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1 Постановка задачи
Задача состоит в построении моделей теории поля, в которых CPT нарушается в
нейтринном секторе так, что осцилляции нейтрино и антинейтрино происходят по-
разному.

2 Обзор экспериментальных данных

2.1 Нейтринные аномалии и возможное указание на стериль-
ные нейтрино

2.1.1 Реакторные и галлиевые аномалии

Изучение пучков реакторных антинейтрино с энергиями 3 − 8MeV и пучков ней-
трино с энергиями 1MeV , используемых для калибровки галлиевых детекторов, об-
наружили сигнал наличия осцилляций с характерными параметрами sin2(2θ) = 0.11,
∆m2

41 = 1.8MeV [4]. Данные указаны на рисунке (1)

Рис. 1: Совместный анализ реакторных и галиевых экспериментов

2.1.2 LSND+MiniBooNE+KARMEN

Осцилляции ν̄µ → ν̄e изучались в ускорительных экспериментах LSND с энергиями
10− 60 MeV и MiniBooNE с энергиями 200− 3000 MeV обнаружили сигнал наличия
осцилляций [4] с параметрами, указанными на рисунке (4). Эксперимент KARMEN
с энергиями 1-50 MeV созданный для проверки LSND не обнаружил данный сигнал,
однако поставил ограничения на sin2(2θ) и ∆m2

41.
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Рис. 2: Совместный анализ LSND,MiniBooNE,KARMEN

2.2 Конфликт результатов appearance и disappearance экспе-
риментов

Анализ данных по осцилляциям ν̄µ → ν̄e, νµ → νe и осцилляциям νe → νe, ν̄e → ν̄e
показывает плохое соответствие между результатами экспериментов, отображенное
на рисунке (3).

2.3 Низкоэнергетическое превышение в эксперименте MiniBooNE

Эксперимент MiniBooNE по изучению осцилляций ν̄µ → ν̄e, νµ → νe обнаружил
значительное превышение числа событий в интервале энергий 200− 500MeV [4].

3 CPT-теорема

CPT-теорема утверждает, что из предположения об инвариантности лагранжиана
относительно собственных преобразований Лоренца, об эрмитовости лагранжиана, о
локальности теории и о том, что соблюдается обычная связь между спином и стати-
стикой следует инвариантность относительно СPT преобразований. Отметим вместе
с тем что, как показал Гринберг в работе [1], поля, нарушающие CPT-симметрию, с
необходимостью нарушают и Лоренц-инвариантность.

Для построения модели теории поля, в которой нарушается CPT, наибо-
лее реалистичным представляется вариант явного введения в лагранжиан CPT-
нарушающих членов [2].
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Рис. 3: appearance (LSND, MiniBooNE appearance analysis, NOMAD, KARMEN,
ICARUS, E776)-disappearance(atmospheric, solar, reactors, Gallium, CDHS, MINOS,
MiniBooNE disappearance, KARMEN and LSND νe-C12 scattering).

4 CPT-нарушающая модель

4.1 Некоторые принятые в работе обозначения

Рассмотрим лагранжиан с CPT-нарушающим членом:

L = iψ̄aγ
µ∂µψa − (

mab

2
ψ̄caψb + h.c.) + ψ̄aγ

µaabµ ψb,

где симметричная массовая матрица m для рассматриваемой модели с тремя арома-
тами a = e, µ, s имеет вид:

m =

mee meµ mes

meµ mµµ mµs

mes mµs mss


CPT-нарушающая эрмитова матрица а имеет вид:

aabµ = (aab0 ,~0).

Приняв для простоты, что a0 - действительная матрица, запишем ее в виде:

a0 =

aee aeµ aes
aeµ aµµ aµs
aes aµs ass


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Рис. 4: MiniBooNE

Спинор ψ имеет вид:

ψ =

(
ψL
ψR

)
.

Выберем киральное представление гамма-матриц:

γµ =

(
0 σµ

σ̄µ 0

)
,

где σ = (1, ~σ), σ̄ = (1,−~σ), ~σ - вектор, компонентами которого являются матрицы
Паули.

Матрицу зарядового сопряжения C в этом представлении можно представить в
виде:

C = −iγ0γ2 =

(
iσ2 0
0 −iσ2

)
.

Преобразования зарядового сопряжения выглядят следующим образом:

ψ̄C =
T

ψ
T

C−1, ψC = C
T

ψ̄.
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Левый лагранжиан имеет вид:

LL = iψ†aLσ̄
µψaL;µ − i

mab

2
(ψTaLσ

2ψbL − ψ†aLσ
2ψ∗bL) + aab0 ψ

†
aL
ψbL . (1)

Уравнения движения:

iσ̄µψaL;µ + imabσ
2ψ∗bL + aab0 ψbL = 0. (2)

4.2 Получение эффективного гамильтониана

Решение (2) ищем в виде(α нумерует два линейно независимых решения уравнения):

ψa = a(α)u(α)
a e−ipx + a∗(α)v(α)

a eipx. (3)

Здесь и далее индекс L, флейворные индексы, индекс у a0 опускаем. Подставляя
решение (3) в таком виде в уравнения движения (2) получаем:

(p0 + ~σ~p)u+ imσ2v∗ + au = 0, (4)

(p0 + ~σ~p)v − imσ2u∗ − av = 0. (5)

Выражаем v из (4):

v = iσ2m−1(p0 + ~σ∗~p)u∗ + im−1aσ2u∗.

Подставляем v в (5):

i(p2
0−~p2)m−1σ2u∗+im−1a∗(p0+~σ~p)σ2u∗−imσ2u∗−iam−1(p0−~σ~p)σ2u∗−iam∗−1a∗σ2u∗ = 0

Введем обозначения σ2u∗ = w
Видно, что ~σ~pw(±) сохраняется:

~σ~p

p
w(±) = ±w(±) (6)

Учитывая (6) и опуская индексы, получим:

(p2
0 − ~p2)w+ + a∗0(p0 + p)w+ −m2w+ −ma0m

−1(p0 − p)w+ = 0 (7)

(p2
0 − ~p2)w− + a∗0(p0 − p)w− −m2w+ −ma0m

−1(p0 + p)w− = 0 (8)

В ультрарелятивистком пределе (7),(8) принимают вид:

(p2
0 − ~p2)w+ = m2w+ − a∗0(p0 + p)w+ (9)

(p2
0 − ~p2)w− = m2w− +ma0m

−1(p0 + p)w− (10)

Решим (9),(10) по теории возмущений. Записывая энергию в виде:

p0 = p+ heff ,
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получим из (9):

hν̄eff =
m2

2p
− a =

h̄ee h̄eµ h̄es
h̄eµ h̄µµ h̄µs
h̄es h̄µs h̄ss

 (11)

получим из (10):

hνeff =
m2

2p
+ a =

hee heµ hes
heµ hµµ hµs
hes hµs hss

 (12)

4.3 Диагонализация эффективного гамильтониана

Найдем собственные значения hνeff . Выполняя для стандартную процедуру диагона-
лизации, найдем сначала собственные значения (12), являющиеся решением уравне-
ния:

λ3 + aλ2 + bλ+ c = 0, (13)

где

a = −Tr(hνeff )

b =
1

2
(Tr(hνeff ))

2 − 1

2
Tr((hνeff )

2)

c = −Det(hνeff )

(14)

Введем переменные:

Q =
1

9
(a2 − 3b)

R =
1

54
(2a3 − 9ab+ 27c)

θ = cos−1

(
R√
Q3

) (15)

Запишем решение (13)через переменные (15):

λ1 = −2
√
Qcos

(
θ

3

)
− a

3

λ2 = −2
√
Qcos

(
θ + 2π

3

)
− a

3

λ3 = −2
√
Qcos

(
θ − 2π

3

)
− a

3

(16)

Требуется, чтобы λi были действительными. Для этого необходимо, что бы дискри-
минант был отрицательным:

D = R2 −Q3, (17)

что в нашем случае всегда выполняется. Матрица hνeff диагонализуется с помощью
унитарной матрицы U:

heff = UEeffU
† (18)
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Матрица U в таком случае имеет вид:

U =

B1C1/N1 C1A1/N1 A1B1/N1

B2C2/N2 C2A2/N2 A2B2/N2

B3C3/N3 C3A3/N3 A3B3/N3

 , (19)

где:

Ai = hµs(hee − λi)− hseheµ
Bi = hse(hµµ − λi)− heµhµs
Ci = heµ(hss − λi)− hµshse

Ni =
√
A2
iB

2
i +B2

iC
2
i + C2

i A
2
i

(20)

4.4 Вероятность осцилляций

Введем ∆ij = λi − λj. Будем считать, что λ3 � λ1 и λ3 � λ2 и рассматривать при
этом эксперименты с короткой базой

∆21L

2
� 1.

Вероятность Pνα→να определяется выражением [3]:

Pνα→να = 1− sin2(2θeff ) sin2

(
∆31L

2

)
, (21)

где:
sin2(2θeff ) = 4|Uα3|2(1− |Uα3|2) (22)

Вероятность Pνα→νβ определяется выражением:

Pνα→νβ = sin2(2θeff ) sin2

(
∆31L

2

)
, (23)

где:
sin2(2θeff ) = 4|Uα3|2|Uβ3|2 (24)
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