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Постановка задачи

• Найти гамильтониан и выписать гамильтоновы уравнения 
движения для системы с двумя обобщёнными 
координатами и лагранжианом

где − числа (зависят от  и от времени). 
Матрица не вырождена, про           ничего не известно. 
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Случай невырожденной матрицы

• Запишем выражения для импульсов и разрешим получившуюся 
систему уравнений относительно скоростей

• Подставим скорости в выражение для гамильтониана

• Взяв необходимые производные, легко получить гамильтоновы 
уравнения движения
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Случай вырожденной матрицы

• Если матрица M вырождена, то система уравнений, определяющая 
импульсы разрешима относительно скоростей только в случае 
выполнения соотношения

• Легко показать, что если выполняется первичная  связь , то 
величин                          не зависит от . Выраженная через  она 
называется гамильтонианом.

• В нашей задаче получим следующий гамильтониан
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• На данном этапе мы получили выражение  для гамильтониана, 
верное при выполнении первичных связей. Следующим шагом 
является получение и исследование гамильтоновых уравнений 
движения. Для этого используем принцип наименьшего действия для 
величины                             с уравнением связи .

• Уравнения движения: 

где .

• Для упрощения дальнейших выкладок используем скобки Пуассона 
двух величин : 
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• Если g – произвольная функция переменных p и q, а p и q 
удовлетворяют уравнениям движения, то 

• Выясним условия, при которых уравнения движения сохраняют связь

неизменной

• Условие сохранения вторичной связи 
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• Уравнения движения, удовлетворяющие всем условиям 
непротиворечивости

• Уравнения следует решать при учете связи 
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Проверка уравнений Гамильтона
• Получим уравнения Лагранжа из уравнений Гамильтона

• Уравнения Лагранжа:

• Следствия уравнений Гамильтона:

• После алгебраических преобразований с учетом связи                              ,

получим:
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Нахождение неизвестных коэффициентов
в произвольном случае

• Пусть индекс k принимает значения от 1 до N, где N – число 
первичных связей

• Индекс j принимает значение от 1 до M, где M – полное число связей

• Коэффициенты находятся из системы

• Общее решение представимо в виде суммы частного решения 
неоднородной системы и общего решения однородной системы 
уравнений

• Коэффициенты определятся однозначно, если однородная 
система уравнений имеет только тривиальное решение
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• Будем говорить что функция от q и p является переменной первого 
рода, если ее скобки Пуассона со всеми равны нулю

• В противном случае будем говорить, что функция является 
переменной второго рода 

• Можно показать, что размерность пространства решений однородной 
системы уравнений равна числу линейно независимых первичных 
связей первого рода

• Таким образом, коэффициенты        определятся единственным 
образом только если все первичные связи будут величинами второго 
рода
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Заключение

• В результате работы была решена задача о 
переходе к гамильтониану от лагранжиана с 
вырожденной матрицей скоростей

• Были получены гамильтоновы уравнения 
движения и показана их эквивалентность 
лагранжевым уравнениям движения

• Получены условия, при которых  гамильтоновы 
уравнения движения определяются однозначно



Спасибо за внимание!


