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1 Постановка задачи

Дано фермионное поле ψ с лагранжианом

L = iψ̄γµψ;µ −
m

2
(ψ̄Cψ + ψ̄ψC), (1)

где ψc - зарядово сопряженное поле.

• Показать, что лагранжиан лоренц-инвариантен.

• Найти общее решение уравнений поля.

• Получить выражения для вектора энергии-импульса, вектора спина.

• Проквантовать это поле.

• Рассмотреть теорию в пределе высоких энергий.

2 Некоторые обозначения и преобразования

Представим четырехкомпонентый спинор ψ в виде ψ =

(
ψL
ψR

)
, где ψL, ψR - двухком-

понентые спиноры.
Выберем киральное представление гамма-матриц:

γµ =

(
0 σµ

σ̄µ 0

)
,

где σ = (1, ~σ), σ̄ = (1,−~σ), ~σ - вектор, компонентами которого являются матрицы
Паули.

При этом гамма-матрицы, как и требуется, удовлетворяют антикоммутацион-
ным соотношениям:

{γµ, γν} = gµν , (2)

где gµν - тензор Минковского:

gµν = 0 при µ 6= ν; g00 = −g11 = −g22 = −g33 = 1

Матрицу зарядового сопряжения C в этом представлении можно представить в
виде:

C = γ0γ2 =

(
−σ2 0

0 σ2

)
. (3)

При таком выборе матрица C будет удовлетворять основным требованиям, налагае-
мым на матрицу зарядового сопряжения:

• C = −
T

C.

•
T

C−1γµC =
T

γµ.
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Дираковское сопряжение имеет вид:

ψ̄ = ψ†γ0.

Преобразования зарядового сопряжения выглядят следующим образом:

ψ̄C =
T

ψ
T

C−1,

ψC = C
T

ψ̄.

Преобразуем лагранжиан, используя следующие формулы:

iψ̄γµψ;µ = iψ†γ0γµψ;µ = i
(
ψ†L ψ†R

)(0 1
1 0

)(
0 σµ

σ̄µ 0

)(
ψL;µ
ψR;µ

)
= i(ψ†Lσ̄

µψL;µ+ψ†Rσ
µψR;µ),

ψ̄Cψ =
T

ψγ2γ0ψ =
(
T

ψL
T

ψR

)(σ2 0
0 −σ2

)(
ψL
ψR

)
=

T

ψLσ
2ψL −

T

ψRσ
2ψR,

ψ̄ψC = ψ†γ0γ0γ2
T

γ0ψ∗ = ψ†γ2γ0ψ∗ = ψ†Lσ
2ψ∗L − ψ

†
Rσ

2ψ∗R.

Таким образом, лагранжиан (1) принимает вид:

L = i(ψ†Lσ̄
µψL;µ + ψ†Rσ

µψR;µ)− m

2
(
T

ψLσ
2ψL −

T

ψRσ
2ψR + ψ†Lσ

2ψ∗L − ψ
†
Rσ

2ψ∗R). (4)

3 Инвариантность лагранжиана
Чтобы доказать лоренц-инвариантность лагранжиана, требуется показать, что при
преобразованиях из полной группы Пуанкаре лагранжиан преобразуется как скаляр,
т.е. L (ψ′(x′)) = L (ψ(x)).

Указанная группа включает пространственные повороты в трех плоскостях
x1x2, x2x3, x3x1, лоренцевы повороты в трех плоскостях x0x1, x0x2, x0x3, отражения
пространственных осей x1, x2, x3, трансляции по всем четырем координатным осям
x0, x1, x2, x3 и все произведения указанных операций.

3.1 Общие замечания

При преобразованиях из полной группы Пуанкаре координаты преобразуются сле-
дующим образом:

x′
µ

= Lµνx
ν .

При этом функции поля преобразуется так:

ψ′(x′) = Λψ(x), (5)

ψ̄′(x′) = ψ̄(x)Λ−1, (6)
Матрицы L и Λ удовлетворяют:

Λ−1γµΛ = Lµνγ
ν ,

ΛγµΛ−1 = (L−1)µνγ
ν .

При этом оператор ∂ν преобразуется так:

∂′µ = (L−1)νµ∂ν (7)
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3.2 Инвариантность при поворотах системы отсчета

При поворотах системы отсчета матричные операторы Λ и Λ−1 имеют вид:

Λlk = exp (
1

2
[γl, γk]ϕ), (8)

(Λ−1)lk = exp (−1

2
[γl, γk]ϕ).

Покажем отдельно, что каждое слагаемое в лагранжиане (1) преобразуется как
скаляр. Рассмотрим первое слагаемое. Требуется показать, что

iψ̄′(x′)γµ∂′µψ
′(x′) = iψ̄(x)γµ∂µψ(x). (9)

Выполним преобразования:

iψ̄′(x′)γµ∂′µψ
′(x′) = iψ̄(x)Λ−1γµΛ∂′µψ(x) =

= iψ̄(x)Lµνγ
ν(L−1)ηµ∂ηψ(x) = iψ̄(x)δηνγ

ν∂ηψ(x) =

= iψ̄(x)γν∂νψ(x).

Требование (9) удовлетворяется.
Рассмотрим теперь второе слагаемое. Требуется показать, что:

ψ̄C ′(x′)ψ′(x′) = ψ̄C(x)ψ(x) (10)

Выполним преобразования:

ψ̄C ′(x′)ψ′(x′) =
T

ψ′(x′)γ2γ0ψ = (Λψ(x))Tγ2γ0Λψ(x) =
T

ψ(x)
T

Λγ2γ0Λψ(x).

Отсюда следует, что требование (10) эквивалентно требованию:

T

Λγ2γ0Λ = γ2γ0, (11)

что, в свою очередь, эквивалентно:

γ2γ0
T

Λγ2γ0 = Λ−1. (12)

Выполним преобразования:

γ2γ0
T

Λ(γkγl)γ2γ0 =

= (−C−1)
T

Λ(γkγl)(−C) = C−1
T

Λ(γkγl)C = C−1Λ(
T

γl
T

γk)C = Λ(C−1
T

γl
T

γkC) =

= Λ(C−1
T

γlCC−1
T

γkC) = Λ(γlγk) = Λ([γlγk]) = Λ(−[γkγl]) =

= Λ−1(γkγl).

Требование (12) удовлетворяется, значит, удовлетворяется и требование (10).
Аналогично доказывается, что ψ̄′(x′)ψC ′(x′) = ψ̄(x)ψC(x)
Таким образом, лоренц-инвариантность лагранжиана при преобразованиях по-

воротов системы отсчета доказана.

4



3.3 Инвариантность при отражениях пространственных осей

Так как формулы преобразования функций поля при отражении четного числа раз-
личных пространственных осей сводятся к поворотам, задаваемым формулами (5),
(6) ограничимся преобразованием отражения всех трех пространственных осей (P-
преобразованием) имеющим вид:

x′
0

= x0, x′ = −x, (13)

При этом функция поля преобразуется в таком виде:

ψ′(x′) = η(P )Λ123ψ(x), Λ123 = γ0, (14)

а в силу двузначности спинорного представления фазовый множитель η2(P ) = ±1.
Требуется, чтобы каждое слагаемое в лагранжиане (1) преобразовывалось при

этом как скаляр. Рассмотрим первое слагаемое. Требуется показать, что:

iψ̄′(x′)γµ∂′µψ
′(x′) = iψ̄(x)γµ∂µψ(x). (15)

Выполним преобразования:

iψ̄′(x′)γµ∂′µψ
′(x′) =

= iψ′
†
(x′)γ0γµ∂′µψ

′(x′) = i(η(P )γ0ψ(x))†γ0γµ∂′µη(P )γ0ψ(x) =

= iψ†(x)γ0γ0(γ0∂0 − γ1∂1 − γ2∂2 − γ3∂3)γ0ψ(x) =

= iψ†(x)γ0(γ0∂0 + γ1∂1 + γ2∂2 + γ3∂3)ψ(x) =

= iψ̄(x)γµ∂µψ(x). (16)

Результат (16) показывает, что выполняется требование (15).
Рассмотрим второе слагаемое. Требуется показать, что:

ψ̄C ′(x′)ψ′(x′) = ψ̄C(x)ψ(x) (17)

Выполним преобразования:

ψ̄C ′(x′)ψ′(x′) =

=
T

ψ′(x′)γ2γ0ψ′(x′) = (η(P )Λ123ψ(x))Tγ2γ0η(P )Λ123ψ(x) =

= η2(P )ψT (x)
T

γ0γ2γ0γ0ψ(x) = η2(P )ψT (x)γ0γ2ψ(x) =

=
T

ψ(x)γ2γ0ψ(x). (18)

При этом фазовый множитель выбран η2(P ) = −1.
Результат (18) показывает, что выполняется требование (17).
Рассмотрим третье слагаемое в лагранжиане (1). Требуется показать, что:

ψ̄′(x′)ψC ′(x′) = ψ̄(x)ψC(x). (19)
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Выполним преобразования:

ψ̄′(x′)ψC ′(x′) =

= ψ′
†
(x′)γ2γ0ψ′∗(x′) = (η(P )Λ123ψ)†(x)γ2γ0(η(P )Λ123ψ(x))∗ =

= η2(P )ψ†(x)
†
γ0γ2γ0

∗
γ0ψ(x) = η2(P )ψ†(x)γ0γ2γ0γ0ψ(x) =

= η2(P )ψ†(x)γ0γ2ψ(x) = ψ†(x)γ2γ0ψ(x) =

= ψ̄(x)ψC(x). (20)

При этом как и раньше фазовый множитель выбран η2(P ) = −1.
Результат (20) показывает, что выполняется требование (19).
Таким образом лоренц-инвариантность лагранжиана при преобразованиях от-

ражения пространственных осей доказана.

3.4 Инвариантность при трансляциях вдоль осей

Преобразования координат имеют вид:

x′
µ

= xµ + aµ.

Дифференциальный оператор остается неизменным:

∂′µ = ∂µ.

Функция поля преобразуется следующим образом:

ψ(x)→ ψ(x+ a).

При этом, очевидно, действие не изменяется:∫
dxL (ψ(x+ a)) =

∫
dxL (ψ(x)),

а значит и лагранжиан лоренц-инвариантен.
Теперь, после рассмотрения всех возможных преобразовании из полной группы

Пуанкаре, лоренц-инвариантность лагранжиана (1) доказана.

4 Уравнение движения

4.1 Нахождение уравнения движения

Лагранжиан (2) расщепился на сумму произведений двухкомпонентных частей
функции поля ψ содержащих только ψL или ψR.

В выбранном представлении гамма-матриц [γl, γk] имеет диагональный вид. Пре-
образования из собственной группы Лоренца имеют вид (8), значит, ψL и ψR преобра-
зуются независимо. Поэтому можно положить компоненту ψR = 0. И рассматривать
теорию двухкомпонентных спиноров.
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Однако, заметим, что матрица преобразования функции поля при отражении
пространственных осей имеет вид (14) и не является диагональной, а значит, сме-
шивает ψL и ψR. Таким образом, теория для ψL и ψR не является инвариантной
относительно P-преобразования. Отметим, что из вида матрицы γ0 следует, что P-
преобразование меняет местами ψL и ψR:

η(P )

(
0 1
1 0

)(
ψL
ψR

)
= η(P )

(
ψR
ψL

)
.

Итак, с учетом сказанного выше лагранжиан (4) принимает вид:

L = i(ψ†Lσ̄
µψL)− m

2
(
T

ψLσ
2ψL + ψ†Lσ

2ψ∗L). (21)

Запишем общий вид уравнения Лагранжа-Эйлера:

∂L

∂ui
− ∂

∂xν
∂L

∂ui;ν
= 0. (22)

Заметим, что в силу антикоммутативного характера спиноров, дифференциро-
вание функционала ψ1(ψ)ψ2(ψ) имеет вид:

d

dψ
(ψ1(ψ)ψ2(ψ)) =

d

dψ
(ψ1(ψ))ψ2(ψ)− ψ1(ψ)

d

dψ
(ψ2(ψ)). (23)

Подставляя лагранжиан (21) в (22), дифференцируя по ψ∗L и учитывая (23), получа-
ем:

∂L

∂ψ∗L
= iσ̄µψL;µ −

m

2
(σ2ψ∗L − ψ

†
Lσ

2),

∂L

∂ψ∗L;ν
= 0,

при этом берется левая вариационная производная. Заметим, что:

ψ†Lσ
2 = ψ∗L,ασ

2
αβ = −σ2

βαψ
∗
L,α = −σ2ψ∗L.

Таким образом, получаем уравнение движения:

iσ̄µψL;µ −mσ2ψ∗L = 0. (24)

Эрмитово сопрягая (24), получаем уравнение:

iψ†L;µσ̄
µ +mψTLσ

2 = 0., (25)

которое, очевидно, является уравнением движения, полученным из лагранжиана
(21), при дифференцировании по ψL (правая вариационная производная).
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4.2 Решение уравнения движения

Рассмотрим уравнение (24). Оно содержит как функцию поля ψ, так и комплекс-
но сопряженную ψ∗, поэтому решение будем искать решение в виде суперпозиции
плоских волн:

ψL(x) = a(~p)u(~p)e−ipx + a∗(~p)v(~p)eipx, (26)

где a(~p) - произвольная амплитуда. Отметим, что амплитуда, стоящая перед v(~p),
выбрана как a∗(~p). Такой выбор станет понятен после подстановки (26) в уравнение
(24).

Заметим, что:

iσ̄µ∂µe
±ipx =

= i(σ0∂0 − σ1∂1 − σ2∂2 − σ3∂3)e
±i(p0x0+p1x1+p2x2+p3x3) =

= ∓(σ0p0 − σ1p1 − σ2p2 − σ3p3)e
±ipx =

= ∓(σ0p0 + σ1p1 + σ2p2 + σ3p3)e±ipx =

= ∓(p0 + ~σ~p)e±ipx. (27)

Подставляя (26) в (24) и учитывая (27), получим :

a(~p)(p0 + ~σ~p)u(~p)e−ipx − a∗(~p)(p0 + ~σ~p)v(~p)eipx−
−mσ2a∗(~p)u∗(~p)eipx −mσ2a(~p)v∗(~p)e−ipx = 0. (28)

Приравнивая слагаемые перед экспонентами в одинаковых степенях, получаем си-
стему из двух уравнений:

a(~p)(p0 + ~σ~p)u(~p) = a(~p)mσ2v∗(~p), (29)

a∗(~p)(p0 + ~σ~p)v(~p) = −a∗(~p)mσ2u∗(~p). (30)

Теперь понятен выбор амплитуд. Сокращая (29), (30) на a(~p), a∗(~p), получаем
систему уравнений на u(~p), v(~p), в которую не входят произвольные амплитуды:

(p0 + ~σ~p)u(~p) = mσ2v∗(~p), (31)

(p0 + ~σ~p)v(~p) = −mσ2u∗(~p). (32)

Далее потребуется соотношение:(
p0 + ~σ~p

m

)−1
=
p0 − ~σ~p
m

. (33)

Докажем справедливость соотношения (33):

p0 + ~σ~p

m
· p

0 − ~σ~p
m

=

=
(p0)2 − (~σ~p)2

m2
=

(p0)2 − pµσµpνσν
m2

=
(p0)2 − pµpν(δµν + iεµνηση)

m2
=

=
(p0)2 − (~p)2

m2
= 1.

8



Используя (33), преобразуем уравнения (31), (32):

u(~p) =
E − ~σ~p
m

σ2v∗(~p), (34)

v(~p) = −E − ~σ~p
m

σ2u∗(~p). (35)

Далее разложим u(~p), v(~p) по базису двухкомпонентных спиноров, задаваемых
уравнениями Вейля:

~σ~p

p
ξ±(~p) = ±ξ±(~p), (36)

где ξ+, ξ− правовинтовой и левовинтовой спиноры, соответственно.
Прежде преобразуем уравнение (36):

~σ~p

p
ξ±(~p) = ±ξ±(~p)⇐⇒

~σ∗~p

p
ξ∗±(~p) = ±ξ∗±(~p)⇐⇒ σ2 ~σ∗~pσ2

p
σ2ξ∗±(~p) = ±σ2ξ∗±(~p)

Учитывая
σ2~σ∗σ2 = −~σ,

получаем
~σ~p

p
σ2ξ∗±(~p) = ∓σ2ξ∗±(~p),

значит, можно положить
ξ+ = σ2ξ∗− (37)

Заметим, что система уравнений (31), (32) имеет два линейно независимых ре-
шения: u1, u2 и соответственно v1, v2.

Положим:

u1(~p) =

√
E + p

2E
ξ− (38)

v2(~p) =

√
E + p

2E
ξ− (39)

Подставим (38) в (35) и учтем (36):

v1(~p) = −E − ~σ~p
m

σ2

√
E + p

2E
ξ∗−(~p) =

= −
√
E + p

2E

E − ~σ~p
m

ξ+(~p) =

√
E + p

2E

E − p
m

ξ+(~p) =

= −
√
E − p

2E
ξ+(~p) (40)

Аналогично, подставив (39) в (34) , получим:

u2(~p) =

√
E − p

2E
ξ+(~p) (41)

Итак, общее решение уравнения (24) представим в виде:

ψL(x) = ψL,1(x) + ψL,2(x), (42)
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где

ψL,1(x) = a(~p)

√
E + p

2E
ξ−(~p)e−ipx − a∗(~p)

√
E − p

2E
ξ+(~p)eipx

ψL,2(x) = b(~p)

√
E − p

2E
ξ+(~p)e−ipx + b∗(~p)

√
E + p

2E
ξ−(~p)eipx

Выполняя преобразование Фурье и обозначая фурье-амплитуды соответственно
a(~p), b(~p), получаем:

ψL(x) =
1

(2π)
3
2

∫
[a(~p)

√
E + p

2E
ξ−(~p)e−ipx − a∗(~p)

√
E − p

2E
ξ+(~p)eipx+

+ b(~p)

√
E − p

2E
ξ+(~p)e−ipx + b∗(~p)

√
E + p

2E
ξ−(~p)eipx]d~p (43)

Для дальнейшего исследования решения (43), общее решение удобно разложить
на положительно- и отрицательно-частотные части:

ψ+
L (x) =

1

(2π)
3
2

∫
[−a∗(~p)

√
E − p

2E
ξ+(~p) + b∗(~p)

√
E + p

2E
ξ−(~p)]eipxd~p =

=
1

(2π)
3
2

∫
ψ+(~p)eipxd~p (44)

ψ−L (x) =
1

(2π)
3
2

∫
[a(~p)

√
E + p

2E
ξ−(~p) + b(~p)

√
E − p

2E
ξ+(~p)]e−ipxd~p =

=
1

(2π)
3
2

∫
ψ−(~p)e−ipxd~p. (45)

Дальше часто будут встречаться интегралы вида:∫
d~xψ1(x)ψ2(x). (46)

Если ψ1(x) = ψ+
L (x) - положительно-частотная часть, ψ2(x) = ψ−L (x) -

отрицательно-частотная, то интеграл (46) преобразуется следующим образом:∫
d~xψ1(x)ψ2(x) =

∫
d~xd~pd~q[ψ1(p)e

ipxψ2(q)e
−iqx] =

∫
d~pd~qei(p

0−q0)x0 [ψ1(p)ψ2(q)]

∫
d~xe−i(~p−~q)~x =

=

∫
d~pd~qei(p

0−q0)x0 [ψ1(p)ψ2(q)](2π)3δ(~p− ~q) =

= (2π)3
∫
d~pψ1(~p)ψ2(~p). (47)

10



Если ψ1(x) = ψ+
L (x) - положительно-частотная часть, ψ2(x) = ψ+

L (x) положительно-
частотная часть, то интеграл (46) преобразуется следующим образом::∫

d~xψ1(x)ψ2(x) =

∫
d~xd~pd~q[ψ1(p)e

ipxψ2(q)e
iqx] =

∫
d~pd~qei(p

0+q0)x0 [ψ1(p)ψ2(q)]

∫
d~xe−i(~p+~q)~x =

=

∫
d~pd~qei(p

0+q0)x0 [ψ1(p)ψ2(q)](2π)3δ(~p+ ~q) =

= (2π)3
∫
d~pψ1(~p)ψ2(−~p)e2ip

0x0 . (48)

5 Вектор энергии-импульса
Далее всюду в этом параграфе для удобства записи под ψ будем понимать ψL.

Лагранжиан (4) определен с точностью до четырех-дивергенции:

∂

∂xµ
(ψ†(x)σ̄µψ(x)) = ψ†;µ(x)σ̄µψ(x) + ψ†(x)σ̄µψ;µ(x). (49)

Удобно выбрать его так, что если функции поля удовлетворяют уравнениям
движения, то лагранжиан обращается в нуль. Так, вычитая из (4) (49), получаем:

L =
i

2
(ψ†σ̄µψ;µ − ψ†;µσ̄µψ)− m

2
(ψTσ2ψ + ψ†σ2ψ∗). (50)

Пользуясь теоремой Нётер, запишем тензор энергии-импульса:

T kl =
∂L

∂ψ;k

ψ;l +
∂L

∂ψ†;k
ψ†;l − glkL . (51)

Подставляя лагранжиан (50) в выражение (51) получаем:

T kl =
i

2
(ψ†σ̄kψ;l − ψ†;lσ̄kψ).

T 0l =
i

2
(ψ†ψ;l − ψ†;lψ). (52)

Вектор энергии-импульса выражается через (52):

P l =

∫
T 0ld~x (53)

Раскладывая ψ на частотные составляющие, получаем:

P l =

∫
d~x
i

2

∑
µ,ν=±

[ψ†µ(x)ψ;l
ν (x)−

†
ψ;l
µ(x)ψν(x)].

Учитывая выражения (44), (45) для частотных частей функции поля ψ, преоб-
разования (48), (47), а также условия ортонормированности вейлевских спиноров:

ξ†+ξ+ = ξ†−ξ− = 1, ξ†−ξ+ = 0, (54)
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получаем:∫
d~x[

i

2
ψ+,†(x)ψ+;l(x)] =

=
1

(2π)3

∫
d~xd~pd~q[

i

2
ψ+,†(~p)e−ipx(iql)ψ+(~q)eiqx] = −1

2

∫
d~pplψ+,†(~p)ψ+(~p) =

= −1

2

∫
d~ppl(−a

√
E − p

2E
ξ†+ + b

√
E + p

2E
ξ†−)(−a∗

√
E − p

2E
ξ+ + b∗

√
E + p

2E
ξ−) =

= −1

2

∫
d~ppl[aa∗

E − p
2E

+ bb∗
E + p

2E
] (55)

Аналогично получаем:∫
d~x[

i

2
ψ−,†(~x)ψ−;l(~x)] =

1

2

∫
d~ppl[a∗a

E + p

2E
+ b∗b

E − p
2E

]

∫
d~x[− i

2

†
ψ−;l(~x)ψ−(~x)] =

1

2

∫
d~ppl[a∗a

E + p

2E
+ b∗b

E − p
2E

]

∫
d~x[− i

2

†
ψ+;l(~x)ψ+(~x)] = −1

2

∫
d~ppl[aa∗

E − p
2E

+ bb∗
E + p

2E
]

Слагаемые, содержащие функции поля разной частотности, в сумме дают нeль,
так как из вида частотных частей функции поля (44) (45) следует, что:

ψ−;l(x) = −iplψ−(x),

значит, например, ∫
d~x[

i

2
ψ+,†;l(~x)ψ−(~x)] =

∫
d~x[

i

2
ψ+,†(~x)ψ−;l(~x)]

Таким образом, окончательно получаем вектор энергии-импульса:

P l =

∫
d~ppl[a∗a

E + p

2E
+ b∗b

E − p
2E

− aa∗E − p
2E

− bb∗E + p

2E
] (56)

6 Вектор спина

Теорема Нётер дает выражение для тензора спинового момента:

Sk,lm = − ∂L

∂ui;k
uj(x)Aji

,lm ⇒ Sk,lm = − ∂L
∂ψ;k

Aψ,lmψ(x),

где Aψ,lm определяется так: вариация функции поля при бесконечно малых 4-
вращениях задается в виде:

ψ′(x′) = ψ(x) + δψ,

δψ =
∑
j,k<l

Aψ,lmψ(x)δωlm
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Функция поля ψ при бесконечно малых вращениях преобразуется с помощью мат-
рицы

Λ = 1 + λlmωlm,

причем

λlm = − i
2
σlm,

σlm = i
γlγm − γmγl

2
,

поэтому

Aψ,lm = − i
2
σlm (57)

Sk,lm = −1

2
ψ̄(x)γkσlmψ(x) =

1

2
ψ̄(x)γkσmlψ(x)

S0,lm =
1

2
ψ(x)†γ0σmlψ(x) (58)

В случае, когда ψ не зависит от x1, x2, выполняется уравнение непрерывности для
S21,k. Полагая ∂

∂x1
= 0, ∂

∂x2
= 0, получим

∂S21,k

∂xk
= 0 (59)

Отсюда следует, что проекция спина S3 =
∫
d~xS0,21 на ось x3 сохраняется во

времени.

S0,21 =
1

2
ψ†(x)γ0γ0σ12ψ(x) =

1

2
ψ†(x)σ12ψ(x)

S0,21 =
1

2
ψ†(x)σ12ψ(x) =

1

2

(
ψ†L, 0

)(σ3 0
0 σ3

)(
ψL
0

)
=

1

2
ψ†L(x)σ3ψL(x)

Выберем систему отсчета такой, что p1 = p2 = 0. В этой системе спиноры
ξ+(p3), ξ−(p3) (импульс направлен вдоль оси x3) являются, в соответствии с уравне-
ниями Вейля, собственными состояниями матрицы σ3, с собственными значениями,
соответственно, ±1.

σ3ξ±(p3) = ±ξ±(p3), (60)

но при этом ξ+(−p3), ξ−(−p3) (импульс направлен против оси x3), в соответствии с
уравнениями Вейля,

σ3ξ±(−p3) = ∓ξ±(−p3). (61)

Отсюда следует очевидное равенство:

ξ+(−p3) = ξ−(p3). (62)

Раскладывая ψ на частотные составляющие, получаем:

S0,21 =
1

2
ψµ,†L (x)σ3ψνL(x), где (µ, ν = ±)

S3 =

∫
d~xS0,21

13



Учитывая выражения (44), (45) для частотных частей, а также условия орто-
нормированности вейлевских спиноров, получаем:∫

d~x[
1

2
ψ+,†
L (~x)σ3ψ+

L (~x)] =
1

2

∫
d~pψ+,†(~p)σ3ψ+(~p) =

=
1

2

∫
d~p(−a∗

√
E − p

2E
ξ+ + b∗

√
E + p

2E
ξ−)†σ3(−a∗

√
E − p

2E
ξ+ + b∗

√
E + p

2E
ξ−) =

=
1

2

∫
d~p[aa∗

E − p
2E

ξ†+σ
3ξ+ + bb∗

E + p

2E
ξ†−σ

3ξ−−

− ab∗
√

(E − p)(E + p)

(2E)2
ξ†+σ

3ξ− − ba∗
√

(E − p)(E + p)

(2E)2
ξ†−σ

3ξ+] =

=
1

2

∫
d~p[aa∗

E − p
2E

− bb∗E + p

2E
]. (63)

∫
d~x[

1

2
ψ−,†L (~x)σ3ψ−L (~x)] =

1

2

∫
d~pψ−,†(~p)σ3ψ−(~p) =

=
1

2

∫
d~p(a

√
E + p

2E
ξ− + b

√
E − p

2E
ξ+)†σ3(a

√
E + p

2E
ξ− + b

√
E − p

2E
ξ+) =

=
1

2

∫
d~p[−a∗aE + p

2E
+ b∗b

E − p
2E

]. (64)

Выпишем подробно вычисления интеграла:∫
d~x[1

2
ψ+,†
L (~x)σ3ψ−L (~x)] = 1

2

∫
d~pe−2ip

0x0ψ+,†(~p)σ3ψ−(−~p) =

= 1
2

∫
d~pe−2ip

0x0 [−a(~p)a(−~p)
√

(E−p)(E+p)
(2E)2

ξ†+(~p)σ3ξ−(−~p)+b(~p)b(−~p)
√

(E−p)(E+p)
(2E)2

ξ†−(~p)σ3ξ+(−~p)−
− abE−p

2E
ξ†+(~p)σ3ξ+(−~p) + b(~p)a(−~p)E+p

2E
ξ†−(~p)σ3ξ−(−~p)] =

= 1
2

∫
d~pe−2ip

0x0 [−a(~p)a(−~p)
√

(E−p)(E+p)
(2E)2

ξ†+(~p)σ3ξ+(~p)+b(~p)b(−~p)
√

(E−p)(E+p)
(2E)2

ξ†−(~p)σ3ξ−(~p) =

= 1
2

∫
p3>0

d~pe−2ip
0x0 [−a(~p)a(−~p)

√
(E−p)(E+p)

(2E)2
ξ†+(~p)σ3ξ+(~p)+b(~p)b(−~p)

√
(E−p)(E+p)

(2E)2
ξ†−(~p)σ3ξ−(~p)+

+ 1
2

∫
p3<0

d~pe−2ip
0x0 [−a(~p)a(−~p)

√
(E−p)(E+p)

(2E)2
ξ†+(~p)σ3ξ+(~p) +

+ b(~p)b(−~p)
√

(E−p)(E+p)
(2E)2

ξ†−(~p)σ3ξ−(~p) = 0

Аналогично: ∫
d~x[

1

2
ψ+,†
L (~x)σ3ψ−L (~x)] = 0

Таким образом:

S3 =
1

2

∫
d~p[aa∗

E − p
2E

− bb∗E + p

2E
− a∗aE + p

2E
+ b∗b

E − p
2E

], (65)

7 Квантование
Будем квантовать поле по Ферми-Дираку. Определяя лагранжиан используя нор-
мальные произведения

L = i : (ψ†Lσ̄
µψL) : −m

2
: (

T

ψLσ
2ψL + ψ†Lσ

2ψ∗L) :, (66)
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получим выражения для динамических переменных: тензор энергии-импульса

T kl =
i

2
: (ψ†Lσ̄

kψ;l
L − ψ

†;l
L σ̄

kψL) :,

тензор плотности спина

Sk,lm =
1

2
: ψ̄(x)γkσmlψ(x) : .

Придадим фурье-амплитудам a, b, a∗, b∗ (при этом заменяя a∗, b∗ на a†, b†) опера-
торный смысл и установим перестановочные соотношения:

{a(~p), a†(~q)} = δ(~p− ~q)
{b(~p), b†(~q)} = δ(~p− ~q)
Учитывая эти соотношения, отбрасывая бесконечную константу, получаем со-

гласно (56), (65):
вектор энергии-импульса:

P l =

∫
d~ppl[a†(~p)a(~p) + b†(~p)b(~p)], (67)

проекцию спина на направление движения:

S3 =
1

2

∫
d~p[−a†(~p)a(~p) + b†(~p)b(~p)] (68)

Отсюда следует, что a†, a суть операторы рождения и уничтожения частицы с
импульсом p массой m2 = p2 и проекцией спина на направление движения −1

2
; b†, b

суть операторы рождения и уничтожения частицы с импульсом p массой m2 = p2 и
проекцией спина на направление движения 1

2
.

8 Ультрарелятивистский предел
При E � m после совершения предельного перехода функция поля (14) принимает
вид:

ψL(x) =
1

(2π)
3
2

∫
[aξ−e

−ipx + b†ξ−e
ipx]d~p.

При этом операторы поля b†, b переходят в операторы рождения и уничтожения
правого антинейтрино, a†, a левого нейтрино. Таким образом, теория безмассового
нейтрино восстанавливается.
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9 Заключение
Рассмотрена теория майорановского фермиона. Установлена лоренц-инвариантность
теории, получено решение уравнения движения, найдены интегралы движения. Уста-
новлено, что в ультрарелятивистском случае восстанавливается теория безмассового
(вейлевского) нейтрино.
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