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Аннотация

По современным представлениям, структуры во Вселенной, та-
кие как карликовые и большие галактики, их группы и скопления,
образовались в результате быстрого роста пространственных неод-
нородностей материи в эпоху доминирования во Вселенной нереля-
тивистских частиц (“пыли”). При этом давление в среде отсутству-
ет и неоднородности начинают быстро расти из-за гравитационной
неустойчивости.

Весьма вероятно, что подобная эпоха “без давления” реализова-
лась во Вселенной до ее разогрева, сразу после окончания инфля-
ционной стадии развития. Тогда аналогичные современным струк-
туры могли формироваться, но не из неоднородности материи, а из
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неоднородностей инфлатона, доминирующего в ту эпоху. Во вре-
мя разогрева инфлатонное поле исчезает, рождая релятивистские
частицы плазмы, и данные структуры пропадают.

Однако, процесс образования и эволюции данных структур со-
провождается испусканием гравитационных волн, доживающих до
наших дней. Гравитационные волны рождаются прир коллапсе
неоднородностей в гало, при слиянии двух сгустков, а также при
распаде гало инфлатона на релятивистские частицы. Параметры
данных волн можно оценить исходя из геометрии гало и характер-
ных времен процессов.

1 Введение
Как известно, классическая космологическая теория (теория горячего
Большого взрыва) испытывает некоторые трудности1 при описании про-
цессов, происходивших в ранней Вселенной. Одной из гипотез, решаю-
щих данные вопросы, является инфляционная модель Вселенной, в ко-
торой закон изменения масштабного фактора со временем на ранних
стадиях вводится как

a(t) ' a0e
Ht, (1)

т.е. параметр Хаббла не меняется со временем.
Основной идеей инфляционной теории является введение некого ска-

лярного поля φ и его потенциала V (φ).
Сразу после окончания инфляционной стадии, до разогрева, во Все-

ленной присутствует поле инфлатона. Это поле, как и все остальные,
испытывает квантовые флуктуации, образующие неоднородности плот-
ности инфлатона в ранней Вселенной. После входа волн под горизонт
эти возмущения нарастают, а затем происходит коллапс неоднородностей
инфлатона, при котором испускаются гравитационные волны. В данной
работе произведена оценка для гравитационного сигнала от этого кол-
лапса.

1Проблемы горизонта, первичных возмущений, плоскостности, энтропии довольно
подробно рассмотрены в [3].
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2 Излучение гравитационных волн
Гравитационные волны существуют, если скорость распространения вза-
имодействия (возмущения поля) конечна2. Механизм генерации гравита-
ционных волн вытекает автоматически из общей теории относительно-
сти (ОТО). Но можно также сделать грубые оценки, введя искусственно
некоторую задержку при распространении возмущения гравитационного
потенциала в ньютоновской теории тяготения.

2.1 Излучение ГВ в ньютоновской теории тяготения

Как было показано в [2], искусственно вводя задержу в распространение
гравитационного потенциала, мы получаем, что

h ' G

2c4
Ïij
ninj

r
(2)

2.2 Квадрупольное приближение для излучения в ОТО

Согласно [4], амплитуда гравитационных волн дается следующей фор-
мулой

h ' 2G

c4
(Ïij −

1

3
Ïkkδij)

ninj

x
(3)

Формула (3) принципиально отличается от формулы (2) тем, что излу-
чение зависит от поперечных компонент бесследового квадрупольного
тензора

Ĭij = Iij −
1

3
δijIkk.

Таким образом, гравитационные волны в ньютоновском приближении
продольные, а в ОТО - поперечные.

2Вообще говоря, в общем случае эта скорость не является постоянной. Однако в
данной работе мы полагаем, что она не меняется за весь рассмотренный период и
равна таковой сегодня.
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3 Гравитационные волны коллапсирующего
тела

Пренебрегая вращением3, можно считать, что при коллапсе будет излу-
чаться волна как один всплеск и частота f

f ' t−1coll (4)

4 Оценка второй производной квадруполь-
ного момента

Как было сказано ранее, амплитуда в квадрупольном приближении име-
ет вид (3). Так как точного аналитического решения уравнений Эйн-
штейна для эллипсоидального коллапса на данный момент нет, будем
считать, что время сближения материи примерно похоже (асимптоти-
чески) на аналогичное время в сферически симметричном коллапсе для
пылевидной материи (решение Толмана [1]). Т.е. радиальная координата
в сопутствующих координатах

r ∝ (τ0 − τ)
2
3 (5)

Т.к. точного решения нет, то необходимо оценить величину Ïij. Это
можно сделать с помощью трех значений квадрупольного момента в
определенный момент времени (в дальнейшем будем опускать индексы
компоненты):

Ïij ≈
I(tcoll)− 2I(tcoll/2) + I(0)

t2coll
(6)

Считая, что I(tcoll) = 0, I(0) = I0

I(tcoll/2) ≈ I(0)

2
4
3

≈ 0.4I0 (7)

Тогда

Ïij ≈
0.2I0
t2coll

(8)

3Вращением, как вызванным коллапсом несферического тела, так и вращением,
приобретаемым при наличии двух близких неоднородностей (двойная система)
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Изначально неоднородность представляет из себя эллипсоид, распре-
деление плотности - гауссово независимо по каждым трем осям с раз-
личными отклонениями σa, σb, σc:

ρ = ρ0 exp

(
−1

2

(
x̀2

σ2
a

+
ỳ2

σ2
b

+
z̀2

σ2
c

))
, (9)

где ρ0 - плотность в центре эллипсоида.
Из условия нормировки

M =

∫
ρdV =

ρbgVH
1015

получаем, что
A = (2π)

3
2σaσbσc = 10−15

π

6
l3H .

Для эллипсоида квадрупольный момент вычисляется как

I0 =

∫
ρ(2x̀2 − ỳ2 − z̀2) dx̀ dỳ dz̀, (10)

где интегрирование идет по всему пространству. Эта оценка сделана для
упрощения результата, причем “хвосты” распределений не дают суще-
ственного вклада в интеграл. Перейдя к новым переменным

x =
x̀

σa
, y =

ỳ

σb
, z =

z̀

σc
,

получим:
I0 = (2π)

3
2σaσbσcρ0(2σ

2
a − σ2

b − σ2
c ) (11)

И окончательно:

I0 = 10−15
π

6
l3Hρ0(2σ

2
a − σ2

b − σ2
c ) (12)

5 Усреднение по Вселенной
При образовании, гало расположены на случайном расстоянии друг от
друга. Пусть это расстояние имеет среднее значение, которое мы обозна-
чим как d. Тогда можно вычислить вклад от различных источников в
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первом приближении, просуммировав вклад каждого источника, нахо-
дящегося в узле некой решетки с характерным расстоянием (периодом
решетки) d. Тогда “эффективное” расстояние

r̄−1 =
8

d

∞∑
i=1

∞∑
j=1

∞∑
k=1

1√
i2 + j2 + k2

≡ χd−1 (13)

Данный ряд сходится достаточно медленно. Воспользуемся следующим
методом. Найдем первые частичные суммы (чем больше, тем точнее ре-
зультат), и попытаемся найти вид функции и соответствующую асимп-
тоту.

С помощью простой программы

#!/ usr / b in /env python
import math

summ = 0
for i in xrange ( 0 , 6 0 ) :

for j in xrange ( 0 , 6 0 ) :
for k in xrange ( 0 , 6 0 ) :

summ = summ + 1.0/math . s q r t ( i ∗ i+j ∗ j+k∗k )
print s t r ( i )+ ’ , ’+s t r ( j )+ ’ , ’+s t r ( k)+ ’ , ’+s t r (summ)

получим значения частичных сумм как функцию итерации. График этой
зависимости представлен на Рис. 1.

Нетрудно заметить, что график напоминает характерный вид для
распада, т.е. функцию вида

y = y0 − A exp(−x
τ

)

Проведя фиттирование для полученных данных, найдем, что

y0 = 7709.7± 0.4,

причем коэффициент детерминации R2 = 0.999998, что говорит о том,
что наше предположение о виде функции оказалось верным. И, в резуль-
тате

χ ≈ 6.17× 104 (14)
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Рис. 1: Вид сходящегося ряда

6 Среднее значение квадрупольного момен-
та во Вселенной

Как было найдено Дорошкевичем [5], распределение вероятности соб-
ственных значений λi тензора деформаций Зельдовича [6] в статистике
гауссового случайного поля дается следующей нетривиальной формулой:

p(λ1, λ2, λ3) =
153

8π
√

5σ6
exp

(
−3δ2

σ2
+

15T

2σ2

)
×(λ1−λ2)×(λ2−λ3)×(λ1−λ3),

(15)
где

δ ≡ λ1 + λ2 + λ3

T ≡ λ1λ2 + λ2λ3 + λ1λ3

Величина σ обозначает вариацию спектра мощности материи. В нашем
случае σ - это “объем” возмущенного состояния “под горизонтом”, т.е.
σ = δ−3i .
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Введем размерную нормировочную константу4 k = 1м следующим об-
разом:

~σ = k~λ,

где ~σ ≡ (σa, σb, σc), а ~λ ≡ (λ1, λ2, λ3). Тогда среднее значение начального
квадрупольного момента в направлении x

Ī0 = 10−15
π

6
l3Hρ0k

2

∫ ∞
0

d3λ p(λ1, λ2, λ3)× (2λ21 − λ22 − λ23) (16)

Вычисление данного интеграла довольно трудоемкое, поэтому оценим
его значение.

6.1 Оценка по наивероятнейшему значению

Найдем максимум распределения вероятности p(λ1, λ2, λ3), отвечающий
действительным5 корням. Один из максимумов, значение в которых оди-
наково, достигается при

λ1 =

√
5

7
σ, λ2 =

−(1 +
√

15)σ√
21− 3

√
35
, λ3 =

σ√
21

И тогда наивероятнейшее значение I0

Ī0 ≈ 1.24× 10−15
π

6
l3Hρ0k

2σ2 (17)

и примерно соответствует среднему значению.

7 Характерное расстояние между источни-
ками

Сразу после завершения инфляционной стадии относительная вариация
плотности

δρ

ρ
' δi ≡ 10−5 (18)

4Данная константа играет роль поправки для краевых эффектов (например, увле-
чение граничных слоев хаббловским потоком). Эта поправка зависит от выбранной
модели, однако имеет порядок единицы, так что в дальнейшем будем полагать ее
равной единице.

5Рассмотрение комплексных корней может также иметь определенный физический
смысл, но в нашем рассмотрении ограничимся только действительными корнями.
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Возмущения начинают расти только после их входа “под горизонт”, т.е.
при достижении выполнения условия λ = 2πlH [3, стр. 49]. При этом

lH =
MPl

T 2
∝ a2(t)

При входе возмущения “под горизонт” реализуется линейный режим, т.е.
вариация плотности растет как

δ ≡ δρ

ρ
∝ a(t)

В тот момент, когда возмущения доросли до уровня, когда δ ∼ 1 ≡ δnl,
начинается нелинейный режим, т.е. происходит образование гравитаци-
онно связанной системы6, и неоднородность коллапсирует в результа-
те гравитационной неустойчивости. Именно на этом этапе излучается
бо́льшая часть гравитационных волн, поскольку здесь наблюдается мак-
симум количества волн, успевших войти “под горизонт” до разогрева (до
распада инфлатона). Температура в момент коллапса T = 109GeV 7.

За время, пока неоднородности дорастают до δ ∼ 1, масштабный фак-
тор af вырос по сравнению с начальным ai как

af = 105 × ai (19)

Поскольку длина волны возмущения растет как

λ ∝ a(t),

то за это время “под горизонтом” окажется 1015 неоднородностей, коллап-
сирующих в момент, предшествующий разогреву. Зная объем горизонта
и количество неоднородностей, получим среднее расстояние между ис-
точниками

d = 10−5
(π

6

) 1
3 MPl

T 2
(20)

Численное значения для нашего рассмотрения

d = 1.6× 10−21 м
6Влияние расширения Вселенной в нелинейном режиме мало по сравнению со

вкладом гравитационных сил.
7Зависит от выбранной модели.
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8 Плотность материи в постинфляционную
эпоху

Фоновая плотность ρbg инфлатона в рассматриваемую эпоху - плотность
фотонного газа с температурой T = 109GeV :

ρbg =
W

c2
=

1

c2
4σB
c
T 4

В дальнейшем будем пользоваться обозначением

2ρbg ≈ 3× 1056 kg

m3
(21)

9 Ожидаемый спектр реликтового излучения
Так как к началу коллапса δ ∼ 1, то плотность в центре неоднородности
вдвое больше фоновой плотности, т.е. ρ0 = 2ρbg.

Поскольку для безмассовых полей и амплитуда, и частота падают
как a−1(t), то, учитывая все, найденное ранее, получим ожидаемую АЧХ8

гравитационных волн, испущенных в процессе коллапса неоднородностей
(считая, что aT = const):

hsbo = 0.33× 10−15
π

6
l3H
G

c4
χ

d
ρ0k

2σ2

(
T0
T

)3

× f 2 (22)

hsbo =
1

3
× 10−10

(π
6

) 2
3
χl2H

G

c4
ρ0k

2σ2

(
T0
T

)3

× f 2 (23)

А численное значение для нашей модели

hsbof
−2 ≈ 1.7× 10−30 с2 (24)

Полученный спектр сравнивается со спектром чувствительности лазер-
ного гравитационного интерферометра Advanced LIGO на Рис. 2.

8АЧХ - амплитудно-частотная характеристика.
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Рис. 2: Ожидаемый спектр
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10 Выводы
В результате работы был оценен спектр гравитационных волн, рожден-
ных при коллапсе гало из инфлатона в эпоху разогрева. Данный спектр
был сравнен с чувствительностью современных детекторов гравитацион-
ных волн.

10.1 Нерешенные проблемы

1. Ультрафиолетовая катастрофа

2. Точное аналитическое решение для коллапса неферического тела с
заданной геометрией

3. Учет полного спектра мощности материи
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