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1 Введение.
Теория инфляции успешно справляется с основными проблемами теории

горячего Большого взрыва, но еще не является достаточно надежно подтвержденной
экспериментальными данными. По этой причине интересно рассмотрение
альтернативных сценариев эволюции Вселенной. Можно предположить,
что горячему Большому взрыву и последующему классическому расширению
Вселенной предшествовала стадия сжатия (экпирозис) [3, 1]. При этом
доминирующее на этой стадии вещество будет обладать специфическим
уравнением состояния ω = p

ρ
� 1. Такое уравнение состояния может

быть получено, если в качестве материи взять скалярное поле со стандартным
кинетическим членом и отрицательным экспоненциальным потенциалом:
V = −V0ecφ, где V0 и c – размерные параметры. Сжатие продолжается до
момента "отскока", когда плотность доминирующего вещества становится
достаточно большой и сжатие сменяется расширением. После отскока
Вселенная разогревается и выходит на горячую стадию. Модели с таким
сценарием эволюции называются моделями с экпирозисом. В данной
работе нас не будет интересовать модель отскока и динамика перехода
Вселенной на горячую стадию. Касаться этих вопросов мы не будем.
Будем предполагать, что сразу после окончания стадии сжатия наступает
радиационно-доминированная стадия.

Наш основной интерес будет связан с космологическими возмущениями
доминирующего вещества на стадии сжатия и на радиационно-доминированной
стадии.

В следующем разделе будут приведены основные соотношения и решения
для экпирозиса. Третий раздел полностью посвящен изучению векторных
и скалярных возмущений. Тензорные возмущения в этой работе не затрагиваются.
Конечной целью является показать, что после отскока и перехода Вселенной
на горячую стадию, возмущения будут описываться линейной теорией.

2 Экпирозис.
На стадии экпирозиса доминирующим веществом является поле φ с

экспоненциальным потенциалом. Запишем действие для поля φ

S =

∫
d4x
√
−g
[

1

2
gµν∂µφ∂νφ+ V0e

cφ

]
. (2.1)

Уравнение поля φ, считая, что оно однородно (φ(t) ≡ φ0)

φ̈0 + 3Hφ̇0 − V0cecφ0 = 0, (2.2)

2



где точка означает производную по времени t. Выберем временную
координату так, чтобы на стадии сжатия время было отрицательно (t < 0).
Уравнение Фридмана для Вселенной, заполненной полем φ0(t) и следствие
уравнения Райчаудхури имеют вид

H2 =
8π

3M2
pl

(
1

2
φ̇2
0 − V0ecφ0

)
, Ḣ = − 8π

M2
pl

(
1

2
φ̇2
0

)
. (2.3)

Эти уравнения имеют решение

a = ã(−t)p, φ0 = φ̃+
2

c
ln(−t), p =

16π

c2M2
pl

, (2.4)

где p - безразмерная величина, φ̃ и ã – константы соответствующей
размерности. Уравнение состояния для сжимающейся Вселенной принимает
вид:

ω =
1
2
φ̇2
0 − V (φ0)

1
2
φ̇2
0 + V (φ0)

=
2

3p
− 1� 1. (2.5)

Удобно ввести безразмерный параметр ε ≡ 3
2
(1 + ω), При этом ε = 1

p
.

Часто нам будет удобнее работать в терминах конформного времени
η, для которого dt = a·dη. Производную по η будем обозначать штрихом.
Масштабный фактор и поле φ в терминах η принимают вид

a = ã(−η)
p

1−p , φ0 = φ̃+
2

c(1− p)
ln(−η). (2.6)

3 Космологичские возмущения.
Космологические возмущения будут расматриваться в рамках линейной

теории. Для стадии экпирозиса будут кратко описаны векторные моды,
возможные, если кроме поля φ есть другое вещество, не влияющее на
фоновое поле. Будут рассмотрены возмущения доминирующего вещества
на фоне возмущенной метрики на стадии экпирозиса и на горячей стадии
после отскока. При этом в качестве невозмущенной метрики берется
метрика пространственно-плоской однородной и изотропной Вселенной.
Везде далее на возмущения метрики мы накладываем калибровку h0i = 0.
Для скалярных возмущений приближение идеальной жидкости не используется.

3.1 Векторные моды.

Векторные моды возникают за счет возмущения метрики и 4-скорости.
Предполагаем, что помимо доминирующего вещества есть идеальная
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жидкость с уравнением состояния pf = ωfρf , в которой присутствуют
векторные возмущения. Влиянием этой жидкости на доминирующее
вещество пренебрегаем.

Система линеаризованных уравнений для векторных мод состоит из
(0i)-компоненты уравнений Эйнштейна и уравнения ковариантного сохранения
тензора энергии-импульса

∂η4W T
i =

16π

M2
pl

a2(ρf + pf )V
T
i , (3.1.1)

∂η
[
(ρf + pf )V

T
i

]
+ 4

a
′

a
(ρf + pf )V

T
i = 0, (3.1.2)

где W T
i - поперечный вектор, V T

i - вектор, поперечный импульсу. Из
(3.1.2) следует, что

(ρf + pf )V
T
i =

const

a4
. (3.1.3)

Для идеальной жидкости с уравнением состояния pf = ωfρf известна
зависимость ρf от масштабного фактора:

ρf =
const

a3(1+ωf )
. (3.1.4)

Из (3.1.3) для V T
i получим

V T
i =

const

a(1−ωf )
. (3.1.5)

Во время экпирозиса масштабный фактор уменьшается, поэтому скорость
среды малая и убывает со временем, если потребовать ωf > 1.

Подставим (3.1.3) в (3.1.1), чтобы определить поведение векторных
возмущений метрики. Для W T

i в Фурье-представлении получим

W T
i =

16π

M2
pl

∫
dη
C(k)

a2(η)
. (3.1.6)

Поведение масштабного фактора во время экпирозиса известно: a =
ã(−η)

p
1−p . Проинтегрировав (3.1.6), получим

W T
i = C(k) · (−η)

1−3p
1−p . (3.1.7)

Выражая η через масштабный фактор и учитывая, что p = 1
ε
и ε � 1,

окончательно получим

W T
i = C(k) · aε−3, ε− 3 > 1. (3.1.8)
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Из (3.1.8) следует, что векторные возмущения метрики малы. Этот
результат естественен, поскольку мы оговорили, что плотность введенной
жидкости значительно меньше плотности доминирующего вещества.

В результате получили, что на стадии сжатия векторные моды убывают
со временем, но для этого необходимо наложить условие ωf > 1.

3.2 Скалярные моды.

3.2.1 Скалярные возмущения на стадии сжатия.

Адиабатическая мода за горизонтом задается функцей ζ(~k) = Ψ + δρ
3(ρ+p)

.

Мы вместо ζ(k) будем использовать величину R(~k) = Ψ + a
′

a
ϑ, где ϑ –

потенциал скоростей. За горизонтом ζ и R неразличимы:

ζ −R ∝ k2 → 0.

Согласно наблюдениямR является гауссовым случайным полем и полностью
характеризуется двухточечным коррелятором. Физический смысл величины
R заключается в том, что она пропорциональна кривизне пространственных
гиперповерхностей сопутствующей системы отсчета.

Наша цель в этом разделе - получить явный вид и спектр мощности
величиныR. Выражение для соответствующего гравитационного потенциала
Φ и его спектр мощности нас интересовать не будут.

Везде далее используется конформная ньютонова калибровка, в которой
метрика имеет вид:

ds2 = a2(η)[(1 + 2Φ)dη2 − (1 + 2Ψ)d~x2]. (3.2.1)

Считаем среду на стадии сжатия однокомпонентной. Экпирозис обеспечивается
полем φ со стандартным кинетическим членом и быстро падающим потенциалом:

L =
1

2
gµν∂µφ∂νφ+ V0e

c(φ), (3.2.2)

где φ(~x, t) = φ0(t) + ϕ(~x, t), φ0(t) – однородное фоновое поле, а ϕ(~x, t) –
возмущение.

Тензор энергии-импульса имеет вид:

T µν = gµλ∂ν(φ0 + ϕ)∂λ(φ0 + ϕ)− δµν
[

1

2
gλρ∂λ(φ0 + ϕ)∂ρ(φ0 + ϕ)− V (φ)

]
.

(3.2.3)
Выпишем 00- и 0i-компоненты тензора энергии-импульса с метрикой
(3.2.1) в линейном порядке по возмущениям:

δT 0
0 =

1

a2

(
−φ′20 Φ + φ

′

0ϕ
′ −
(
φ
′′

0 + 2
a′

a
φ
′

0

)
ϕ

)
(3.2.4)
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δT 0
i =

1

a2
φ
′

0∂iϕ, (3.2.5)

где ′ ≡ d
dη
. Вычисляя T ij , получим что T ij ∝ δij, а значит тензор анизотропных

натяжений Πi
j = 0. Т.е. можно работать в приближении идеальной

жидкости (Ψ = −Φ), поскольку полученный тензор энергии-импульса
по виду совпадает с тензором энергии-импульса идеальной жидкости.
Явное выражение для T ij нам не потребуется, т.к. ij-компонента уравнений
Эйнштейна выполняется тождественно, если выполнены уравнения для
00- и 0i-компоненты. Для идеальной жидкости возмущения 0i-компоненты
тензора энергии-импульса выражаются как δT 0

i = −(ρ + p)∂iϑ, где ϑ-
потенциал скоростей. Отсюда можно определить потенциал скоростей,
используя стандартные выражения для плотности энергии и давления
идеальной жидкости

ρ =
1

2a2
φ
′2
0 + V (φ0), p =

1

2a2
φ
′2
0 − V (φ0), p+ ρ =

1

a2
φ
′2
0 . (3.2.6)

Приравнивая два выражения для δT 0
i и используя (3.2.6), найдем для

потенциала скоростей:
ϑ = − ϕ

φ
′2
0

. (3.2.7)

Отсюда можно сделать вывод, какая система является сопутствующей.
В данном случае, это система в которой поле однородно во всем пространстве,
т.е. ϕ = 0.

Преобразуя 00- и 0i-компоненты уравнений Эйнштейна для скалярного
сектора в линейном порядке по возмущениям с помощью уравнений Фридмана
и Райчаудхури, получим уравнение относительно неизвестной υ = −zR

υ
′′ − z

′′

z
υ + k2υ = 0, (3.2.8)

где z =
a2φ
′
0

a′
(уравнение записано для Фурье-образов) [1]. Выразим z

′′

z

через введенный безразмерный парамерт ε = 3
2
(ω + 1) и конформное

время η:
z
′′

z
=

2− ε
(ε− 1)2η2

. (3.2.9)

Уравнение (3.2.8) можно свести к уравнению Бесселя, вводя переменную
x = k|η| и делая замену y = υ(x)√

x

√
x[x2y

′′
+ xy

′
+ (x2 − 2− ε

(ε− 1)2
− 1

4
)y] = 0,
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где ′ ≡ d
dx
. Решение запишем через функции Ханкеля:

υ =
√
x[A1H

(1)
β (x)+A2H

(2)
β (x)], β =

√
2− ε

(ε− 1)2
+

1

4
=

1

2

∣∣∣∣ε− 3

ε− 1

∣∣∣∣ . (3.2.10)

Граничное условие ставится глубоко под горизонтом. Поскольку для
z
′′

z
∝ 1

η2
→ 0 при η → −∞, то (3.2.8) сводится к уравнению колебаний.

На масштабах много меньших размера горизонта кривизна пространства
мала, мы приходит к граничному условию

υ → 1√
2k
e−ikη, η → −∞.

Используя асимптотику функции ХанкеляH(1)
β (x)→

√
2
πx
exp

[
i
(
x− βπ

2
− π

4

)]
при x→∞ и налагая граничные условия на решение, получим

υ = −zR =

√
πk|η|

4k
H

(1)
β (k|η|) · exp

[
i
(2β + 1)π

4

]
. (3.2.11)

Нас интересует выражение для R за горизонтом, где эта величина не
зависит от времени. Нам известна асимптотика функций Ханкеля за
горизонтом:

H
(1)
β → −

i

π
Γ(β)

(
k|η|

2

)−β
.

Окончательно из (3.2.11) для R получаем

R =
1

z

√
πk|η|

4k

i

π
Γ(β)

(
k|η|

2

)−β
exp

[
i
(2β + 1)π

4

]
. (3.2.12)

Выразив z через η, используя (2.6), получим z = 2ã
cp

(−η)−
p

1−p . Подставив
z в (3.2.12), убедимся, что величинаR не зависит от времени за горизонтом

R =
cp

2ã

√
π

4

i

π
Γ(β)

(
k

2

)−β
exp

[
i
(2β + 1)π

4

]
. (3.2.13)

Вычислим спектр мощности для R стандартным способом:

< R(~k)R(~k′) >=
PR(k)

(2π)3
δ(~k + ~k′)

Учитывая, что R(x) является действительной функцией

PR(k) =
k3

2π2
PR(k) = 4β

( cp
2ã

)2
Γ2(β)k3−2β. (3.2.14)

Таким образом, мы убедились, что за горизонтом величина R не зависит
от времени и нашли ее спектр мощности (3.2.14).
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3.2.2 Скалярные возмущения на горячей стадии.

В данном разделе мы покажем, что после отскока на радиационно-
доминированной стадии к описанию эволюции возмущений применима
линеаризованная теория, т.е. δρrad(~x) � ρrad(~x). Для этого мы найдем
спектр мощности для δrad = δρrad

ρrad
и покажем, что < δ2rad(~x) >� 1 для

всех мод.
Рассмотрим радиационно-доминированную стадию, которая наступает

после отскока (среда считается однокомпонентной). Считаем, что переход
происходит мгновенно, а также предполагаем, что параметры Хаббла до
и после отскока совпадают, как и масштабные факторы. Для моды с
импульсом k за горизонтом величинаR постоянна. Если до отскока мода
вышла за горизонт, то сразу после отскока она все еще будет находиться
за горизонтом и величина R будет иметь то же значение, что и до
отскока. Однако, после отскока R будет определяться возмущениями
релятивистского вещества и соответсвующего гравитационного потенциала
на горячей стадии. По известномуR можно определить значения относительного
возмущения релятивистского вещества δrad и соответствующего гравитационного
потенциала Φ̄ за горизонтом.

Нам известно поведение δrad и Φ̄: за горизонтом обе величины держатся
постоянными, а под горизонтом возмущения плотности релятивистского
вещества испытывают акустические осцилляции [1]. Известным результатом
является связь δrad и Φ̄ за горизонтом: δrad = −2Φ̄. Из определения ζ (за
горизонтом мы не делаем различия между ζ и R) и уравнения состояния
для радиационно-доминированной стадии ω = 1

3
получим, что

Φ̄ = −2

3
ζ = −2

3
R. (3.2.15)

Для δrad немедленно получаем связь сR, а также связь спектров мощности
этих величин

δrad =
4

3
R, (3.2.16)

Pδ(k) =
16

9
PR(k). (3.2.17)

Подставляя (3.2.14) в (3.2.17), получаем выражение для спектра мощности
δrad

Pδ(k) =
4β+2

9

( cp
2ã

)2
Γ2(β)k3−2β. (3.2.18)

Поскольку δrad пропорционально R, то δrad также является случайным
гауссовым полем и характеризуется своим двухтотечным коррелятором.
Тогда для < δ2rad(~x) > справедливо
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< δ2rad(~x) >=

∫
d3kd3k′ < δrad(~k)δrad(~k

′) > ei
~k~xei

~k′~x =

=

∫
d3kd3k′

Pδ(k)

(2π)3
δ(~k + ~k′)ei

~k~xei
~k′~x =

=

∫
d3k

Pδ(k)

(2π)3
=

∫
4πk2dk

Pδ(k)

(2π)3
=

∫
dk

k
Pδ(k).

(3.2.19)

Интегрирование в (3.2.19) идет не по всем возможным импульсам,
а до определенного значения kmax. Перед отскоком космологический
горизонт имеет размер порядка H−1b . Мода с наибольшим k выходит
за горизонт непосредственно перед отскоком. После отскока Вселенная
начинает расширяться и моды начинают заходить обратно под горизонт,
т.е. мод с бóльшими импульсами за горизонтом не появится. Вычислим
значение kmax.

Условие выхода моды за горизонт

kmax ∼ Hbab, (3.2.20)

где Hb =
a
′
b

a2b
– параметр Хаббла непосредственно перед отскоком, а ab =

a(ηb), ηb - момент отскока. Зная, что на стадии экпирозиса a(η) =

ã(−η)
p

1−p , из (3.2.20) получаем выражение для kmax

kmax =
p

1− p
1

(−ηb)
. (3.2.21)

Для вычисления ηb учтем, что на горячей стадии Hb =
T 2
d

M∗pl
, где Td –

температура Вселенной сразу после разогрева,M∗
pl =

Mpl

1.66
√
g∗d

. Используя

выражения для a(ηb) и Hb =
a
′
b

a2b
, получим

−ηb =

(
p

ã(1− p)
M∗

pl

T 2
d

)1−p

. (3.2.22)

Используя (3.2.17) и (3.2.21), получим для < δ2rad(~x) >

< δ2rad(~x) >=

kmax∫
0

dk

k

4β+2

9

( cp
2ã

)2
Γ2(β)k3−2β =

=

kmax∫
0

dk
4β+2

9

( cp
2ã

)2
Γ2(β)k2−2β =

4β+2

9(3− 2β)

( cp
2ã

)2
Γ2(β)k3−2βmax .

9



С учетом (3.2.21)

< δ2rad(~x) >=
4β+2

9(3− 2β)

( cp
2ã

)2
Γ2(β)

(
p

1− p

)3−2β
1

(−ηb)3−2β
. (3.2.23)

Выражая β и p через безразмерный парметр ε и подставляя (3.2.22) в
(3.2.23), получим

< δ2rad(~x) >=
4β+1c2

9(3− 2β)
Γ2(β)

1

ε2

(
1

ε− 1

) 2
ε−1 T 4

d

M∗2
pl

. (3.2.24)

В выражении для< δ2rad(~x) > присутствует параметр c, имеющий размерность
длины, который можно выразить через ε и Mpl

c2 =
16π

M2
pl

ε. (3.2.25)

Поскольку ε� 1 и β → 1
2
, то из (3.2.24)

< δ2rad(~x) >=
64π

9
(1, 66)2g∗dΓ

2

(
1

2

)
ε−

2
(1−1/ε)

T 4
d

M4
pl

� 1.

Итак, после отскока на радиационно-доминированной стадии возмущения
для всех допустимых импульсов k действительно описываются линейной
теорией.

4 Заключение.
В работе показано, что если кроме поля φ во Вселенной есть другое

вещество, то векторные моды, присутствующие в этом веществе, будут
убывать, если наложить условие ωf > 1.

Опираясь на основные результаты для скалярных возмущений на
стадии экпирозиса, было показано, что после выхода Вселенной на радиационно-
доминированную стадию относительные возмущения радиации малы для
всех мод. Таким образом, на горячей стадии после экпирозиса возмущения
могут описываться линейной теорией.
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