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1 Введение

1.1 Обзор
В конце XIX века Джеймс Клерк Максвелл обобщил накопленные к тому времени экспериментальные
данные об электромагнитном взаимодействии и сформулировал свою знаменитую систему уравнений,
претерпевшую впоследствии лишь формальные изменения и ставшую основой классической электроди-
намики. Однако любая система получает в своё название добавку ”классический”, когда появляются новые
теоретические построения, расширяющие область её применимости путём введения специфических попра-
вок, регистрация которых возможна, как правило, лишь на пределе точности новейших измерительных
приборов. Электродинамика, построенная на уравнениях Максвелла, стала ”классической” в середине
XX века, когда в работах Фейнмана, Швингера, Томонаги, Дайсона и др. получила развитие квантовая
электродинамика (КЭД). С тех пор многие её предсказания не раз подтверждались экспериментально, в
частности фотон-фотонное рассеяние, невозможное с точки зрения классической теории. Однако до сих
пор не было зарегистрировано взаимодействие реальных фотонов частотой порядка 109 герц, проявление
которого описывается лагранжианом Эйлера-Гейзенберга. На современном этапе технического развития
появилась практическая возможность поставить соответствующий эксперимент, и данная работа пресле-
дует цель изучить теоретические основы такого опыта, а также провести численное моделирование его
упрощённых частных случаев.

1.2 Краткое содержание
Отправной точкой работы является лагранжиан Эйлера-Гейзенберга, принимаемый как данность. Да-
лее используется принцип наименьшего действия для получения уравнений электромагнитного поля. За-
тем полученные уравнения сравниваются с максвелловскими, в результате чего вводятся поправки к
последним: поляризация и магнетизация вакуума. После этого выводятся скорректированные волновые
уравнения, и рассматриваются возможности регистрации их нелинейного поведения. Для этого ищется
резонансное решение волновых уравнений, а затем применяется метод функции Грина. В практической
части работы осуществляется численное моделирование упрощённого эксперимента по разностной схеме,
а также расчёт неклассического поведения поля средствами языка программирования Fortran с исполь-
зованием технологий MPI и OpenMP.

2 Теоретическая часть

2.1 Уравнения электромагнитного поля
Знаковым отличием КЭД от классической теории является корпускулярно-волновая трактовка электро-
магнитного поля, позволяющая рассматривать его на мелчайших масштабах, где сказываются квантовые
эффекты. Например, учитывается способность фотонов рождать виртуальные электрон-позитронные па-
ры и через них взаимодействовать друг с другом. Время жизни такой пары мало и имеет характерный
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масштаб времён электромагнитного взаимодействия 10−18 с. Однако в достаточно сильных полях вероят-
ность этого процесса перестаёт быть пренебрежимо малой, что приводит к появлению нелинейной дина-
мики электромагнитного поля даже в вакууме. Для её описания обратимся к лагранжиану, полученному
Гансом Эйлером и Вернером Гейзенбергом в 1936 году (в ином виде):

L = −1

4
ε0f + κε20

(
f2 +

7

4
g2
)
,

где используются следующие обозначения:

f = FµνF
µν = −2

(
E2 − c2B2

)
— первый инвариант электромагнитного поля, [f ]СИ =

кг2м2

А2с6

g = Fµν F̃
µν = −4 (E, cB) — второй инвариант электромагнитного поля, [g]СИ = [f ]СИ

Fµν = c(∂µAν − ∂νAµ) =


0 −Ex −Ey −Ez
Ex 0 −cBz +cBy
Ey +cBz 0 −cBx
Ez −cBy +cBx 0

 — тензор электромагнитного поля,

F̃µν =
1

2
εαβµνFαβ =


0 −cBx −cBy −cBz
cBx 0 +Ez −Ey
cBy −Ez 0 +Ex
cBz +Ey −Ex 0

 — дуальный ему тензор,

Aν — 4-потенциал электромагнитного поля, εαβµν — четырёхмерный символ Ле́ви-Чиви́ты,

ε0 ≈ 8.85 · 10−12
А2с4

кг · м3
— электрическая постоянная,

κ =
2α2

e~3

45m4
ec

5
≈ 1.66 · 10−30

м · с2

кг
— специальный размерный множитель,

αe =
1

4πε0

e2

~c
≈ 1

137
— постоянная тонкой структуры.

Чтобы избежать излишней сложности, промежуточные выкладки будем производить в естественной си-
стеме единиц, в которой масса электрона, приведённая постоянная Планка и скорость света полагаются
безразмерными и равными единице: me = 1, ~ = 1, c = 1. Это упрощает не только запись констант, но и
вид инвариантов и тензора электромагнитного поля:

f = FµνF
µν = −2

(
E2 −H2

)
,

g = Fµν F̃
µν = −4 (E,H) ,

(1)

Fµν = ∂µAν − ∂νAµ =


0 −Ex −Ey −Ez
Ex 0 −Hz +Hy

Ey +Hz 0 −Hx

Ez −Hy +Hx 0

 , F̃µν =
1

2
εαβµνFαβ =


0 −Hx −Hy −Hz

Hx 0 +Ez −Ey
Hy −Ez 0 +Ex
Hz +Ey −Ex 0

 . (2)

Отметим, что для возврата в СИ в выражениях (1) и (2) следует заменить H → cB.
Итак, рассмотрим лагранжиан Эйлера-Гейзенберга, произведя в нём незначительное обощение — за-

менив числовые коэффициенты буквенными α и β. В исходном лагранжиане выполняется β/α = 7/4, но
в других теориях, предполагающих наличие новых тяжёлых частиц, слабо взаимодействующих с элек-
тромагнитным полем, (например, аксионы и аксионоподобные частицы), отношение β/α отличается. В
итоге, отправной точкой будет служить следующий лагранжиан:

L = −1

4
f + αf2 + βg2. (3)

При сравнении (3) с исходным лагранжианом возникает ещё несколько правил возврата в СИ: f →
ε0f, g → ε0g, α→ κ, β → κ β

α .
По определению лагранжиан есть подынтегральная функция в выражении, дающем действие соответ-

ствующей физической системы, и, в частности, действие электромагнитного поля в вакууме, без зарядов
и токов:

S =

∫
LdΩ =

∫ (
−1

4
f + αf2 + βg2

)
dΩ.

Здесь интегрирование производится по четырёхмерному пространству-времени, а значит интеграл на са-
мом деле четырёхкратный и может быть сведён к повторным интегралам, что пригодится в дальнейшем.
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Для получения уравнений, описывающих поведение электромагнитного поля, пойдём хрестоматийным
путём из [1, сс. 108–109], прибегнув к варьированию действия и инвариантов поля:

δS =

∫ (
−1

4
δf + 2αfδf + 2βgδg

)
dΩ, (4)

δf = δ(FµνF
µν) = (δFµν)Fµν + Fµν(δFµν) = 2FµνδFµν =

= 2Fµνδ (∂µAν − ∂νAµ) = 2Fµν∂µδAν + 2F νµ∂νδAµ = 4Fµν∂µδAν , (5)

δg = (Fµν F̃
µν) = (δFµν)F̃µν + Fµν(δF̃µν) = F̃µνδFµν + Fµν

1

2
εµναβδFαβ =

= F̃µνδFµν +
1

2
εαβµνFαβδFµν = 2F̃µνδFµν = 4F̃µν∂µδAν . (6)

Теперь подставим (6) и (5) в (4):

δS =

∫ (
−Fµν + 8αfFµν + 8βgF̃µν

)
∂µδAνdΩ.

Далее проинтегрируем по частям, сводя четырёхмерный интеграл к повторному dΩ = dxµdSµ:

δS =

∫∫ (
−Fµν + 8αfFµν + 8βgF̃µν

) ∂(δAν)

∂xµ
dxµdSµ =

=

∫ (
−Fµν + 8αfFµν + 8βgF̃µν

)
δAν

∣∣∣∣∣
xµ1

xµ0

dSµ −

−
∫∫ ∂

(
−Fµν + 8αfFµν + 8βgF̃µν

)
∂xµ

δAνdx
µdSµ

Уменьшаемое в последнем выражении зануляется на пределах интегрирования по xµ: если µ = 0 (интегри-
рование по временной оси), то δA(t0) = δA(t1) = 0, а если µ = 1, 2, 3 (интегрирование по пространственной
оси), то Fµν(±∞) = 0. Значит, остаётся только вычитаемое:

δS = −
∫
∂µ

(
−Fµν + 8αfFµν + 8βgF̃µν

)
δAνdΩ

Согласно принципу наименьшего действия δS ≡ 0 при всех δAν , откуда необходимо следуют 4 уравнения
электромагнитного поля (при ν = 0, 1, 2, 3):

∂µ

(
Fµν − 8αfFµν − 8βgF̃µν

)
= 0 (7)

2.2 Поправки к уравнениям Максвелла
Для получения скорректированных уравнений Максвелла осталось совершить переход к трёхмерной фор-
ме уравнений (7). Для этого обратимся к покомпонентной записи (2) тензора электромагнитного поля.
Подставим ν = 0 в (7) и свернём по µ = 0, 1, 2, 3:

divE − 8α div(fE)− 8β div(gH) = 0,

div(E − 8αfE − 8βgH) = 0,

div(E + (−8αfE − 8βgH)) = 0,

div(E + P ) = 0.

Проводя аналогию между вакуумом и материальной средой, целесообразно сохранить внешний вид урав-
нения divD = 0 (отсутствие в вакууме объёмных зарядов), введя поляризацию вакуума так же, как и в
материальной среде:

D = E + P , где (8)

P = 16
[
α
(
E2 −H2

)
E + 2β(E,H)H

]
. (9)

Далее подставим в (7) ν = 1, 2, 3, сворачивая по µ = 0, 1, 2, 3:

−∂E
∂t

+ rotH + 8α
∂(fE)

∂t
− 8α rot(fH) + 8β

∂(gH)

∂t
+ 8β rot(gE) = 0,

rot(H − 8αfH + 8βgE) =
∂

∂t
(E − 8αfE − 8βgH),

rot(H +M) =
∂(E + P )

∂t
.
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Используя уже введённую поляризацию вакуума, сохраним вид теоремы о циркуляции магнитного поля
rotB = ∂D

∂t , определив магнетизацию вакуума так же, как и в материальной среде:

B = H +M , где (10)

M = 16
[
α
(
E2 −H2

)
H − 2β(E,H)E

]
. (11)

Обратимся теперь к теореме Гаусса для магнитного поля и закону электромагнитной индукции Фарадея.
Эта пара уравнений остаётся неизменной для напряжённостей полей, так как они выводятся из общего
вида тензора электромагнитного поля:

Fµν = ∂µAν − ∂νAµ, следовательно:
∂ξFµν + ∂µFνξ + ∂νFξµ = 0 ∀ ξ, µ, ν ∈ {0, 1, 2, 3},

откуда подстановками всевозможных троек индексов µ, ν, ξ получаются соотношения, из которых состав-
ляются два векторных уравнения:

rotE = −∂H
∂t

, (12)

divH = 0. (13)

Начнём постепенно возвращаться в СИ. Для этого применим указанные ранее правила возврата в СИ
к определениям (9) и (11), помня о том, что в СИ первичны векторы E и B — силовые характеристики
полей, из-за чего придётся поменять H и B ролями. Стремясь сохранить классические определения
вспомогательных векторов D и H, получим несколько другие определения поляризации и магнетизации
вакуума:

D = ε0E + P , где P = 16κε20
[(
E2 − c2B2

)
E + 2

β

α
(E, cB)cB

]
,

H =
1

µ0
B −M , где M = −c · 16κε20

[(
E2 − c2B2

)
cB − 2

β

α
(E, cB)E

]
.

В таких обозначениях система полевых уравнений Максвелла в вакууме без зарядов и токов сохраняет
свой вид и в системе СИ:

divD = 0,

rotH =
∂D

∂t
,

divB = 0,

rotE = −∂B
∂t

.

2.3 Новые волновые уравнения
Принимая во внимание способность вакуума к поляризации и магнетизации, можно вывести скорректи-
рованные волновые уравнения для электрического и магнитного полей. Для этого повторим классический
подход из [2, с. 14], применив его к уравнениям с поправками (в естественной системе единиц):

rotB =
∂D

∂t
,

rot rotB =
∂

∂t
rotD,

rot rot(H +M) =
∂

∂t
rot(E + P ),

grad divH −∆H = − rot rotM +
∂

∂t
rotE +

∂

∂t
rotP ,

grad divH −∆H − ∂

∂t
rotE = − rot rotM +

∂

∂t
rotP .

Используем первую пару уравнений Максвелла:

grad(0)−∆H − ∂

∂t

(
−∂H
∂t

)
= − rot rotM +

∂

∂t
rotP ,(

∂2

∂t2
−∆

)
H = − rot rotM +

∂

∂t
rotP .
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Аналогично получим волновое уравнение для напряжённости электрического поля:

rotE = −∂H
∂t

,

rot rotE = − ∂

∂t
rot(B −M),

grad divD − grad divP −∆E = − ∂

∂t
rotB +

∂

∂t
rotM .

Используем вторую пару уравнений Максвелла:

grad(0)−∆E = − ∂

∂t

(
∂D

∂t

)
+
∂

∂t
rotM + grad divP ,

∂2

∂t2
(E + P )−∆E =

∂

∂t
rotM + grad divP ,(

∂2

∂t2
−∆

)
E = −∂

2P

∂t2
+ grad divP +

∂

∂t
rotM .

Итак, с учётом поправок волновые уравнения принимают следующий вид:(
∂2

∂t2
−∆

)
E =

∂

∂t
rotM + grad divP − ∂2P

∂t2
, (14)(

∂2

∂t2
−∆

)
H =

∂

∂t
rotP − grad divM + ∆M . (15)

Можно обратить внимание на то, что некоторая симметрия в новых волновых уравнениях всё же присут-
ствует: P иM входят в них зеркальным образом, разве что вторая производная поляризации по времени
заменяется на лапласиан магнетизации, играющий роль второй производной “по пространству”.

Чтобы продолжить возвращение в СИ, можно провести совершенно аналогичный вывод волновых
уравнений, но для других определений поправок, приведенных в конце предыдущего раздела. В результате
получатся и несколько другие волновые уравнения:(

1

c2
∂2

∂t2
−∆

)
E = −µ0

(
∂

∂t
rotM − c2 grad divP +

∂2P

∂t2

)
,(

1

c2
∂2

∂t2
−∆

)
B = +µ0

(
∂

∂t
rotP + grad divM −∆M

)
.

2.4 Линейно растущая сигнальная мода
Заметим, что в случае плоской волны E ⊥H ⇒ g = 0, а также E2 = H2 ⇒ f = 0, поэтому в соответствии
с (9) P = 0, и согласно (11) M = 0. Тогда: (

∂2

∂t2
−∆

)
E = 0, (16)(

∂2

∂t2
−∆

)
H = 0. (17)

Значит, волновые уравнения принимают классический вид и, следовательно, не могут привести к появ-
лению нелинейной динамики в вакууме. Поэтому экспериментальный интерес представляет собой случай
неплоской волны достаточно большой амплитуды, способной проявить своё нелинейное поведение в мас-
штабе, доступном регистрации современными приборами. Для наглядной оценки требуемых амплитуд
обратимся вновь к исходному лагранжиану:

L = L0 + LEH = −1

4
ε0f + κε20

(
f2 +

7

4
g2
)
.

Так как вся нелинейность сокрыта во втором слагаемом, хотелось бы достичь такой амплитуды электро-
магнитных колебаний, при которой LEH перестаёт быть бесконечно малым в сравнении с классическим
первым слагаемым L0. Оценим отношение второго слагаемого к первому:

LEH
L0
∼

κε20
(
f2 + 7

4g
2
)

1
4ε0f

∼ κε0(f2 + g2)

f
∼ κε0(cB0)2, где B0 — амплитуда магнитной индукции поля.
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Для примерной оценки можно использовать характерную предельную величину магнитной индукции в
ниобиевых сверхпроводящих резонаторах B0 ∼ 0.15 Тл (см. [9]):

LEH
L0
∼ κε0(cB0)2 ∼ 10−26.

Это говорит о том, что даже при использовании в качестве детекторов микропиксельных лавинных фото-
диодов (счётчиков единичных фотонов с коэффициентом усиления порядка 108 согласно [7]), нелинейные
эффекты будут не более чем шумом по сравнению с классическими колебаниями. Следовательно, экспе-
римент должен избегать сравнения полей, при котором порождаемое нелинейное поведение затмевается
полем порождающим. Идея такого опыта может заключаться в исследовании электромагнитных коле-
баний в резонаторе, обладающим максимально возможной добротностью (чем сильнее поля, тем больше
проявляется нелинейность), а также имеющим специальную геометрию, подавляющую порождающее поле
в месте расположения детектора.

При рассмотрении электромагнитных колебаний в резонаторе речь идёт в первую очередь о его соб-
ственных колебаниях, как о наиболее устойчивых. Поэтому будем называть порождающие классические
электромагнитные колебания модами накачки, а порождаемые нелинейные колебания — сигнальными
модами. Таким образом, преследуются две цели:

• максимально усилить сигнальные моды (желательно без сопутствующего усиления мод накачки),

• как можно дальше разнести сигнальные моды и моды накачки друг от друга по частоте.

В этом разделе попробуем решить первую задачу. Как известно из теории обыкновенных дифферен-
циальных уравнений, возможно явление резонанса, если в правую часть неоднородного уравнения вхо-
дит решение однородного (то есть система возбуждается на собственной частоте). Сначала рассмотрим
простейший случай, в котором моды накачки выбраны так, что в правой части нелинейного волнового
уравнения оказалось какое-либо решение однородной задачи:(

∂2

∂t2
− ∂2

∂x2

)
Esig = A sin(ωx) cos(ωt). (18)

Уравнение (18) записано исключительно для сигнальной моды Esig, в то время как моды накачки рассмат-
риваются сами по себе в рамках классической теории. Такое разделение возможно на основании малости
поправок: Etotal = Epump +Esig ' Epump. Оказывается, частным решением (18) является мода с линейно
нарастающей во времени амплитудой:

Esig =
A

2ω
t · sin(ωx) sin(ωt).

Убедимся в этом, проведя соответствующие подстановки:

∂2Esig

∂t2
=

A

2ω

∂

∂t

(
sin(ωx) sin(ωt) + tω · sin(ωx) cos(ωt)

)
= A sin(ωx) cos(ωt)− Aω

2
t · sin(ωx) sin(ωt), (19)

∂2Esig

∂x2
=

A

2ω

∂

∂x

(
tω · cos(ωx) sin(ωt)

)
= −Aω

2
t · sin(ωx) sin(ωt). (20)

Вычитая (20) из (19), получаем требуемое уравнение (18). Данный пример обобщается, очевидно, и на
трёхмерный случай. Итак, если решение волнового уравнения линейно входит в правую часть такого же
уравнения, то стоит ожидать появление сигнальной моды, чья амплитуда будет линейно нарастать со
временем. На практике, конечно, этот рост будет ограничен неизбежными потерями, однако он благопри-
ятствует регистрации такой сигнальной моды, так как усиливает её без сопутствующего усиления моды
накачки, к чему мы и стремимся.

В ходе работы была исследована следующая трёхмерная конфигурация мод накачки, являющаяся
частным случаем собственных колебаний прямоугольного резонатора (см. [3, с. 162]):

Ex = 0,

Ey = 0,

Bz = 0,

Ez = +E0 sin
(πx
a

)
sin
(πy
a

)
· sin(ωt),

Bx = +B0 sin
(πx
a

)
cos
(πy
a

)
· cos(ωt),

By = −B0 cos
(πx
a

)
sin
(πy
a

)
· cos(ωt),

E0 =
√

2cB0,

a =
√

2c
π

ω
.

(21)

Параметры имеют следующий физический смысл: E0, B0 — амплитуды напряжённости электрического
поля и магнитной индукции соответственно, a — длина стороны параллелепипеда вдоль осей Ox и Oy
(квадратное основание), ω — циклическая частота колебаний. Нетрудно убедиться в том, что такие моды
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накачки удовлетворяют классическим уравнениям Максвелла и обычным волновым уравнениям, а так-
же граничному условию резонатора с идеально проводящими стенками (E, τ ) = 0, где τ — касательный
вектор к поверхности параллелепипеда. Кроме того, они удовлетворяют ещё условию (B,n) = 0, где n —
вектор нормали к поверхности параллелепипеда. Единственной занятной особенностью данной конфигу-
рации является тот факт, что она явно не зависит от длины третьей стороны параллелепипеда (вдоль оси
Oz). Конечно, длина третьей стороны всё же накладывает ограничение на амплитудное значение напря-
жённости электрического поля E0. Тем не менее независимость полей от координаты z сильно упрощает
их анализ, особенно численное моделирование.

В данной конфигурации поля E и B взаимно перпендикулярны, вследствие чего инвариант g = 0.
Однако этого уже не скажешь про инвариант f :

f = −2(E2 − c2B2) = −E2
0

(
2 sin2

(πx
a

)
sin2

(πy
a

)
− cos2(ωt)

[
sin2

(πx
a

)
+ sin2

(πy
a

)])
.

Тогда, в соответствии с определениями (9) и (11), ненулевыми окажутся и нелинейные поправки:

P = +16κε20(E2 − c2B2)E 6= 0,

M = −16κε20(E2 − c2B2)c2B 6= 0.

Если теперь подставить1 эти поправки в правые части скорректированных волновых уравнений (14), (15)
для сигнальной моды, то в них как раз проявится линейное вхождение мод накачки:(

1

c2
∂2

∂t2
−∆

)
Esigz = −24ε0κ ·B2

0ω
2 · Ez + ...(

1

c2
∂2

∂t2
−∆

)
Bsigx = +48ε0κ ·B2

0ω
2 ·Bx + ...(

1

c2
∂2

∂t2
−∆

)
Bsigy = +48ε0κ ·B2

0ω
2 ·By + ...

Следовательно, рассмотренная конфигурация обеспечивает линейный рост функций Esigz , Bsigx , Bsigy и тем
самым помогает достичь первой цели — усиления сигнальных мод без сопутствующего увеличения ам-
плитуды мод накачки. На практике линейный рост будет неизбежно ограничен потерями в резонаторе.
Продолжая пример (18), оценим максимальное значение амплитуды, которого достигнет мода Esig, чей
линейный рост ограничен диссипациями с коэффициентом затухания δ:

Esig ∼ A

2ω
· te−δt, ∂

∂t

(
te−δt

)
= 0 ⇔ t =

1

δ
, maxEsig ∼ A

2ωδ
∼ A Q

ω2
, где Q =

ω

2δ
— добротность.

Отсюда следует, что определяющим параметром является добротность резонатора, которой пропорцио-
нальна пиковая амплитуда сигнальной моды. Согласно [8], на текущий момент в ниобиевых сверхпрово-
дящих резонаторах достижимы значения добротностей Q ∼ 1011, накладывающие, правда, существенные
ограничения на амплитуду магнитной индукции мод накачки: 2 · 10−5 Тл. Тем не менее, это ограниче-
ние можно обойти, если сигнальные моды будут отличаться по частоте от мод накачки (см. следующий
раздел). В итоге, благодаря линейному нарастанию неклассическое поведение становится заметнее:

Esigz
Ez
∼ c2 · ε0κB2

0ω
2 · Q
ω2
∼ κ
µ0
B2

0Q ∼ 10−15.

Однако эффект такого масштаба всё ещё неотличим от шумов (даже при коэффициенте усиления детек-
тора 108), что ещё раз подчёркивает бесперспективность попыток регистрации сигнальных мод на фоне
мод накачки, особенно в одном и том же частотном диапазоне.

2.5 Поиск высших гармоник
В таком случае попробуем достичь второй цели — как можно дальше разнести сигнальные моды и моды
накачки друг от друга по частоте. Различие в пространственных частотах позволит, например, использо-
вать резонатор специфической геометрии, локально подавляющей моды накачки в месте расположения
детектора. Различие во временных частотах можно использовать при настройке детектора, понижая его
чувствительность на частоте мод накачки.

При поиске высших гармоник предпринимались попытки, аналогичные предыдущему разделу: пере-
бирались различые конфигурации порождающих полей, далее моды накачки подставлялись в правые

1Несложные, но несколько громоздкие символьные преобразования были проведены с помощью программного пакета
wxMaxima 19.09.0.
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части (14) и (15), а затем проводился поиск решений (высших частот) в правых частях волновых уравне-
ний. Вопреки ожиданиям, не удалось эмпирически подобрать моды накачки, способные породить высшую
гармонику с линейно нарастающей амплитудой.

Также была предпринята попытка повторить схожие результаты, заявленные в [4]: комбинация двух
мод накачки разных частот ω1 и ω2 должна порождать сигнальные моды на частотах 2ω1±ω2 и 2ω2±ω1.
На удивление, эта попытка также обернулась неудачей. Поэтому возникла необходимость применить более
совершенный подход, основанный на методе функции Грина.

В нашем случае требуется решить начально-краевую задачу возбуждения колебаний u из нулевого
состояния под воздействием поля f в резонаторе T , ограниченном поверхностью S:(

1

c2
∂2

∂t2
−∆M

)
u(M, t) = f(M, t) ∀M = (x, y, z) ∈ T, t > 0,

∀M ∈ S, t > 0

{
u(M, t) = 0, (для электрического поля)
∂
∂nu(M, t) = 0, (для магнитного поля)

u(M, 0) = 0 ∀M ∈ T,
∂u

∂t
(M, 0) = 0 ∀M ∈ T.

(22)

Здесь под функцией u(M, t) подразумевается любая компонента сигнальных мод Esig и Bsig, а под функ-
цией f(M, t) — правая часть соответствующего волнового уравнения (14) или (15). Необходимо отметить,
что правые части новых волновых уравнений (14) и (15) зависят от координат и времени косвенно че-
рез поправки P и M , являющиеся в свою очередь функциями суммарных полей E = Epump + Esig и
B = Bpump +Bsig. К счастью, в этом случае чрезвычайная малость поправок играет нам на руку, делая
справедливыми допущения E ≈ Epump и B ≈ Bpump, что позволяет считать правую часть f(M, t) явной
функцией координат и времени, так как моды накачки Epump и Bpump известны (задаются при поиске).

Согласно методу функции Грина, описанному, например, в [5, cc. 265–267], искомую функцию u можно
представить в виде:

u(M, t) =

t∫
0

∫
T

G(M,Q, t− τ)f(Q, τ) dV dτ, (23)

где дифференциал dV отвечает трёхмерному интегрированию по переменной точке Q в области T , а
функция G(M,Q, t) является функцией Грина, определяемой, как решение более простой задачи:(

1

c2
∂2

∂τ2
−∆Q

)
G(M,Q, t− τ) = δ(M,Q) · δ(t, τ) ∀Q ∈ T, τ > 0,

∀Q ∈ S

{
G(M,Q, t− τ) = 0, (для электрического поля)
∂
∂nG(M,Q, t− τ) = 0. (для магнитного поля)

G(M,Q, t− τ) = 0 =
∂G

∂t
(M,Q, t− τ) ∀Q ∈ T, τ ≥ t.

Можно убедиться в корректности (23) непосредственной подстановкой решения в саму задачу (22):(
1

c2
∂2

∂t2
−∆M

)
u(M, t) =

(
1

c2
∂2

∂t2
−∆M

)∫∫
G(M,Q, t− τ)f(Q, τ) dV dτ =

=

∫∫
f(Q, τ)

(
1

c2
∂2

∂t2
−∆M

)
G(M,Q, t− τ) dV dτ =

Чтобы провести дальнейшие преобразования, обратимся к следующим свойствам функции Грина данной
задачи:

G(M,Q, ·) = G(Q,M, ·) ⇒ ∆MG(M,Q, ·) = ∆QG(M,Q, ·),
∂2G

∂τ2
(M,Q, t− τ) =

∂

∂τ

(
−∂G
∂t

(M,Q, t− τ)

)
=
∂2G

∂t2
(M,Q, t− τ).

Пользуясь её симметричностью и временно́й инвариантностью, продолжаем равенство:

=

∫∫
f(Q, τ)

(
1

c2
∂2

∂τ2
−∆Q

)
G(M,Q, t− τ) dV dτ =

∫∫
f(Q, τ) · δ(M,Q)δ(t, τ) dV dτ = f(M, t).
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Также в [5] даётся указание к поиску функции Грина для решения задачи, аналогичной (22):

G(M,Q, t− τ) =

∞∑
n,m,k=0

[
sin
√
λnmkc(t− τ)√
λnmkc

· vnmk(Q) · vnmk(M)

]
, (24)

где vnmk(M) — взаимно ортогональные нормированные собственные функции лапласиана ∆M , отвечаю-
щие его собственным значениям λnmk и учитывающие граничные условия задачи (22). Это выражение
для функции Грина можно объяснить, воспользовавшись уточнением из [6, сс. 289], дающим разложение
δ-функции:

δ(M,Q) =

∞∑
n,m,k=1

(
vnmk(Q) · vnmk(M)

)
.

Итак, осталось получить собственные значения λnmk и собственные функции vnmk лапласиана ∆M с
учётом граничных условий из (22), что является вариантом задачи Штурма-Лиувилля:

∆v(M) + λ · v(M) = 0 ∀M ∈ T,

∀M ∈ S

{
v(M) = 0, (для электрического поля)
∂
∂nv(M) = 0. (для магнитного поля)

(25)

2.5.1 В параллелепипеде

Сначала рассмотрим простейший резонатор в форме параллелепипеда, для которого рационально выбрать
декартову систему координат. Пусть для определённости параллелепипед имеет линейные размеры a, b, c:

T := {(x, y, z) | x ∈ [0, a1] ∧ y ∈ [0, a2] ∧ z ∈ [0, a3]}

Будем решать задачу (25) стандартным методом разделения переменных подобно частному случаю, опи-
санному в [6, сс. 450–452]. Опираясь на равноправность координатных осей, будем предполагать следую-
щий вид собственных функций:

v(M) = v(x, y, z) = X(x) · Y (y) · Z(z). (26)

Воспользуемся представлением лапласиана в декартовой системе координат, подставляя (26) в задачу
Штурма-Лиувилля:

∆v(M) + λv(M) = 0 ⇔
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)(
X(x)Y (y)Z(z)

)
+ λ ·X(x)Y (y)Z(z) = 0 ⇔

⇔ Y (y)Z(z) ·X ′′(x) + Z(y)X(z) · Y ′′(y) +X(x)Y (y) · Z ′′(z) = −λ ·X(x)Y (y)Z(z).

Так как собственные функции по определению тождественно не равны нулю, будем рассматривать точки,
где можно разделить на выражение X(x)Y (y)Z(z) 6= 0:

X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
+
Z ′′(z)

Z(z)
= −λ.

Правая часть является числовой константой (собственным значением) и не зависит от координат. Значит,
постоянна и левая часть. Предположим, что одно из слагаемых непостоянно:

Z ′′(z)

Z(z)
= −ξ(z) ⇒ X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
= −λ− ξ(z) = ξ(z).

Противоречие заключается в том, что сумма двух оставшихся слагаемых начинает зависеть от третьей
переменной, хотя по построению это невозможно. Значит, каждое из отношений постоянно:

X ′′(x) + νX(x) = 0,

Y ′′(y) + µY (y) = 0,

Z ′′(z) + ξZ(z) = 0,

ν + µ+ ξ = λ.

Такое же разделение переменных возможно и для однородных граничных условий задачи Штурма-
Лиувилля. Например, рассмотрим грань параллелепипеда g = {M | M ∈ S ∧ x = 0}:

∀M ∈ g 0 = v(M) = X(0) · Y (y) · Z(z), Y (y) 6≡ 0, Z(z) 6≡ 0 ⇒ X(0) = 0 (для электрического поля),

∀M ∈ g 0 =
∂v

∂n
(M) = ex

(
X ′(0) · Y (y) · Z(z)

)
⇒ X ′(0) = 0 (для магнитного поля).
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Аналогично доказывается, что все граничные условия одномерных задач Штурма-Лиувилля однородные.
Решением таких задач для электрического поля будут следующие наборы ортонормированных собствен-
ных функций и значений:

Xn(x) =

√
2

a1
· sin πn

a1
x ←→ νn =

(
πn

a1

)2

, n ∈ N

Ym(y) =

√
2

a2
· sin πm

a2
y ←→ µm =

(
πm

a2

)2

, m ∈ N

Zk(z) =

√
2

a3
· sin πk

a3
z ←→ ξk =

(
πk

a3

)2

, k ∈ N

Объединение этих результатов даёт ортонормированную систему собственных функций и собственных
значений оператора Лапласа в параллелепипеде (для электрического поля):

vnmk(x, y, z) =

√
8

a1a2a3
·sin πn

a1
x ·sin πm

a2
y ·sin πk

a3
z ←→ λnmk =

(
πn

a1

)2

+

(
πm

a2

)2

+

(
πk

a3

)2

. (27)

В случае магнитного поля собственные функции требуется чуть-чуть видоизменить, чтобы они удовле-
творяли граничным условиям первого рода. Для этого достаточно заменить все синусы на косинусы и
исключить возникающее нулевое собственное значение из рассмотрения (когда n = m = k = 0). Положи-
тельные собственные значения при n,m, k > 0 одинаковы для обоих случаев.

Теперь известно всё необходимое, чтобы найти решение исходной задачи (22) в общем виде. Для этого
требуется подставить последний результат (27) в выражение для функции Грина (24), которое в свою
очередь использовать в формуле общего решения (23):

u(x, y, z, t) =
8

a1a2a3

t∫
0

a1∫
0

a2∫
0

a3∫
0

f(x′, y′, z′, τ)

∞∑
n=1

∞∑
m=1

∞∑
k=1

[
sin
√
λnmkc(t− τ)√
λnmkc

×

× sin
πnx

a1
sin

πnx′

a1
· sin πmy

a2
sin

πmy′

a2
· sin πkz

a3
sin

πkz′

a3

]
dx′dy′dz′dτ, (для электрического поля).

(28)

Для магнитной компоненты сигнальной моды решение записывается аналогично, за исключением того,
что числа n,m, k могут обращаться в ноль (не все одновременно). Для единообразной записи случаев,
когда среди этих чисел присутствуют нули, можно прибегнуть к символам Кронекера в знаменателе:

u(x, y, z, t) =
8

a1a2a3

t∫
0

a1∫
0

a2∫
0

a3∫
0

f(x′, y′, z′, τ)

∞∑
n=0

∞∑
m=0

∞∑
k=0

[
sin
√
λnmkc(t− τ)√

λnmkc · (1 + δn0)(1 + δm0)(1 + δk0)
×

× cos
πnx

a1
cos

πnx′

a1
· cos

πmy

a2
cos

πmy′

a2
· cos

πkz

a3
cos

πkz′

a3

]
dx′dy′dz′dτ, (для магнитного поля).

(29)

Полученные формула позволяют напрямую рассчитывать поведение сигнальной моды. Казалось бы, они
допускают интегрирование даже на символьном уровне (например, для моды накачки f(Q, τ) из конфи-
гурации (21)), так как произведение синусов и/или косинусов легко раскладывается в сумму. Однако ряд,
образуемый тройной суммой, не является равномерно сходящимся, что не даёт разрешения менять интег-
рирование и суммирование местами. Поэтому дальнейший анализ проводится численно в практической
части работы.

2.5.2 В цилиндре

В статье [4] отмечается, что резонатор цилиндрической геометрии более перспективен, чем резонатор-
параллелепипед. Для определённости рассмотрим следующий резонатор в цилиндрической системе коор-
динат:

T := {(ρ, ϕ, z) | ρ ∈ [0, r0] ∧ ϕ ∈ [0, 2π) ∧ z ∈ [0, h]}

Снова воспользуемся методом разделения переменных для решения задачи Штурма-Лиувилля (25):

v(M) = v(ρ, ϕ, z) = R(ρ) · Φ(ϕ) · Z(z), (30)

учитывая периодичность угловой составляющей Φ(ϕ + 2π) = Φ(ϕ) и ограниченность радиальной компо-
ненты |R(ρ)| < ∞. Подставим (30) в задачу Штурма-Лиувилля, записывая лапалсиан в цилиндрических
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координатах:

∆v(M) + λv(M) = 0 ⇔
(

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂ϕ2
+

∂2

∂z2

)(
R(ρ)Φ(ϕ)Z(z)

)
+ λ ·R(ρ)Φ(ϕ)Z(z) = 0 ⇔

⇔ Φ(ϕ)Z(z) ·
(
R′′(ρ) +

1

ρ
R′(ρ)

)
+ Z(y)

R(ρ)

ρ2
· Φ′′(ϕ) +R(ρ)Φ(ϕ) · Z ′′(z) = −λ ·R(ρ)Φ(ϕ)Z(z).

Так как собственные функции по определению тождественно не равны нулю, будем рассматривать точки,
где можно разделить на выражение R(ρ)Φ(ϕ)Z(z) 6= 0:

R′′(ρ) + 1
ρR
′(ρ)

R(ρ)
+

Φ′′(ϕ)

ρ2Φ(ϕ)
= −λ− Z ′′(z)

Z(z)
.

Левая часть не зависит от координаты z. Значит, от z не зависит и правая часть:

Z ′′(z) + ξZ(z) = 0,
ρ2R′′(ρ) + ρR′(ρ)

R(ρ)
+

Φ′′(ϕ)

Φ(ϕ)
= −νρ2, ν = λ− ξ.

Аналогично приходим к заключению, что переменные R и Φ также успешно разделяются:

Z ′′(z) + ξZ(z) = 0,

Φ′′(ϕ) + µΦ(ϕ) = 0,

R′′(ρ) +
1

ρ
R′(ρ) +

(
ν − µ

ρ2

)
R(ρ) = 0,

ξ + ν = λ.

Для компоненты Z(z) одномерная задача имеет такое же решение, как и в случае параллелепипеда:

Zk(z) =

√
2

h
· sin πk

h
z ←→ ξk =

(
πk

h

)2

, k ∈ N (для электрического поля),

Zk(z) =

√
2− δk0
h

· cos
πk

h
z ←→ ξk =

(
πk

h

)2

, k ∈ N0 (для магнитного поля).

Однако на этом сходство заканчивается. Для составляющей Φ имеются только условия периодичности
Φ(ϕ+ 2π) = Φ(ϕ) и Φ′(ϕ+ 2π) = Φ′(ϕ), и каждому собственному значению µm отвечает пара собственных
функций, за исключением нулевого собственного значения:

Φm(ϕ) =

√
1

π
·

{
sin(mϕ)

cos(mϕ)
←→ µm = m2, m ∈ N,

Φ0(ϕ) =

√
1

2π
←→ µ0 = 0.

Наиболее сложная подзадача связана с радиальной компонентой R(ρ), которая ещё и зависит от угловых
собственных значений µm = m2:

R′′(ρ) +
1

ρ
R′(ρ) +

(
ν − m2

ρ2

)
R(ρ) = 0, |R(ρ)| <∞, R(r0) = 0 (для электрического поля).

Сделав замену x =
√
νρ и R(ρ) = R(x/

√
ν) = y(x), сведём последнее уравнение к уравнению цилиндриче-

ских функций m-го порядка:

y′′ +
1

x
y′ +

(
1− m2

x2

)
y = 0, |y(x)| <∞, y(

√
νr0) = 0.

Его решениями, согласно [6, сс. 678-679], являются функции Бесселя:

ym(x) = Anm · Jm(x), 0 = Jm(
√
νr0) ⇒ νnm =

(
χ
(m)
n

r0

)2

, где

χ
(m)
n — бесконечный набор корней функции Бесселя m-го порядка Jm

(
χ
(m)
n

)
= 0. В случае граничных

условий второго рода собственные функции выглядят аналогично, отличаются только числа χ̃(m)
n , которые

на этот раз должны занулять не саму функцию Бесселя, а её производную:

ym(x) = Anm · Jm(x), 0 = J ′m(
√
νr0) ⇒ νnm =

(
χ̃
(m)
n

r0

)2

, где J ′m

(
χ̃(m)
n

)
= 0.
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Используем свойство функций Бесселя для определения нормировочного множителя A:

1 =

r0∫
0

A2
nmJ

2
m

(
χ
(m)
n

r0
ρ

)
ρ dρ = A2

nm ·
r20
2

[
J ′m

(
χ(m)
n

)]2
⇔ Anm = ±

√
2

J ′m

(
χ
(m)
n

)
r0
.

Нормировка собственных функций задачи второго рода выглядит сложнее (см. [6, с. 682]):

1 =

r0∫
0

A2
nmJ

2
m

(
χ̃
(m)
n

r0
ρ

)
ρ dρ = A2

nm·
r20
2

1−

(
m

χ̃
(m)
n

)2
·J2

m

(
χ̃(m)
n

)
⇔ Anm = ±

√
2

Jm

(
χ̃
(m)
n

)
r0 ·

√
1−

(
m

χ̃
(m)
n

)2 .
Проводя обратную замену переменной, получаем наборы Rnm(ρ)↔ νnm:

Rnm(ρ) =

√
2

J ′m

(
χ
(m)
n

)
r0
Jm

(
χ(m)
n

ρ

r0

)
←→ νnm =

(
χ
(m)
n

r0

)2

(для электрического поля).

Rnm(ρ) =

√
2

Jm

(
χ̃
(m)
n

)
r0 ·

√
1−

(
m

χ̃
(m)
n

)2 Jm
(
χ̃(m)
n

ρ

r0

)
←→ νnm =

(
χ̃
(m)
n

r0

)2

(для магнитного поля).

Наконец, осталось соединить разделённые переменные, чтобы получить полные наборы собственных
функций и собственных значений оператора Лапласа в цилиндре.
Для электрического поля:

vnmk(ρ, ϕ, z) =
2 · Jm

(
χ
(m)
n

ρ
r0

)
√
πh · J ′m

(
χ
(m)
n

)
r0
·


sin(mϕ)
cos(mϕ)

1/
√

2

 · sin πkh z ←→ λnmk =

(
χ
(m)
n

r0

)2

+

(
πk

h

)2

. (31)

Для магнитного поля:

vnmk(ρ, ϕ, z) =
2 · Jm

(
χ̃
(m)
n

ρ
r0

)
√
πh · Jm

(
χ̃
(m)
n

)
r0
·


sin(mϕ)
cos(mϕ)

1/
√

2

 · sin πk
h z√

1−
(

m

χ̃
(m)
n

)2 ←→ λnmk =

(
χ̃
(m)
n

r0

)2

+

(
πk

h

)2

. (32)

В выражениях (31) и (32) фигурные скобки дают тройное разветвление формул, но ветвь 1/
√

2 выбира-
ется тогда и только тогда, когда m = 0. При m ≥ 1 действуют обе другие ветви одновременно: одному
и тому же собственному значению λnmk соответствует две собственные функции — одна с sin(mϕ), дру-
гая с cos(mϕ). Это имеет определённые последствия для функции Грина, в чьей формуле (24) тройное
суммирование учитывает все собственные функции для каждого λnmk. Из-за этого при суммировании
выделяются конструкции вида sin(mϕ) sin(mϕ′) + cos(mϕ) cos(mϕ′), которые дают косинусы разностей
угловых координат cosm(ϕ− ϕ′) (инвариантность относительно поворота системы координат вокруг оси
цилиндра). После подстановки собственных значений и функций оператора Лапласа в формулу функции
Грина, её можно использовать для явной записи решения исходной задачи:

u(ρ, ϕ, z, t) =
4

πr20h

t∫
0

r0∫
0

2π∫
0

h∫
0

f(ρ′, ϕ′, z′, τ)

∞∑
n=1

∞∑
m=0

∞∑
k=1

[
sin
√
λnmkc(t− τ)

√
λnmkc · J ′2m

(
χ
(m)
n

) · cos[m(ϕ− ϕ′)]
1 + δm0

×

×Jm
(
χ(m)
n

ρ′

r0

)
Jm

(
χ(m)
n

ρ

r0

)
· sin πkz

h
sin

πkz′

h

]
dρ′dϕ′dz′dτ (для электрического поля).

(33)

Внутри записи решения использован знаменатель 1+δ0m с символом Кронекера, позволяющий компактно
учесть собственные функции vn0k для собственных значений λn0k, то есть в случае m = 0. Аналогично
записывается и явное решение для магнитной компоненты сигнальной моды:

u(ρ, ϕ, z, t) =
4

πr20h

t∫
0

r0∫
0

2π∫
0

h∫
0

f(ρ′, ϕ′, z′, τ)

∞∑
n=1

∞∑
m=0

∞∑
k=0

[
sin
√
λnmkc(t− τ)

√
λnmkc · J2

m

(
χ̃
(m)
n

) · cos[m(ϕ− ϕ′)]

1−
(

m

χ̃
(m)
n

)2
+ δm0

×

×Jm
(
χ̃(m)
n

ρ′

r0

)
Jm

(
χ̃(m)
n

ρ

r0

)
·

cos πkzh cos πkz
′

h

1 + δk0

]
dρ′dϕ′dz′dτ (для магнитного поля).

(34)

Если явный вид решений в параллелепипеде ещё подавал надежды на возможность аналитического ин-
тегрирования, то получение сигнальных мод в цилиндре однозначно попадает в разряд задач, решаемых
численно.
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3 Практическая часть
В этом разделе кратко освещаются результаты нескольких численных экспериментов, проведенных в ходе
работы.

3.1 Наглядная иллюстрация
В разделе 2.4 было сделано заключение, что линейного нарастания сигнальной моды недостаточно для её
регистрации на фоне мод накачки (т.е. на той же частоте). Естественно, это заключение во многом обязано
чрезвычайной малости специального размерного коэффициента κ ≈ 1.66·10−30 м·с2

кг перед неклассическим
слагаемым в лагранжиане Эйлера-Гейзенберга. Ради интереса было проведено численное моделирование
эволюции мод накачки (21) в резонаторе-параллелепипеде при коэффициенте κ, намеренно увеличен-
ном на много порядков так, чтобы нелинейное поведение стало заметно невооружённым глазом. Так как
данная модель заведомо нефизична и носит чисто иллюстративный характер, расчёты проводились обез-
размеренно без привязки к какой-либо системе единиц.

Например, следующая пара мгновенных “снимков” полей в двумерном срезе резонатора, перпендику-
лярном оси Oz, наглядно демонстрирует различие между классическим сценарием развития событий и
неклассическим:

Рис. 1: Электрическое поле в срезе резонатора (модель без учёта поправок).

Рис. 2: Электрическое поле в срезе резонатора (модель с учётом поправок).

Полная анимация эволюции электрической составляющей поля (суммы моды накачки и сигнальной
моды), исходные коды программы (Fortran, MPI) и вспомогательных элементов, а также краткая инструк-
ция доступны по адресу: https://drive.google.com/open?id=1dlO30sOuvFtuhkuMnDrBFTTSjWlxpLYB.
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3.2 Расчёт сигнальных мод в параллелепипеде
В разделах 2.5.1 и 2.5.2 были получены формулы, позволяющие явно рассчитать сигнальные моды в
резонаторах простейших форм при произвольных модах накачки. Несмотря на немалую вычислительную
сложность расчётов, была численно получена зависимость энергии сигнальных мод от времени.

По формулам 28 и 29 вычисляются величины сигнальных мод из конфигурации (21) для нескольких
моментов времени во всём резонаторе. Для каждого момента времени рассчитывается объёмная плотность
энергии сигнальных мод, которая затем усредняется по объёму. Наконец, полученное значение масшта-
бируется для построения графика. Все расчёты строго привязаны к системе СИ.

Рис. 3: Средняя объёмная плотность энергии сигнальных мод в параллелепипеде.

Поведение энергии аппроксимируется степенным ростом A ·(t+ε)B , и в случае линейного роста ампли-
туды сигнальных мод ожидается значение показателя нарастания энергии B = 2. В результате численного
эксперимента получено значение B = 1.87, что удовлетворительно согласуется с ожиданиями. По графику
энергии можно судить о монохроматичном поведении магнитных мод Bx, By, в то время как колебания
энергии электрической моды Ez свидетельствуют о наличии нескольких её частотных составляющих. Это
делает возможным появление высших гармоник, нарастающих во времени, — более тщательный спек-
тральный анализ является перспективой развития данной работы.

Полноразмерное изображение графика роста средней объёмной плотности энергии сигнальных мод в
резонаторе-параллелепипеде, а также исходный код программы (Fortran, OpenMP) доступны по адресу:
https://drive.google.com/open?id=1Ip60Jz7SCFVPEhRQ2wGurNRsrIeTuqbr.

4 Основные итоги
В ходе данной работы были получены:

• нелиненые поправки к уравнениям Максвелла на основе лагранжиана Эйлера-Гейзенберга — поля-
ризация и магнетизация вакуума,

• скорректированные волновые уравнения, учитывающие эти поправки,

а также проанализированы возможности регистрации данных эффектов при использовании явления ре-
зонанса для усиления сигнальных мод. Попутно была численно построена наглядная иллюстрация их
нелинейного поведения. При дальнейшем изучении был применён метод функции Грина для получения
явного решения волновых уравнений, однако численный расчёт через функцию Грина дал результат,
вопрос достоверности которого остаётся открытым.

Перспективным направлением развития данной работы является исследование вариантов лагранжи-
ана Эйлера-Гейзенберга, учитывающих вклад аксионов и аксионоподобных частиц, а также построение
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надёжной модели эксперимента, посвящённого регистрации неклассического поведения электромагнит-
ного поля, обусловленного как эффектами КЭД, так и вкладом со стороны аксионов и аксионоподобных
частиц.
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