная компонента с учётом метрики Фридмана

Tij = (p+ ρ)uiuj − pgij = −pgij = pa2γij. (3.8)

Сравним полученные нами выражения (3.2) и (3.2) для пространственной и временной
компонент тензора энергии-импульса поля π с выражениями (3.2) и (3.2) соответственно.
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Получим формулы для плотности энергии и давления материи во Вселенной

ρ = 2G
′
π̇4 + 2e2π

(
F

′ −G
)
π̇2 + 6

ȧ

a
G

′
π̇3 − e4πF (3.9)

p = e4πF − 2G
′
π̇2π̈ − 2e2πGπ̇2. (3.10)

Теперь легко записать уравнения Фридмана, замыкающие систему уравнений, определяющие
динамику изменения Вселенной(

ȧ

a

)2

=
8π̃

3
GN

(
2G

′
π̇4 + 2e2π

(
F

′ −G
)
π̇2 + 6

ȧ

a
G

′
π̇3 − e4πF

)
2
ä

a
+

(
ȧ

a

)2

= −8π̃GN

(
e4πF − 2G

′
π̇2π̈ − 2e2πGπ̇2

)
,

(3.11)

где π̃ - иррациональное число «пи». Отметим, что мы рассматриваем пространственно-плоскую
модель

κ = 0.

Глава 4

Эволюция Вселенной

В предыдущих главах нами была получена система уравнений, определяющая эволю-
цию Вселенной с нарушением NEC. В данной работе эта система уравнений была решена
с помощью численного компьютерного расчёта, подробное описание написанной программы
изложено в приложении. Перед использованием программы для решения системы поэтапно
были проведены предварительные математические преобразования, такие как:

1 нахождение начальных условий;

2 обезразмеривание системы;

3 приведение системы к задаче типа Коши.

Перейдём к последовательному изложению всех проделанных преобразований.
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4.1 Нахождение начальных условий

Как отмечалось раньше, при t −→ −∞ пространство Вселенной стремится к простран-
ству Минковского. Без учёта гравитации уравнение поля допускает решение в виде

eπ =
1

H∗ (t0 − t)
, (4.1)

где H2
∗ ≡ YM = Y – решение уравнения поля (2) в пространстве Минковского.

Тогда
π = −ln (H∗ (t0 − t))

∂µπ = ∂0π = π̇ =
1

t0 − t

�π = π̈ =
1

(t0 − t)2
,

(4.2)

значение константы t0 определяет временной сдвиг и не несёт глубокого физического смысла.
Подставляя (4.1) и (4.1) в уравнение поля (2), получим выражение

F − 2YMF
′
+ 2YM

(
G− YMG

′
)
= 0, (4.3)

из которого можно найти значение константы H∗ и таким образом определить начальные
условия системы.

4.2 Процедура обезразмеривания системы

Для использования уравнений в компьютерной программе необходимо провести предва-
рительное обезразмеривание системы. Как было выяснено выше, начальным условием систе-
мы является выражение (4.1). Следовательно,

[H∗] =
1

t
=M, (4.4)

и перед введением уравнений в компьютер необходимо перейти к безразмерному времени
τ = H∗t. Для этого выясним размерности слагаемых, входящих в лагранжиан, напомним
выражение для лагранжиана

L = F (Y ) e4π +G (Y )�π · e2π.

Обратимся к функциям F (Y ) и G (Y ). Эти функции могут иметь произвольный вид, однако,
в силу их зависимости от Y = e−2π (∂π)2, для обезразмеривания этих величин необходимо
перейти к безразмерным функциям F̃ (Y ) и G̃ (Y ), таким что

F̃ (Y ) = F

(
Y

H2
∗

)
G̃ (Y ) = G

(
Y

H2
∗

)
.

(4.5)
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Очевидно также, что [�π] =
1

t2
=M2 и для перехода к безразмерному оператору Д’Аламбера

необходимо ввести

�̃π =
�π
H2
∗
. (4.6)

Таким образом, лагранжиан можно переписать в следующем виде

L =M4F̃ (Y ) e4π +M4G̃ (Y ) �̃π · e2π. (4.7)

Теперь запишем действие поля, перейдя к безразмерному дифференциалу путём замены

d4x −→ 1

H4
∗
d4x̃. (4.8)

Тогда действие поля

Sπ =

∫
d4x̃
√
g · M

4

H4
∗

[
F̃ (Y ) e4π +M4G̃ (Y ) �̃π · e2π

]
= 0. (4.9)

Очевидно, что безразмерный множитель
M4

H4
∗
не влияет на значение вариации действия, и

в результате мы получим такое же, как и полученное в главе 2, уравнение поля (2), с той лишь
разницей, что все производные, входящие в новое уравнение, будут теперь производными по
безразмерному времени τ .

Проделав аналогичные действия с тензором энергии-импульса, получим

Tµν =
M4

H4
∗
T̃µν , (4.10)

и, учитывая, что GN =
1

M2
Pl

, уравнения Фридмана (3.2) теперь можно записать следующим

образом (
ȧ

a

)2

=
8π̃

3

M4

M2
PlH

2
∗
ρ̃

2
ä

a
+

(
ȧ

a

)2

= −8π̃ M4

M2
PlH

2
∗
p̃,

(4.11)

где ρ̃ и p̃ - выражения для безразмерных плотности энергии и давления материи, отлича-
ющиеся от выражений для ρ и p тем, что теперь производные берутся по безразмерному

времени τ . Введём обозначение
M4

M2
PlH

2
∗
= µ2

Далее для облегчения визуального восприятия формул будем опускать знак “∼” над
функциями, обозначающий безразмерность этих функций, но будем считать, что все функ-
ции, использующиеся далее, являются уже безразмерными.
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4.3 Приведение системы к задаче типа Коши

Система была сведена к системе двух обыкновенных дифференциальных уравнений, раз-
решённых относительно первых производных путём замены переменных

p = π̇

ṗ = π̈.
(4.12)

Таким образом, из уравнения поля (2) была получена задача Коши, которая легко решается
численно в MATLAB’е с помощью функции “ode45”.

Величины
ȧ

a
и
ä

a
, входящие в уравнение поля (2), были найдены из уравнений Фридмана

(3.2) решением квадратных уравнений относительно этих величин. После решения квадрат-

ных уравнений относительно
ȧ

a
и
ä

a
оказалось, что выражение для

ä

a
содержит слагаемое с

π̈, поэтому, перед тем как делать замену (4.3) и приводить уравнение поля к задаче Коши,
ä

a
подставлялось в уравнение поля в явном виде.
Запишем полученную систему дифференциальных уравнений

π̇ = p

ṗ =
4e4πF − 6e2πF

′
p2 − 6

ȧ

a
e2πF

′
p+ 12

ȧ

a
e2πGp− 12

ȧ

a
G′p3 − 6DG′p2 + 12

ȧ

a
e−2πG

′′
p5−

4F ′′p2 + 2e2πF ′ − 4e2πG+ 4p2G′ + 12
ȧ

a
e−2πp3 + 12

ȧ

a
e−2πp3 + 12

ȧ

a
pG′+

−12
(
ȧ

a

)2

G
′
p2 + 4e−2πG′′p6 − 4G

′
p4 + 4e2πGp2 + 4F ′′p4

+4G′′e−2πp4 + 96π̃µ2 (G′)2 p4
,

(4.13)
где

D = −64π̃2µ2
(
G

′
)2
G′

2
p6 − 8π̃µ2G

′
p3
√

64π̃2µ4G′p6 + E − 8π̃µ2
(
e4πF − 2e2πGp2

)
E =

8π̃µ2

3

(
2G

′
p4 + 2e2π

(
F

′ −G
)
p2 − e4πF

)
ȧ

a
= 8π̃µ2G

′
p3 +

√
64π̃2µ4G′p6 + E.

(4.14)

4.4 Эволюция Вселенной

Итак, после всех проделанных преобразований и решения системы с помощью компьютер-
ного расчёта была получена картина эволюции Вселенной. Графики зависимостей параметра

Хаббла H =
ȧ

a
и поля π от времени представлены на рис. 4.1 и 4.2.

Графики отвечают решению на функциях

F (Y ) =
1

6
Y 2 − 1

2
Y

G (Y ) =
1

3
Y,

(4.15)

где Y = e−2ππ̇2;
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τ0 = 1.0

H
=

ȧ a

τ

Изменение параметра Хаббла H =
ȧ

a

0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

Рис. 4.1: Эволюция Вселенной. Параметр Хаббла.

• функциям F (Y ) и G (Y ) соответствует H∗ = 1;

• безразмерный параметр µ = 0.01;

• для π и eπ в тех же координатах построены графики при µ = 0 (отсутствие гравитации);

• cоответствующее времени t0 безразмерное время τ0 = 1;

• интервал интегрирования по времени τ ∈ [0; 0.9].

Из этого графика видно, что в начальный момент времени H −→ 0, то есть пространство
Вселенной близко к пространству Минковского. С течением времени параметр Хаббла растёт
и при временах t −→ t0 наблюдается сингулярность.
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µ = 0

µ = 0.01

eπ

τ

Изменение eπ

µ = 0

µ = 0.01

π

τ

Изменение поля π

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

30

0

0.5

1

1.5

2

2.5

3

3.5

Рис. 4.2: Эволюция Вселенной. Скалярное поле.
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Глава 5

Заключение

В курсовой работе была рассмотрена космологическая модель Вселеннной с нарушением
NEC. Для такой Вселенной был введён лагранжиан (2), из которого были найдены:

1 уравнение поля (2);

2 выражение для тензора энергии-импульса (3.1);

3 формула для плотности энергии материи (3.2);

4 формула для давления материи (3.2);

5 уравнения Фридмана (3.2).

Все полученные соотношения образуют замкнутую систему уравнений, описывающую
эволюцию Вселенной. С помощью численного компьютерного расчёта было получено графи-
ческое решение системы. Графики наглядно демонстрируют нарушение NEC (Ḣ � H) при
временах t −→ t0.

В продолжение данной работы планируется исследовать проблему сингулярности пара-
метра Хаббла при временах t −→ t0 и построить картину эволюции Вселенной при временах
t > t0. Также планируется найти аналитическое решение системы уравнений, описывающих
динамику Вселенной с нарушением NEC.
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Приложение. Описание программы

Для написания программы в курсовой работе использовался пакет прикладных про-
грамм для решения задач, технических вычислений и одноимённый язык программирования
“MATLAB” (MATLAB 7.11.0.584 R2010b). Выбор этого пакета и среды программирования
был обусловлен большими возможностями математического оперирования и относительной
простотой решения систем дифференциальных уравнений.

Начнём рассмотрение программы с m-файла, содержащего в себе описание системы диф-
ференциальных уравнений, которые требуется решить. Полученные в результате решения
системы значения π и p записываются программой в двумерный массив x(:; :), при этом
значениям π отвечает одномерный массив x(:; 1), а значениям p – массив x(:; 2).

dip.m

function dxp=difp(~,x) %функция для описания и решения

%системы дифф. уравнений

global mu %используется глобальная переменная

%mu, которая задаётся в файле

%"variables.m"

%далее идёт описание функций, входящих в систему;

%здесь x(1) - пи; x(2) - p; Hu - параметр Хаббла H

%mu - константа, определённая в файле variables.m

%F(Y), F1(Y), F2(Y) - соответсвенно F(Y), F’(y), F’’(Y), заданные в

%соответствующих файлах (аналогично G(Y), G1(Y), G2(Y))

%функции E, K1, K2, D, chisl, znam введены для сокращения записи

Y=exp(-2*x(1))*x(2);

E=8*pi*mu*mu/3*(2*G1(Y)*x(2)*x(2)*x(2)*x(2)+2*x(2)*x(2)*(F1(Y)...

-G(Y))*exp(2*x(1))-F(Y)*exp(4*x(1)));

K1=8*pi*mu*mu*G1(Y)*x(2)*x(2)*x(2);

K2=sqrt(64*pi*pi*mu*mu*mu*mu*G1(Y)*x(2)*x(2)*x(2)*x(2)*x(2)*x(2)+E);

D=-64*pi*pi*mu*mu*mu*mu*G1(Y)*G1(Y)*x(2)*x(2)*x(2)*x(2)*x(2)*x(2)...
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-K1*K2-8*pi*mu*mu*(F(Y)*exp(4*x(1))-2*G(Y)*exp(2*x(1))*x(2)*x(2));

Hu=K1+K2;

chisl=4*exp(4*x(1))*F(Y)-6*exp(2*x(1))*x(2)*x(2)*F1(Y)...

-6*Hu*exp(2*x(1))*F1(Y)*x(2)+12*Hu*exp(2*x(1))*G(Y)*x(2)...

-12*Hu*x(2)*x(2)*x(2)*G1(Y)-6*D*G1(Y)*x(2)*x(2)...

+12*G2(Y)*Hu*exp(-2*x(1))*x(2)*x(2)*x(2)*x(2)*x(2)-12*Hu*Hu*x(2)*x(2)*G1(y)...

+4*G2(Y)*exp(-2*x(1))*x(2)*x(2)*x(2)*x(2)*x(2)*x(2)-4*G1(Y)*x(2)*x(2)*x(2)...

*x(2)...

+4*G(Y)*exp(2*x(1))*x(2)*x(2)+4*F2(Y)*x(2)*x(2)*x(2)*x(2);

znam=4*F2(Y)*x(2)*x(2)+2*exp(2*x(1))*F1(Y)-4*exp(2*x(1))*G(Y)+4*x(2)*x(2)...

*G1(Y)...+12*Hu*G2(Y)*exp(-2*x(1))*x(2)*x(2)*x(2)...

+12*Hu*x(2)*G1(Y)+4*G2(Y)*exp(-2*x(1))*x(2)*x(2)*x(2)*x(2)...

+96*pi*mu*mu*G1(Y)*G1(Y)*x(2)*x(2)*x(2)*x(2);

dxp=[x(2);chisl/znam]; %задание системы дифф. уравнений

end

В программе созданы функции F (Y ), F1 (Y ), F2 (Y ), в которых описываются функции
F (Y ), F ′

(Y ), F ′′
(Y ) соответственно. Аналогично созданы функции G (Y ), G1 (Y ), G2 (Y )

для описания функций G (Y ), G′
(Y ), G′′

(Y ). Рассмотрим, например, m-файл, в котором
описывается функция F (Y )

F.m:

function result=F(Y) %описание функции F(Y)

global a b

result=-b.*Y+a*Y.*Y;

end

Операция “ .∗” здесь используется для почленного умножения элементов массива. В рас-
смотренном примере функция F(Y) задана как квадратный многочлен относительно пере-
менной Y , естественно, что в функции в m-файле “F.m” функцию F (Y ) можно описать аб-
солютно произвольным образом. Точно так же в программе заданы функции F1 (Y ), F2 (Y )

и G (Y ), G1 (Y ), G2 (Y ).
После решения системы программа, как говорилось выше, создаёт двумерный массив,

содержащий в себе значения π и p в зависимости от времени. Для построения графика за-
висимости параметра Хаббла от времени также необходимо найти аналогичный одномерный
массив значений параметр Хаббла. Для этого в программе предусмотрена следующая функ-
ция

fHu.m:

function dxHu=fHu(x) %функция для нахождения массива

%значений параметра Хаббла в

%зависимости от времени

global mu

Y=exp(-2*x(:,1)).*x(:,2);
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E=8*pi*mu*mu/3*(2*G1(Y).*x(:,2).*x(:,2).*x(:,2).*x(:,2)+2*x(:,2)...

*x(:,2).*(F1(Y)-G(Y)).*exp(2*x(:,1))-F(Y).*exp(4*x(:,1)));

K1=8*pi*mu*mu*G1(Y).*x(:,2).*x(:,2).*x(:,2);

K2=sqrt(64*pi*pi*mu*mu*mu*mu*G1(Y).*x(:,2.).*x(:,2).*x(:,2).*x(:,2)...

*x(:,2).*x(:,2)+E);

dxHu=K1+K2;

end

Все входящие в уравнения переменные, которые задаёт пользователь программы, нахо-
дятся в отдельно m-файле

variables.m:

%m-файл для описания переменных

global a b mu H t0 t1 t2 p1 p2;

a=0.5/3;

b=0.5;

mu=0.1;

H=sqrt(fzero(’FG’,1)); %вычисления значения

%H*, входящего в

%задание начальных условий

%с помощью функции FG

t0=1; %задание параметра t0,

%определяющего временной сдвиг

t1=0; %задание временного

t2=0.9; %интервала интегрирования

p1=-log(H*t0); %задание начальных значений

p2=1/(H*t0); %здесь p1 - пи(0); p2 - p(0)

Наконец, в программе создан m-файл, который задаёт программе начальные условия,
полученные из файла “variables.m”, и вызывает остальные функции для нахождения всех
необходимых для построения графиков неизвестных величин.

solving.m:

variables; %вызов функции, задающей переменные

t=[t1 t2]; %интервал интегрирования

x0=[p1 p2]; %начальные условия

mu=0.01 %решение при mu=0.01

[t,x]=ode45(’difp’,t,x0); %решение системы

%дифф. уравнений

mHu=fHu(x); %создание массива значений
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%параметра Хаббла

%в зависимости от времени

exppi=exp(x(:,1)); %создание массива значений

%e^пи в зависимости от времени

p=x(:,1); %создание массива значений

%пи в зависимости от времени

variables;

mu=0 %аналогично для решения при mu=0

to=[t1 t2];

x0=[p1 p2];

[to,x]=ode45(’difp’,to,x0);

exppi0=exp(x(:,1));

p0=x(:,1);

plots;

В программе также создан m-файл “plots.m”, отвечающий за построение графиков.
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