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1 Введение

Бозе-звёзды - это гравитационно связанные сгустки конденсата Бозе -
Эйнштейна [1,2]. Они могут быть релятивистскими Q-шарами [3,4,5], но в
данной работе мы остановим внимание на нерелятивистских [6]. Такие объ-
екты могут появляться во Вселенной при конденсации бозонов тёмной ма-
терии, например, аксионов [7]. Они интересны тем, что способны составлять
часть массы тёмной материи; бозе-звёзды остаются тёмными, если их взаи-
модействие с частицами Стандартной Модели достаточно слабое. Они могут
сформироваться в центре структур тёмной материи [8]. Исследование спо-
собов наблюдения бозе-звёзд и их физики является активно развивающимся
разделом космологии [7,8,9,10,11].

Сами конфигурации бозе-звёзд тоже составляют предмет исследований:
при различных параметрах теории можно предсказать появление звёзд мно-
гих размеров, которые могут образовывать гравитационно-связанные иерар-
хические структуры [4]. Есть также вращающиеся бозе-звёзды [7], которые
мы будем обсуждать в данной работе.

Мы рассмотрим вращающуюся бозе-звезду в нерелятивистском случае и
получим численно её профиль в 3+1 измерениях. Мы покажем также, что
все звёзды с ненулевым угловым моментом распадаются.

Мы будем работать в системе ~ = c = k = 1.
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2 Вращающаяся бозе-звезда

Мы работаем с системой уравненийШрёдингера-Пуассона, задающей нере-
лятивистскую бозе-звезду:

i∂tψ = −∆ψ

2m
+mUψ, (1a)

∆U = 4πmG|ψ|2, (1b)

Где ψ - комплексное поле, описывающее бозе-звезду, U - потенциал,m - масса
бозонов тёмной материи, G - гравитационная постоянная. При этом массу
звезды и её энергию мы определяем как:

M = m

∫
d3x|ψ|2, (2a)

E =

∫
d3x

[
|∇ψ|2/2m+mU |ψ|2/2

]
. (2b)

Запишем стационарное решение уравнений (1) в виде:

ψ(r, φ, z, t) = ψs(r, z)eilφ−iωt. (3)

Здесь r,φ,z - цилиндрические координаты, t - время, ω и l - константы, име-
ющие физический смысл частоты и углового момента соответственно. Под-
ставляя данный анзац в систему, мы получаем уравнение на ψs(r, z).

ωψs = −∆rzψs
2m

+
l2

2mr2
ψs +mUψs, (4a)

∆rzU = 4πmG|ψs|2, (4b)

где ∆rz - лапласиан в координатах r и z. Эти уравнения мы будем решать
численно, но сначала их нужно обезразмерить. Для этого мы делаем переш-
калировку полей и координат: r, z′ = r,z

λ , ψ
′
s = 1

mλ2ψs, U
′ = m2λ2(U − ω/m).

Выбрав λ, штрихи мы немедленно опускаем и получаем итоговые уравнения:

∆rzψs =
l2

r2
ψs + 2Uψs, (5a)

∆rzU = 4π|ψs|2. (5b)
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3 Численное решение

Мы можем получить искомые стационарные решения при помощи релак-
сации в евклидовом и обыкновенном времени. Для l=1 мы запускаем вре-
менную эволюцию. Для этого мы берём полученное методом мультирешёток
решение уравнений (5) в цилиндрических координатах и квадратично интер-
полируем его на квадратную трехмерную решётку. Обычно мы работаем с
решёткой N 3 = 2563. Мы также используем следующие параметры: dt = 0.25

- шаг по времени, L = 200 - размер ящика; так что dx = L/N = 0.78125.
Процедура сходится с высокой точностью (см. Дополнение B).

Так как мы работаем с квадратной решёткой, у нас есть возможность точ-
но поворачивать решение на углы, кратные π/2 при помощи преобразований,
описанных в Дополнении А. Мы также поддерживаем звезду симметричной
относительно z → −z и следим, чтобы её масса была равна 1. В ходе эволю-
ции мы делаем шаг φ → exp [−i · E · dt]φ, сначала кинетический с исполь-
зованием быстрого преобразования Фурье, а затем потенциальный. Следом
эволюционирует потенциальная энергия; для данного φ мы решаем для неё
уравнение Пуассона (5b), опять же, через преобразование Фурье. Подробнее
процедура разобрана в дополнении А.

Полагая в уравнениях (5) l=0, получаем звезду, которая не вращается.
Релаксацию мы проводим также, как описано выше, только без преобразова-
ния проекторов и добавив отражение по оси x и y. Нулевая мода выглядит
так:

y

|ψ|2

x

Рис. 1: Cечение звезды с l=0: |ψ|2
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Полагая в уравнении l=1, мы приходим к первой из вращающихся звёзд.
Она напоминает по форме тор, как и все вращающиеся звёзды; это обуслов-
лено необходимым требованием непрерывности звезды и её производных при
r=0. Её асимптотика при приближении к нулю ψs = c1 · r.

y

|ψ|2x,
z

Рис. 2: Сечения звезды с l=1: |ψ|2

Рис. 3: Вид сбоку: |ψ|. t=0
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4 Распад звезды с l=1

Как уже говорилось, звезда с l=1 распадается. Если мы возьмём полу-
ченное в предыдущей главе решение и запустим описанную выше временную
эволюцию, произойдёт следующее.

Сначала звезда будет стационарна - что неудивительно, ведь мы достаточ-
но близко подходим к собственной функции уравнения Шрёдингера. Затем
мы увидим, что звезда распалась на два шара, вращающиеся относительно
друг друга:

Рис. 4: Вид сбоку: |ψ|. t=3000

Рис. 5: Вид сбоку: |ψ|. t=4500
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Эти звезды сольются вновь, разойдутся и, наконец, сольются навсегда,
сломав изначальную структуру. Мы увидим присутствие 0 и 3 моды в разло-
жении ψ = Σeimφψm: плотный центр без вихря, характерный для невращаю-
щейся звезды, а вокруг - три минимума, обусловленных интерференцией 3 и
0 моды:

Рис. 6: Вид сбоку: |ψ|. t=9500

Рис. 7: Вид сбоку: |ψ|. t=10500

Нужно отметить, что к этому моменту значительная часть массы звезды
оказывается рассыпанной по окружающему её пространству. На изображе-
нии это видно лишь отчасти, потому что в ходе его обработки были сделаны
невидимыми числа меньше 0.002.
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Уже когда звезда разделилась надвое, величина возмущений достигает
порядка поля.

В конечном итоге мы видим ядро - нулевую моду:

Рис. 8: Вид сбоку: |ψ|. t=18500
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5 Моды распада

Зависимость |ψ|max - максимального по всей решётке модуля функции -
от времени даёт хорошее представление о важных этапах распада звезды:

Рис. 9: |ψ|max как функция t.

До момента времени t=0 мы проводим релаксацию в евклидовом времени.
Затем начинается обыкновенная эволюция. Раз в 20 шагов мы вычисляем
ψm = Pmψ, см. Приложение А. Затем мы вычисляем массу каждой моды
ψm и максимальное значение каждого |ψm|. Мы строим график зависимости
логарифма max|ψm| от времени, и получаем следующее.
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Как раз когда |ψ|max начинает подскакивать, побочные моды развала ста-
новятся сравнимыми со звездой:

Рис. 10: log
[
|ψm|2max

]
как функции t для m=0 (фиолетовая), 1 (зелёная), 2

(голубая) и 3 (жёлтая). Видно, что до распада моды растут экспоненциально,
причём разваливает звезду именно третья мода. Именно её интерференция с
модой 1 даёт две звезды (Рис.5).

Момент, когда P0ψ и P2ψ мода догоняют ψ1 и P3ψ - это превращение звезды
в её финальную форму, показанную на Рис.7 и 8; это соответствует времени
порядка 8000, когда модуль функции колеблется с наибольшей силой. По-
сле этого идёт уже распад P2ψ и P3ψ, постепенно перекачивающий массу в
0 моду или в окружающее пространство. Итог, впрочем, один: первая мода
нестабильна. Её модой распада является P3ψ, которая, как мы видим, первая
становится сравнимой со звездой.
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6 Звёзды с высоким моментом

Чтобы проанализировать звёзды с высоким моментом, мы перешкалируем
в уравнениях (1) координаты и поля следующим образом:

r = l2r0 + lx2, (6a)

z = ly2, (6b)

ψ = l−2ψ2(x2, y2), (6c)

U = l−2
[
U2(x2, y2)−

1

2m2r20

]
+
ω

m
, (6d)

где (x2, y2) - прямоугольные двумерные координаты. Перешкалированные
уравнения в главном порядке по l−1 совпадают с уравнениями на двумер-
ную звезду (см. Дополнение C). При больших l бозе-звезда - это тонкий тор
с радиусами, пропорциональными l и l2, и в (x2, y2) координатах её профиль
найден численно. Масса такой звезды тоже выражается через двумерные ве-
личины:

M =

∫
d3x|ψ|2 = 2πr0M2. (7)

Зная асимптотику U2, мы можем из уравнения (6d) найти ω.

ω =
1

2mr20l
2
− GMm

2πr0l2
ln

(
32GMm2r0l

2

πr21qM2q

)
, (8)

Где индекс q означает, что величины берутся из обезразмеренных уравне-
ний, см. Дополнение В. Как и массу, мы можем вычислить энергию через
интеграл:

E =

∫
d3x

[
|∇ψ|2/2m+mU |ψ|2/2

]
(9a)

=
2πr0
l2

E2 +

(
π

2m2r0l2
+
ωπr0
m

)
M2 (9b)

=
GM 2

4πr0l2

[
1

2
− ln

(
32GMm2r0l

2

πr21qM2q

)]
+

M

2m2r20l
2
. (9c)

И размер звезды, то есть r0, мы можем получить, минимизируя энергию по
этому параметру.
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Чтобы разобраться в стабильности бозе-звезды, необходимо ввести возму-
щения:

ψ = eilφ−iωt (ψs(r, z) + u+ iv) , (10a)

U = Us(r, z) + A, (10b)

Где φs и Us - известные для заданного l невозмущённые решения. Мы также
будем считать, что возмущения пропорциональны einφ+γt, и, чтобы наблю-
дать их на фоне перешкалированных ранее уравнений, мы их подвергнем
похожему преобразованию:

ursc, vrsc = l−2u, v, (11a)

Arsc = l−2A. (11b)

Добавив возмущения в уравнения и произведя преобразования, в том числе
учтя фазу, мы приходим к следующим уравнениям на u,v и A:

−
(
l2γ +

in

mlr20

)
vrsc = −∆2ursc

2m
+
n2ursc
2mr0l2

+mArscψ2 +mU2ursc, (12a)

−
(
l2γ +

in

mlr20

)
ursc = −∆2vrsc

2m
+

n2vrsc
2mr0l2

+mU2vrsc, (12b)

∆2Arsc = 8πGmψ2ursc. (12c)

Эта система совпадает с уравнениями для возмущений бозе-звёзд в 2D с точ-
ностью до переобозначений. Так что мы можем использовать наш анализ
бозе-звёзд, произведенный ранее (см. Приложение C), для вычисления экс-
поненты моды распада:

Reγ = l−2µ = G2M 2m3 µmax
2πr0rscM2rscl

2
, (13a)

n = r0pz,maxl =
r
1/2
0rsc
pz,maxrscl

(2π)1/2M
1/2
2rsc

. (13b)

Эти величины для каждого l можно получить численно. Таким образом, бозе-
звезда распадается в n других мод, причём n пропорционально её моменту

13



вращения.
Приведём также графики для E (9) и γ (13) как функций l, углового

момента:

Рис. 11: Энергия бозе-звезды как функция l при G=M=m=1

Рис. 12: Экспонента моды распада бозе-звезды как функция l при G=M=m=1

ω(l) = 3E(l) тождественно, M = G = m = 1. Полученные численно про-
фили бозе-звёзд очень хорошо ложатся на показанные асимптотики. Уже при
l=10 разница энергий составляет порядка 10−5 и дальше падает экспоненци-
ально.
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7 Заключение

В данной работе получены следующие результаты:
1. Численно получена вращающаяся и бозе-звезда с l=1 в 3+1 измерениях.
2. Получена и подробно исследована эволюция звезды с угловым моментом
l=1; показано, что такая бозе-звезда распадается.
3. Численно исследованы моды распада звезды с l=1.
4. Показано, что любая нерелятивистская бозе-звезда с высоким моментом
распадается.
5. Исследована точность численных решений.

15



A Численный метод

Здесь мы подробно опишем численную эволюцию звезды на трёхмерной
решётке (i, j, k).

Для получения решения с l=1 на каждом dt мы производим следующие
операции:
1. В каждой точке (i,j,k) вычисляется Eijk

kin = Σ
(

2πs
N ·dx

)2, если s < N/2, и(
2π(s−N)
N ·dx

)2
в противном случае; сумма берётся по s=i,j,k. Затем поле ψ умно-

жается на exp(−0.5 · dt · Eijk
kin)/N

3.
2. В каждой точке (i,j,k) ψ умножается на exp(−0.5 · dt · U(i, j, k))/N3.
3. U(i, j, k) =

[
4π
(
|ψ(i, j, k)|2 −M/L3

)]
/Eijk

kin.
4. ψ′ = 1

4 [ψ(i, j, k) + iψ(N − j, i, k)− ψ(N − i, N − j, k)− iψ(j,N − i, k)]. Это
соответствует линейной комбинации полей, полученных из изначального по-
воротом вокруг оси z на 0, 90, 180 и 270 градусов соответственно.
5. ψ′ = 1

2 [ψ(i, j, k) + ψ(i, j, N − k)].
6. |ψ|2 → |ψ|2/M .

Первая и вторая операция умножают волновую функцию на exp(−0.5 ·
dt · E), что соответствует её шагу в евклидовом времени.

Третья операция обновляет вслед за ψ потенциал.
Четвёртая операция необходима для фиксации момента вращения на 1.

Действительно, звезда, чья фаза в пространстве меняется как eiφ, при таком
преобразовании не изменится, а вот нулевая и все остальные моды будут им
уничтожены.

Пятая операция лишает звезду свободы двигаться вдоль оси z: наши урав-
нения не исключают того, что звезда уползёт вверх или вниз.

Шестая же операция производится последней. Она нужна для того, чтобы
две предыдущие операции не поменяли массу звезды, которую мы положили
равной единице. Если убрать 4 и 5 операции, делать её не нужно.

Такой способ очень удобен в использовании, и, хотя он не самый быст-
рый, он позволяет прямо контролировать параметры звезды и немедленно
переходить к исследованию её эволюции.
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Мы также определяем четыре проектора для выделения мод распада из
эволюционирующей звезды:
1. P0ψ = 1

4 [ψ(i, j, k) + ψ(N − j, i, k) + ψ(N − i, N − j, k) + ψ(j,N − i, k)],
2. P1ψ = 1

4 [ψ(i, j, k) + iψ(N − j, i, k)− ψ(N − i, N − j, k)− iψ(j,N − i, k)],
3. P2ψ = 1

4 [ψ(i, j, k)− ψ(N − j, i, k) + ψ(N − i, N − j, k)− ψ(j,N − i, k)],
4. P3ψ = 1

4 [ψ(i, j, k)− iψ(N − j, i, k)− ψ(N − i, N − j, k) + iψ(j,N − i, k)].

Релаксация, однако, подходит только для получения нулевой и первой
моды. Если мы попытаемся применить его к моде l=2, заменив преобразова-
ние 4 на ψ = 0.25 [ψ(i, j, k) + ψ(N − i, j, k)− ψ(N − j, i, k)− ψ(j,N − i, k)],
то получим такой результат:

Рис. 13: Вид сверху: |ψ2|.

Это не чистая l = 2, а линейная комбинация мод с l = 2 и l = −2, ко-
торая меньше l = 2 по энергии, так что именно к ней сходится алгоритм.
Это действительно линейная комбинация: она не изменяется при воздействии
P2, и мы видим четыре интерференционных максимума, что соответствует
∆l = 2− (−2) = 4.

Аналогично, если мы попытаемся получить решение для моды с l=3, при-
менив преобразование
ψ′ = 1

4 [ψ(i, j, k)− iψ(N − j, i, k)− ψ(N − i, N − j, k) + iψ(j,N − i, k)],
уже из самого вида этого выражение мы видим, что оно совпадает с преоб-
разованием для моды e−iφ, т.е. l = −1. Именно его мы и видим; размер и вид
такой звезды совпадает с уже полученной l=1. Опять же, l = −1 получается
вместо l = 3, потому что l = 3 обладает более высокой энергией.
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B Точность численных решений

Решения с l=1 были проверены многократно. Параметры решётки: N 3 =

2563, dt = 0.25, L = 200, dx = L/N = 0.78125.
Прежде всего, мы удостоверились, что эволюция сохраняет массу и энер-

гию бозе-звезды. На протяжении всей эволюции ∆t = 25000 они сохраняются
с точностью 10−11.

При изменении dt и N решения меняются столь же незначительно: на 10−11

или 10−12 в зависимости от конкретных dN , dt. Изменение L может вызывать
относительное изменение поля от 10−6 до 10−5, что уже значительно, но всё
равно не влияет на вид решения.

С изменением L связано много проблем. Мы работаем с периодическими
граничными условиями, а потому не выполняются две вириальные теоремы:

2Ekin + Epot = 0, (14a)

3(Ekin + Epot)−Mω = 0. (14b)

Чтобы это скорректировать, мы можем изменить Epot и ω на постоянные:

E ′pot = −2Ekin = Epot − (2Ekin + Epot), (15a)

Mω = 3(Ekin + E ′pot) = Mω + (3(Ekin + Epot)−Mω). (15b)

Посчитанные таким образом величины совпадают с точностью 10−5 с реше-
ниями, посчитанными иными методами.
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Из-за периодических граничных условий потенциал сильно меняется при
различных ящиках:

x

U
(x
)

Рис. 14: Зависимость потенциала от размера ящика, dx = const для L=800
(фиолетовый), L=400 (зелёный), L=200 (синий), L=100 (жёлтый).

Если, однако, мы добавляем требуемую (16а) константу в потенциал, мы по-
лучаем ожидаемое совпадение:

x

U
(x
)

Рис. 15: Зависимость потенциала от размера ящика после добавления кон-
станты, dx = const для L=800 (фиолетовый), L=400 (зелёный), L=200 (си-
ний), L=100 (жёлтый).
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Можно также пронаблюдать, как растёт ошибка ψ в ходе эволюции. Срав-
ним dt=0.125 и dt=0.25. Для этого получим решения при разных dt и запишем
их в некоторые совпадающие моменты времени, затем вычислим |ψ0.125−ψ0.25|
в каждой точке решётки, найдём его максимум и поделим на |ψ0.125|. Полу-
чим следующую зависимость этой величины от времени:

t

lo
g
( max

[|ψ
0
.1
2
5
−
ψ
0
.2
5
]

|ψ
0
.1
2
5
|

)

Рис. 16: Зависимость log
(
max[|ψ0.125−ψ0.25]

|ψ0.125|

)
от времени.

Перестав существовать на уровне шума, ошибка растёт экспоненциально на
первом этапе распада звезды. Она никогда не достигает единицы, но на позд-
них этапах эволюции становится очень значительной.
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C Метод перестрелки в 2D

Мы работаем с обезразмеренными уравнениями:

∆2φ− 2Uφ = 0, (16a)

∆2U = 4πφ2. (16b)

Ничто не мешает нам в данном случае считать φ вещественным. В 2D мы
легко сводим задачу к одномерной и решаем её методом перестрелки по па-
раметру U(0). Полученное решение выглядит так:

Рис. 17: |ψ| как функция r.

Нам также нужно рассмотреть возмущения над этим решением, φ → φ +

(u+ iv) cos(pzz)eµt, U → U + Acos(pzz)eµt . Для этого мы обращаемся к
уравнениям, полученным при подставлении возмущений в изначальные:

2µu = (−∆2 + 2U + p2z)v, (17a)
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2µv = −(−∆2 + 2U + p2z)u− 2ψA, (17b)

∆2A = p2zA+ 8πψu. (17c)

и решаем их три раза при трёх различных начальных условиях: сначала
u = 1, v = 0, A = 0, затем u = 0, v = 1, A = 0 и, наконец, u = 0, v = 0, A = 1.
Мы запоминаем значения этих функций на границе ящика. Так как искомое
решение - линейная комбинация трёх полученных, и нам необходимо, чтобы
на бесконечности возмущения уходили в ноль, мы составляем из девяти гра-
ничных значений детерминант. Если он обращается в ноль, значит, параметр
решения - µ - подобран правильно для заданного pz. Действуя подобным об-
разом, мы строим зависимость µ от pz и получаем следующее:

p2z

µ

Рис. 18: µ как функция p2z.

При этом µmax = 2.1029839, p2z,max = 1.512627. Максимальные pz и µ соответ-
ствуют моде распада.
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