
Московский Государственный Университет имени М.В.Ломоносова
Физический Факультет

Кафедра физики частиц и космологии

Курсовая работа:

Светоподобные геодезические в поле чёрной дыры

студента 2 курса, 210 группы
Широкова Ильи Евгеньевича

Научный руководитель:
кандидат физ-мат наук,

Левков Дмитрий Геннадьевич

Москва, 2014



Оглавление

Введение 2

1 Геодезические в метрике Шварцшильда 3
1.1 Геодезические в произвольной метрике . . . . . . . . . . . . 3
1.2 Метрика Шварцшильда. . . . . . . . . . . . . . . . . . . . . 5
1.3 Общее выражение для зависимости угла отклонения от

расстояния до центра Чёрной дыры . . . . . . . . . . . . . . 6
1.4 Случай малого отклонения . . . . . . . . . . . . . . . . . . . 9
1.5 Нестабильные орбиты, случай большого отклонения . . . . 10

2 Внешний вид изображений источников излучения 15
2.1 Удалённый наблюдатель . . . . . . . . . . . . . . . . . . . . 15
2.2 Земной телескоп . . . . . . . . . . . . . . . . . . . . . . . . . 17

Заключение 22

Литература 23

1



Введение

В последнее время существует много попыток получить "портрет"чёрной
дыры, регистрируя электромагнитные волны, излучённые или проходя-
щие в её окрестности. Одним из таких проектов является международ-
ный проект Радиоастрон [1] с ведущим российским участием. Этот ра-
диотелескоп обладает разрешением 7-8 угловых микросекунд при длине
волны 1.5 сантиметра. Такое разрешение даёт надежду разрешить ра-
диусы чёрных дыр в центрах галактик. В данной работе изучено лин-
зирование изображения удалённого точечного источника полем чёрной
дыры. Вычисления отклонения электромагнитных волн и изменения их
интенсивности проведены в эйкональном приближении, когда длина вол-
ны считается малой по сравнению с размером чёрной дыры. В работе
показано, что изображение удалённого источника сопровождается изоб-
ражениями меньшей интенсивности, находящимся вблизи нестабильной
светоподобной орбиты чёрной дыры (R = 1.5Rs, где Rs — радиус Шварц-
шильда).
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Глава 1

Геодезические в метрике
Шварцшильда

1.1 Геодезические в произвольной метрике
Пусть точка xµ движется вдоль некоторой траектории, xµ = xµ(τ), где τ
— собственное время или афинный параметр в случаях времениподобной
и светоподобной траектории, соответственно. Величина uµ = dxµ

dτ
называ-

ется скоростью движения вдоль траектории. Геодезической называется
траектория построенная путём последовательных параллельных перено-
сов векторов uµ из точек xµ в точки xµ+uµdτ . Уравнение геодезической:

duµ

dτ
+ Γµνσu

σuν = 0, (1.1.1)

где Γµνσ — символ Кристоффеля. Согласно принципу эквивалентности все
пробные точечные тела движутся по геодезическим. Перепишем уравне-
ние геодезической в другой форме. Введём обозначение ∂uµ

∂xρ
= uµ,ρ, тогда

duµ

dτ
= uρuµ,ρ. Уравнение (1.1.1) принимает вид:

uρ(uµ,ρ + Γµνρu
ν) = 0. (1.1.2)

Выражение в скобках представляет собой ковариантную производную,
обозначим её как: uµ;ρ, поэтому уравнение геодезической можно записать
как:

uρuµ;ρ = 0. (1.1.3)

Проще всего интегрировать уравнения геодезических, используя поля
Киллинга. Эти поля характеризуют симметрию при глобальных преоб-
разованиях, таких, как вращения и сдвиги пространства-времени. Рас-
смотрим преобразование координат следующего вида: xµ −→ x′µ = xµ +
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ξµdτ . В системе координат {x′} метрика имеет вид:

g′ρσ =
∂xµ

∂x′ρ
∂xν

∂x′σ
gµν . (1.1.4)

Согласно нашему преобразованию:

∂xµ

∂x′ρ
= δµρ − ξµ,ρdτ ;

∂x′ν

∂xσ
= δνσ − ξν,σdτ. (1.1.5)

Теперь подставим (1.1.5) и (1.1.4), тогда получим c учётом пренебреже-
ния величинами второго и третьего порядка малости:

g′ρσ = gρσ − (ξµgρσ,µ + gµσξ
µ
,ρ + gρµξ

µ
,σ)dτ, (1.1.6)

где мы использовали тождество:

g′µν(x
µ) = g′µν(x

′µ)− ξσ ∂gµν
∂xσ

dτ +O(ξ2). (1.1.7)

Производная Ли определяется следующим образом:

Lξgρσ = lim
dτ→0

gρσ − g′ρσ
dτ

. (1.1.8)

Из (1.1.6) следует, что:

Lξgρσ = ξµgρσ,µ + gµσξ
µ
,ρ + gρµξ

µ
,σ. (1.1.9)

Это выражение можно переписать через ковариантные производные:

Lξgρσ = ξµgρσ;µ + gµσξ
µ
;ρ + gρµξ

µ
;σ. (1.1.10)

Если метрика сохраняется при общековариантных преобразованиях,
то производная Ли от неё равна нулю Lξgρσ = 0. Это свойство характери-
зует вышеупомянутую симметрию относительно глобальных преобразо-
ваний. Ковариантная производная от метрики естественно равна нулю.
В этом случае уравнение (1.1.10) приобретает вид уравнения Киллинга:

ξσ;ρ + ξρ;σ = 0. (1.1.11)

Векторное поле, удовлетворяющее уравнению (1.1.11), называется полем
Киллинга.Докажем полезное свойство полей Киллинга. Пусть Uµ(r) —
геодезическая. Запишем:

uρ(ξµu
µ);ρ = uρuµξµ;ρ + ξµu

ρuµ;ρ, (1.1.12)
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Второе слагаемое равно нулю согласно (1.1.3), а первое можно записать
в виде:

uρuµξµ;ρ =
1

2
uρuµξµ;ρ +

1

2
uρuµξµ;ρ. (1.1.13)

Заменим немые индексы ρ и µ второго слагаемого в (1.1.13) на µ и ρ
соответственно. Получим:

uρuµξµ;ρ =
1

2
uρuµ(ξµ;ρ + ξρ;µ). (1.1.14)

Выражение (1.1.14) равно нулю в соответствии с (1.1.11). Следовательно
и выражение (1.1.12) также равно нулю и:

ξµu
µ = const. (1.1.15)

Закон сохранения позволяет легко интегрировать уравнения геодезиче-
ских.

1.2 Метрика Шварцшильда.
Будем использовать систему единиц G = c = 1. Рассмотрим сфериче-
ски симметричное решение уравнений Эйнштейна в пустоте — метрику
Шварцшильда. Она имеет следующий вид:

gµν =


−1 + 2M

r
0 0 0

0 1

1−
2M

r

0 0

0 0 r2 0
0 0 0 r2sin2θ

 . (1.2.1)

При r = 2M некоторые компоненты метрики сингулярны. Эта сингу-
лярность — устранимая, существует система координат, в которой она
отсутствует. Можно показать, что, тело никогда не сможет покинуть об-
ласть r ≤ 2M . Радиус r = 2M называется радиусом Шварцшильда.
Объект, в котором реализуется подобная ситуация, называется чёрной
дырой.

В метрике Шварцшильда существует два вектора Киллинга, удовле-
творяющие уравнению (1.1.11):

ξµ =


1
0
0
0

 ; ψµ =


0
0
0
1

 . (1.2.2)
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Эти вектора соответствуют симметрии метрики (1.2.1) относительно сдви-
гов во времени поворотов, соответственно. Они помогут нам проинтегри-
ровать уравнения геодезических.

Рассмотрим случай светоподобных геодезических в пространствеШварц-
шильда. Подставив вектора (1.2.2) в (1.1.15), получим первые интегралы
движения:

E = −gνµξνuµ =

(
1− 2M

r

)
ṫ; L = gνµψ

νuµ = r2φ̇. (1.2.3)

Величины ~E и ~L представляют собой полную энергию и угловой мо-
мент соответственно.

Помимо первых интегралов (1.2.3) можно использовать условия ра-
венства нулю квадрата четырёхскорости для света, рассматривая при
этом случай θ = π/2:

gνµu
νuµ =

(
−1 +

2M

r

)
ṫ2 +

ṙ2

1− 2M

r

+ r2φ̇2 = 0. (1.2.4)

Уравнений (1.2.3), (1.2.4) достаточно для нахождения светоподобной гео-
дезической xµ(τ).

1.3 Общее выражение для зависимости уг-
ла отклонения от расстояния до центра
Чёрной дыры

Получим общее выражение для угла отклонения света. Подставим (1.2.3)
в (1.2.4), запишем (1.2.4) в виде

ṙ2

2
+

L

2r3
(r − 2M) =

E2

2
. (1.3.1)

Второе слагаемое в выражении (1.3.1) можно интерпретировать как эф-
фективный потенциал. Наличие максимума (минимума) этого потенциа-
ла свидетельствует о существовании нестабильной (стабильной) орбиты.
Найдём его экстремум:

∂V

∂r
= − 3L

2r4
(r − 2M) +

L

2r3
= 0 (1.3.2)
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Из (1.3.2) следует существование единственного максимума r = 3M .
Этот максимум- единственная нестабильная орбита света. При этом ми-
нимальная энергия необходимая для преодоления этого потенциального
барьера очевидно определяется следующим образом:

E2

2
= V (r = 3M) =

L2M

2(3M)3
(1.3.3)

Это выражение определяет величину:

L2

E2
= 27M2 (1.3.4)

PPPPPPPPPPPP

&%
'$v
φ

br

Рис. 1.1: Определение прицельного параметра b.

Теперь получим выражение для прицельного параметра b. Используя
Рис. 1.1. получаем:

r =
b

cosφ
(1.3.5)

Продифференцируем это выражение по времени, получим:

dr

dt
=

b

cos2 φ

dφ

dt
sinφ. (1.3.6)

При r � b из уравнений (1.3.5), (1.3.6)

dr

dt
=
r2

b

dφ

dt
(1.3.7)

Так как в плоском пространстве dr
dt

= 1, из выражения (1.2.3) получим:

b = r2dφ

dt
=
L

E
(1.3.8)

Уравнений (1.3.8) будем далее считать определением прицельного пара-
метра. Из выражения (1.3.8) понятно, что (1.3.4) характеризует квадрат
критического прицельного параметра,

bcrit =
L

E
= M

√
27. (1.3.9)
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При b < bcrit свет падает в чёрную дыру. Подставим (1.2.3) в (1.2.4),
получим уравнение

dφ

dr
=
L

r2

[
E2 − L2

r3
(r − 2M)

]− 1
2

. (1.3.10)

В терминах прицельного параметра (1.3.8) уравнение (1.3.10) приобре-
тает вид:

dφ

dr
=

1

[r4b−2 − r(r − 2M)]
1
2

. (1.3.11)

aaaaaaaaaa

!!!!!!!!!!
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&%
'$v

R0

χ

∆φ

Рис. 1.2: Отклонение светового луча.

Найдём точку поворота R0, изображённую на Рис. 1.2:
dr

dφ

∣∣∣∣
R0

= 0 ⇒ R3
0 − b2(R0 − 2M) = 0. (1.3.12)

Решение уравнения (1.3.12) можно представить в виде:

R0 =
2b√

3
cos

[
1

3
arcos

(
−
√

27M

b

)]
. (1.3.13)

Полный угол поворота ∆φ связан с углом χ на Рис. 1.2. соотношением
χ = ∆φ− π. Согласно (1.3.11),

∆φ = 2

∞∫
R0

dr

[r4b−2 − r(r − 2M)]
1
2

. (1.3.14)

Проинтегрировав численно уравнение (1.3.11) получим зависимость,
изображённую на Рис. 1.3.

На этом графике расстояние выражено в половинах радиуса Шварц-
шильда, а φ принято равным 0 в точке поворота r = R0. Часть траекто-
рии, изображённой на Рис. 1.3, изображает вращение луча света вокруг
чёрной дыры, а последующая отлёт.
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R0

∆φ
2

Рис. 1.3: Зависимость φ от r для b− bcrit = M
100

.

1.4 Случай малого отклонения
Рассмотрим интеграл (1.3.14). Введём новую переменную u = 1

r
тогда

выражение (1.3.14) принимает следующий вид:

∆φ = 2

1/R0∫
0

du

(b−2 − u2 + 2Mu3)
1
2

. (1.4.1)

Теперь учтём, что при b�M отклонения от первоначального направ-
ления малы, а характеристические расстояния до центра чёрной дыры
сильно превышают радиус Шварцшильда 2M . Поэтому мы можем ис-
пользовать разложение поM с точностью до первого порядка. Исключая
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b из (1.4.1) с помощью (1.3.12) получаем:

∆φ = 2

1/R0∫
0

du(
R−2

0 − 2MR−3
0 − u2 + 2Mu3

) 1
2

. (1.4.2)

Дифференцируя (1.4.2) поM при фиксированном R0 и вычисляя резуль-
тат при M=0, получим:

∂∆φ

∂M

∣∣∣∣
M=0

= 2

1/R0∫
0

(R−3
0 − u3) du(

R−2
0 − 2MR−3

0 − u2 + 2Mu3
) 3

2

∣∣∣∣∣∣
M=0

=

= 2

1/b∫
0

b−3 − u3 du

(b−2 − u2)
3
2

. (1.4.3)

Используем в (1.4.3) замену переменной sin t = ub, получим:

∂∆φ

∂M

∣∣∣∣
M=0

=
4

b
. (1.4.4)

Поэтому,

χ = ∆φ− π ≈ M
∂∆φ

∂M

∣∣∣∣
M=0

=
4

b
=

4M

b
. (1.4.5)

Зависимость (1.4.5) соответствует асимптотике χ(b) при больших b. Эта
асимптотика изображена на Рис. 1.4. вместе с численным решением.

1.5 Нестабильные орбиты, случай большого
отклонения

Чтобы рассматривать отклонение света вблизи чёрной дыры, важно рас-
смотреть случай малых прицельных параметров и, соответственно, боль-
ших отклонений. Дальнейшее рассмотрение будем вести в окрестности
b =

√
27M и R0 = 3M , см. уравнения (1.3.9) и (1.3.3). Обратимся к

выражению (1.3.12) и рассмотрим незначительные отклонения от кри-
тических значений b =

√
27M + ∆b и R0 = 3M + ∆R0:

(3M + ∆R0)3 − (
√

27M + ∆b)2(∆R0 +M) = 0 (1.5.1)

Оставляя члены второго порядка малости по ∆R0 и первого по ∆b, по-
лучим:

∆R2
0 =

2√
3

∆bM. (1.5.2)
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Рис. 1.4: Зависимость χ от b для асимптотики малого отклонения и чис-
ленного решения.

Теперь рассмотрим интеграл (1.3.14). При больших отклонениях имеет
смысл разбить его на две части: вращение в малой окрестности неста-
бильной орбиты r = 3M и отлёт. В этом случае при отлёте можно считать
величину ∆b малой и пренебречь ей. Имеем:

∆φ = ∆φ1 + ∆φ2 = 2

R0+δ∫
R0

dr

[r4b−2 − r2 + 2Mr]
1
2

+

+2

∞∫
R0+δ

dr[
r4(
√

27M)−2 − r2 + 2Mr
] 1

2

. (1.5.3)

Здесь точка R0 + δ имеет смысл точки сшивки двух режимов движения.
Эта точка выбрана следующим образом:

∆b� δ �M. (1.5.4)
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Во втором члене выражения (1.5.3) перегруппируем множители:

∆φ2(r) = 2

∫ √
27M dr

(r − 3M)
√

(r + 6M)r
, (1.5.5)

где мы рассматриваем ∆φ2(r) как неопределённый интеграл. Введём за-
мену t = 1

r−3M
, перепишем (1.5.5) в виде:

∆φ2(t) = −2

∫
dt√

(t+ 2
9M

)2 + 1
27M2 − ( 2

9M
)2
. (1.5.6)

Вычислив интеграл, получаем:

∆φ2 = −2 ln

∣∣∣∣∣∣ 1

r − 3M
+

2

9M
+

√(
1

r − 3M
+

2

9M

)2

− 1

81M2

∣∣∣∣∣∣+C. (1.5.7)

Значение константы будет определено позже.
Вычислим первую часть выражения (1.5.3), ответственную за режим

вращения вокруг чёрной дыры. Введём новую переменную ∆r = r−3M ,
учтём, что ∆r � M . Также имеет смысл записать b =

√
27M + ∆b.

Работая в главном порядке по ∆b и ∆r, получим:

∆φ1 = 2

∆R0+δ∫
∆R0

d∆r(
∆r2 − 2√

3
∆bM

) . (1.5.8)

Теперь вычислим интеграл (1.5.8):

∆φ1 = 2

∆R0+δ∫
∆R0

d∆r(
∆r2 − 2√

3
∆bM

) = 2 ln

(
∆r +

√
∆r2 − 2√

3
∆bM

)∣∣∣∣∣∣
∆R0+δ

∆R0

.

(1.5.9)
Используя (1.5.2) и условие (1.5.4) в (1.5.9) получим:

∆φ1 ≈ 2 ln (2δ)− ln

(
2√
3

∆bM

)
. (1.5.10)

Константа C в выражении (1.5.7) определяется из условия сшивки:

∆φ1 = ∆φ2(R0 + δ). (1.5.11)
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Из (1.5.11) получим:

2 ln (2δ)− ln

(
2√
3

∆bM

)
= −2 ln

(
2

δ

)
+ C. (1.5.12)

Находя константу C, запишем зависимость угла отклонения от величины
r в следующем виде:

φ(r) = −2 ln

∣∣∣∣∣∣ 1

r − 3M
+

2

9M
+

√(
1

r − 3M
+

2

9M

)2

− 1

81M2

∣∣∣∣∣∣+

+4 ln(2)− ln

(
2√
3

∆bM

)
.(1.5.13)

Из выражения (1.5.13) сразу получим:

∆φ = − ln

∣∣∣∣∣(2 +
√

3)2∆b

648M
√

3

∣∣∣∣∣ . (1.5.14)

Поэтому:

χ = ∆φ− π = − ln

∣∣∣∣∣(2 +
√

3)2(b−
√

27M)

648M
√

3

∣∣∣∣∣− π. (1.5.15)

На Рис. 1.5. зависимость (1.5.15) сравнивается с численным решением
уравнения (1.3.11). Видно что эта зависимость работает при всех малых
b− bcrit.
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Рис. 1.5: Зависимость χ(b) в приближении (1.5.15) и для численного ре-
шения.
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Глава 2

Внешний вид изображений
источников излучения

В этой главе будет рассмотрен внешний вид источников излучения, а
именно угловые размеры и интенсивности изображений источников.

2.1 Удалённый наблюдатель
Рассмотрим вид источника излучения с точки зрения удалённого наблю-
дателя. Задача определения интенсивности источника сводится к зада-
че рассеяния на чёрной дыре. Найдём зависимость дифференциального
сечения рассеяния от угла рассеяния. Рассмотрим поток частиц с плот-
ностью n и определим число частиц рассеянных в интервале (χ;χ+ dχ)
как dN . По определению сечения рассеяния равно:

dσ(χ) =
dN

n
, (2.1.1)

где n — число частиц пролетающих через единичную площадку за еди-
ницу времени. Теперь рассмотрим параллельный пучок фотонов, пада-
ющих под некоторым углом на чёрную дыру. Фотоны рассеиваются в
интервале (χ;χ+ dχ) тогда, когда они попадают в интервал прицельных
параметров (b; b + db). Количество таких фотонов за единицу времени
равно:

dN = 2nπbdb. (2.1.2)

Используя (2.1.1) получим:

dσ(χ) = 2πbdb. (2.1.3)
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Поделив уравнение (2.1.3) на dχ, получим:

dσ

dχ
(χ) = 2πb

∣∣∣∣ dbdχ
∣∣∣∣ . (2.1.4)

Величина (2.1.4) называется дифференциальным сечением рассеяния.
Эта величина также характеризует яркость в направлении угла χ. Функ-
ция b(x) — многозначная см, например выражение (1.5.15). Физический
смысл этого явления состоит в том, что многие фотоны могут сделать
больше одного оборота вокруг чёрной дыры и оказаться под физически
тем же углом, что и другие, не сделавшие этих оборотов. Поэтому в бу-
дем складывать вклады от всех траекторий.

Как видно из Рис. 1.5, полученная нами асимптотика хорошо работа-
ет для фотонов, сделавших более одного оборота. Следовательно (2.1.4)
можно переписать в следующем виде:

dσ

dχ
= 2πb

∣∣∣∣ dbdχ
∣∣∣∣+ 2π

√
27M

∞∑
n=1

∣∣∣∣ dbdχ
∣∣∣∣
χ+2πn

. (2.1.5)

Здесь мы под χ подразумеваем физический угол отклонения, второй
член суммирует вклады от траекторий, сделавших n оборотов вокруг
чёрной дыры. Используя (1.1.15) рассмотрим зависимость углов χ+ 2πn
от b:

b(χ+ 2πn) = e−χ−2πn 648M
√

3

(2 +
√

3)2eπ
+
√

27M. (2.1.6)

Вычислим производную:∣∣∣∣ dbdχ
∣∣∣∣
χ+2πn

= e−χ−2πn 648M
√

3

(2 +
√

3)2eπ
. (2.1.7)

Из (1.3.9) и (2.1.6) следует что это выражение не что иное как∣∣∣∣ dbdχ
∣∣∣∣
χ+2πn

= ∆b(χ+ 2πn). (2.1.8)

При этом выражение (2.1.8) также можно записать как:∣∣∣∣ dbdχ
∣∣∣∣
χ+2πn

= ∆b(χ)e−2πn (2.1.9)

Вернёмся к (2.1.5):

dσ

dχ
(χ) = 2πb(χ)

∣∣∣∣ dbdχ(χ)

∣∣∣∣+ 2π
√

27M∆b(χ)
∞∑
n=1

e−2πn (2.1.10)
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Ряд в выражении (2.1.10) представляет собой геометрическую прогрес-
сию, поэтому окончательно получаем:

dσ

dχ
(χ) = 2πb(χ)

∣∣∣∣ dbdχ(χ)

∣∣∣∣+ 2π
√

27M∆b(χ)
1

e2π − 1
(2.1.11)

На Рис. 1.5. построена зависимость (2.1.11) при этом при 0 < χ < π ис-

Рис. 2.1: Зависимость dσ
dχ

от χ в логарифмическом масштабе.

пользовался численный метод конечных разностей для вычисления про-
изводной, а при χ > π использовалась наше выражение (2.1.8).

Как видно из выражения (2.1.11) и Рис. 1.5 фотоны обернувшиеся
один раз и более, не вносят существенной поправки. Однако, они пред-
ставляют собой дополнительные изображения источника, что интересно.

2.2 Земной телескоп
Теперь необходимо перейти к рассмотрению вида источника излучения
с Земли. Пусть земной телескоп смотрит под некотором углом α на чёр-
ную дыру. Пусть также на некотором расстоянии l1 находится источник
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излучения. Расстояние от телескопа до чёрной дыры обозначим l2. Вве-
дём также угол ω между нашим направление "земля — чёрная дыра"и
направлением "чёрная дыра — источник". Согласно Рис. 2.2, получим
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Рис. 2.2: Схема наблюдения в телескоп изображения источника

следующее геометрическое соотношение:

α = −∆ϕ+ ω − ς, (2.2.1)

где углы ς и ∆ϕ введены на Рис. 2.2. Также очевидно, что поскольку
l2, l1 � b, α и ς можно переписать в виде:

α =
b

l2
; ς =

b

l1
. (2.2.2)

Тогда на основе (2.2.1) и (2.2.2) запишем:

b

(
l2 + l1
l2l1

)
= −∆ϕ+ ω. (2.2.3)

Очевидно, что в зависимости от того, на каком обороте фотон отлетает
от чёрной дыры, его угол ∆φ из выражения (1.5.14) будет связан с ∆ϕ
следующим соотношением:

∆ϕn = 2π(n+ 1)−∆φn, (2.2.4)
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где n — число сделанных оборотов. Тогда запишем (2.2.3) в следующем
виде:

bn(
l2 + l1
l2l1

)− ω = ∆φn − 2π(n+ 1). (2.2.5)

Теперь подставим (1.5.14) в (2.2.5):

bn(
l2 + l1
l2l1

)− ω = − ln

∣∣∣∣∣(2 +
√

3)2∆bn

648M
√

3

∣∣∣∣∣− 2π(n+ 1). (2.2.6)

Обернём выражение (2.2.6) и вспомним разложение экспоненты в первом
приближении (это приближение справедливо поскольку l2, l1 � b):

eω−2π(n+1)(1 + bn(
l2 + l1
l2l1

)) =
(2 +

√
3)2(bn −

√
27M)

648M
√

3
. (2.2.7)

Это линейное уравнение по bn, его решение:

bn =
eω−2π(n+1) + (2+

√
3)2

216

(2+
√

3)2

648M
√

3
− eω−2π(n+1) l2+l1

l2l1

. (2.2.8)

Тогда используя (2.2.2) получим:

αn =
eω−2π(n+1) + (2+

√
3)2

216

(2+
√

3)2

648
√

3
l2
M
− eω−2π(n+1) l2+l1

l1

. (2.2.9)

При рассмотрении источников, расположенных на расстоянии l1 ∼ M
следует использовать выражение (2.2.9). В противном случае можно пре-
небречь l2/l1, тогда (2.2.9) принимает вид:

αn =
648
√

3

(2 +
√

3)2

M

l2
eω−2π(n+1) +

M
√

27

l2
. (2.2.10)

При нулевом порядке n = 0 эта формула может не слишком хорошо
работать, поэтому для нахождения α0 следует решать уравнение (2.2.5)
численно.

Проведём расчёт углов αn для чёрной дыры в центре нашей галак-
тики. Тогда l2 = 26000 св лет, расстояние до ближайшей звезды: l1 =
1, 9∗10−3 св лет, радиус Шварцшильда: 2M = 1, 3∗10−6 св лет, ω = 3π/4.
Тогда получим следующие значения:
α1 = 2.71 ∗ 10−5 секунд угла
α2 = 2.68 ∗ 10−5 секунд угла
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Кроме того, численное выражение даёт:
α0 = 4.32 ∗ 10−5 секунд угла
Поскольку α0−α1 ≈ 16 микросекунд угла, то Радиоастрон, в теории мо-
жет разрешить первые два изображения как разные, хотя последующие
изображения сливаются. Вообще говоря, изображения будут присутство-
вать с двух сторон от чёрной дыры, однако, одно из них будет обладать
экспоненциально меньшей интенсивностью.

Интерес также представляет случай ω = π. В этой ситуации источ-
ник закрыт чёрной дырой, а его изображения формируют кольцо вокруг
чёрной дыры.

Вычислим яркость изображений источника. Для этого вспомним, что
интенсивность определяется как:

I =
dN

dtS
. (2.2.11)

Пусть свет падает на некоторую площадку перед чёрной дырой, тогда
обозначив эту площадку за dS0 получим для дифференциального сече-
ния рассеяния (2.1.1):

dσ =
dN

dN0/dS0

. (2.2.12)

Из (2.2.11) и (2.2.12) получим:

I =
dσ

dS

dN0

dS0dt
. (2.2.13)

Второй множитель в (2.2.13) представляет собой начальную интенсив-
ность. Площадка dS на которую падает прошедший свет представляет
собой кольцо лежащее в плоскости наблюдения. Площадь этого кольца
можно найти исходя из построения хода лучей после чёрной дыры. Она
равна:

dS = 2πl22 sinχdχ. (2.2.14)

Исходя из (2.2.14) выражение (2.2.13) принимает вид:

I =
dσ

dχ

I0

2πl22 sinχ
. (2.2.15)

Первый множитель это дифференциальное сечение рассеяния выраже-
ние для которого было уже найдено (см. (2.1.11). Рассматривая площад-
ку dS0 вблизи чёрной дыры для I0 получим:

I0 =
dN

4πl21dt
. (2.2.16)
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Для интенсивности света прошедшего напрямую получаем:

Idir =
dN

4πl23dt
, (2.2.17)

где l3 — расстояние от источника излучения до телескопа (см. Рис. 2.2.).
Исходя из (2.2.15)-(2.2.17) для отношения I/Idir получаем:

I

Idir
=
dσ

dχ

l21 + l22 − 2l1l2 cosω

2πl22l
2
1 sinχ

. (2.2.18)

Проведём расчёт для I0/Idir и I1/Idir (ω = 3π/4), где первая величина
соответствует первому изображению, а вторая второму.
I0/Idir = 4.9 ∗ 10−6

I1/Idir = 2.5 ∗ 10−9

Звёздная величина по определению равна:

m = −2.5 ∗ lg
E2

E1

, (2.2.19)

тогда оценка звёздной величины для изображения звезды подобной солн-
цу даёт:
m0 ≈ 35
m1 ≈ 42
Эти величины разумеется больше характерных звёздных величин реги-
стрируемых самыми большими телескопами (m0 ≈ 28).
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Заключение

В работе исследовано поведение световых лучей в окрестности чёрных
дыр. Получены решения уравнений геодезических, сравнение с числен-
ными решениями показывает, что эти приближения с достаточно высо-
кой точностью описывают поведение лучей света при малых и больших
значениях прицельного параметра. Показано, что точечные источники
формируют изображения вблизи чёрной дыры, которые в случае источ-
ника, находящегося на одной линии с наблюдателем и чёрной дырой,
переходят в кольцо. Были изучены возможности разрешения отдельных
изображений. Оказалось, что угловое расстояние между изображениями
сравнимо с угловым разрешением современных радиотелескопов. Одна-
ко слабые интенсивности вряд-ли могут сделать возможным прямое на-
блюдение изображений. В будущем, с появлением приборов высокой чув-
ствительности, возможно, такие эффекты станут наблюдаемыми.
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