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1 Введение. Постановка задачи.
Среди многих существующих аллотропных модификаций углерода (алмаза, графита и др.) особое место
занимает графен - вещество, в котором все атомы углерода образуют двумерную шестиугольную кристал-
лическую решетку.

Впервые графен был описан в работах, посвященных физике графита. Дело в том, что графит, являю-
щийся трехмерным кристаллом, можно представить состоящим из двумерных слоев, каждый из которых
является плоской шестиугольной решеткой, то есть кристаллической решеткой графена. Отсюда берет
происхождение и ныне устаревшее название графена -

”
монослой графита“.

Несмотря на то, что графен был теоретически описан достаточно давно, и на его основе был описан
графит, получить графен как вещество с двумерной кристаллической решеткой не удавалось достаточно
долго: впервые графен был получен лишь в 2004 году, после чего интерес к графену существенно возрос
в связи с возможностью применения его необычных свойств, ранее предсказанных теоретически. Некото-
рые из этих свойств будут затронуты в настоящей работе.

В данной работе изучаются спектры электрона в графене и (2+1)-мерного релятивистского фермиона.
Как будет показано ниже, при низких энергиях спектр электрона в графене линеен и ведет себя так же,
как спектр двумерной (т.е. привязанной к плоскости) безмассовой релятивистской частицы-фермиона,
подчиняющейся уравнению Дирака. Отсюда можно будет сделать вывод о применимости (2+1)-мерных
уравнений Дирака для описания электронов в графене. Это является уникальным свойством графена,
следующим из особенностей его кристаллической решетки - двумерности, а также того факта, что эту
шестиугольную решетку можно разбить на две одинаковые элементарные треугольные подрешетки.

Отсюда следует, что электроны в графене обладают теми же свойствами, что и безмассовые фермионы,
и в экспериментах с графеном можно продемонстрировать нетривиальные эффекты из релятивистской
квантовой теории. В данной работе в качестве такого эффекта рассмотрен эффект Клейна, заключаю-
щийся в том, что при определенных значениях энергии электрона, меньшей величины полубесконечного
прямогульного потенциального барьера, вероятность подбарьерного прохождения равна единице.
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2 Спектр электронов в графене

2.1 Вывод спектра в микроскопической модели графена
Рассмотрим кристаллическую решетку графена. Разобъем на 2 треугольные подрешетки (см. рис.1). Про-
нумеруем решетки: 1, обозначена на рисунке красным, и 2, обозначена зеленым. Если решетка достаточно
большая, то можно пренебречь краевыми эффектами и отметить, что при трансляции вдоль вектора, со-
единяющего два соседних узла одной подрешетки, вся решетка тоже переходит сама в себя (например,
вдоль векторов ~u1 и ~u2 на рис.1).

Рис. 1: Кристаллическая структура графена

Введем временно две системы координат O1r1s1 и O2r2s2 следующим образом (см. рис.1). Начала их
O1 и O2 поместим в соседние друг с другом узлы 1-й и 2-й подрешетки соответственно, ось O1r1 направим
вдоль направления, соединяющего O1 с любым из соседних узлов 1-й подрешетки, а ось O1s1 будет повер-
нута относительно O1r1 на угол 2π

3 против часовой стрелки, и таким образом, тоже будет проходить через
один из соседних с началом координат узлов 1-й подрешетки. Оси O2r2 и O2s2 направим параллельно осям
O1r1 и O1s1 соответственно. Расстояние между двумя соседними ячейками одной подрешетки примем за
единичное в обеих системах координат, а также введем единичные в данной системе координат векторы
~u1 и ~u2, коллинеарные O1r1 и O1s1. Таким образом, координата любой точки на плоскости может описы-
ваться как парой чисел ~l1 = (r1, s1) системы координат O1r1s1, так и парой чисел ~l2 = (r2, s2) системы
координат O2r2s2. Также определим вектор m, соединяющий соседние узлы двух разных подрешеток так,
как показано на рис. 1.

Также введем декартову систему координат Oxy, начало которой совпадает с началом координат O1

системы O1r1s1, а ось Oy совпадает с осью O1s1. Буквой x будем обозначать вектор, проведенный из на-
чала декартовой системы координат в определенную точку пространства. Отметим, что x = r1~u1 +s1~u2 =−−−→
O2O1 + r2~u1 + s2~u2. Для того, чтобы отличать, в какой именно системе косоугольных координат вектор
x имеет координаты (r, s), будем писать индексы под координатами: x = (r, s)1, если это координаты в
системе O1r1s1, и x = (r, s)2, если это координаты в системе O2r2s2.

Рассмотрим волновую функцию Ψ электрона в графене. Она определяется своими значениями в узлах
решетки, и, таким образом, может быть представлена как столбец из двух волновых функций ξz1 и ξz+m

2 ,
где под z понимаются векторы, проведенные из начала декартовой системы координат в узлы 1-й подре-
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шетки, а тогда под z+m - векторы, проведенные, соответственно, в узлы 2-й подрешетки : Ψ =
(

ξz1
ξz+m
2

)
Под Ψx будем понимать ξx1 , если радиус-вектор x проведен к ячейке 1-й подрешетки и ξx2 - если ко второй
решетке.

Пусть электроны в графене могут переходить с любого узла только на соседние узлы другой подрешет-
ки, с энергией перехода γ, а также на ближайшие узлы той же подрешетки, с энергией перехода t. Энергию
нахождения частицы в узле обозначим как ε. В соответствии с этим определим действие гамильтониана
в узлах первой и второй решетки как:

(ĤΨ)z = εΨz + γ
(
Ψz+m + Ψz+m−~u2 + Ψz+m−~u1−~u2

)
+

+ t
(
Ψz+~u1 + Ψz−~u1 + Ψz+~u2 + Ψz−~u2 + Ψz+~u1+~u2 + Ψz−~u1−~u2

)
, (1)

(ĤΨ)z+m = εΨz+m + γ
(
Ψz + Ψz+~u2 + Ψz+~u1+~u2

)
+

+ t
(
Ψz+m+~u1 + Ψz+m−~u1 + Ψz+m+~u2 + Ψz+m−~u2 + Ψz+m+~u1+~u2 + Ψz+m−~u1−~u2

)
. (2)

Отметим, что в силу вышеупомянутой симметрии при трансляции вдоль вектора, соединящего два
соседних узла одной подрешетки, а также в силу одинаковости двух подрешеток, ε, γ и t одинаковы для
любого узла решетки.

Определим вид волновых функций ξ1 и ξ2. Для этого воспользуемся следующим фактом из линей-
ной алгебры: если эрмитовы операторы коммутируют, то они обладают общим набором собственных
векторов.

Рассмотрим операторы Û1 и Û2 сдвига на векторы ~u1 и ~u2 соответственно. Так как при этом система
переходит сама в себя, то

(Û1ĤΨ)x = (ĤΨ)x− ~u1 = (ĤΨ)x = (ĤÛ1Ψ)x ,

(Û2ĤΨ)x = (ĤΨ)x− ~u2 = (ĤΨ)x = (ĤÛ2Ψ)x ,

(Û2Û1Ψ)x = (Û1Ψ)x− ~u2 = Ψx− ~u2− ~u1 = (Û2Ψ)x− ~u1 = (Û1Û2Ψ)x ,

то есть Ĥ, Û1 и Û2 попарно коммутируют, а значит, у них есть общий набор собственных векторов.
Найдем собственные функции ψ1 оператора Û1. Имеем:

(Û1ψ1)x = a1ψ
x
1 = ψx+ ~u1

1 , или a1ψ
(r,s)1,2
1 = ψ

(r+1,s)1,2
1 .

. Отметим, что в силу нормировки волновой функции ψ1 имеем:

1 =
∑
r,s

w=1,2

∣∣∣ψ(r,s)w
1

∣∣∣2 =
∑
r,s

w=1,2

∣∣∣ψ(r+1,s)w
1

∣∣∣2 = |a1|2
∑
r,s

w=1,2

∣∣∣ψ(r,s)w
1

∣∣∣2 . (3)

Отсюда следует, что |a1|2 = 1. Представляя a1 как a1 = exp(ip1~ ), где p1 - некое действительное число,
получаем условие на собственные функции оператора сдвига Û1:

ψ
(r+1,s)w
1 = exp(ip1~ )ψ

(r,s)w
1 . (4)

Здесь w, как и раньше, обозначает номер решетки и может быть равным либо 1 либо 2.
Проведя аналогичные вышеприведённым рассуждения для оператора сдвига Û2 на вектор ~u2, получим

следущее условие на его собственные функции ψ2:

ψ
(r,s+1)w
2 = exp(ip2~ )ψ

(r,s)w
2 , (5)

где p2 вводится аналогично p1 и тоже являет собой некое действительное число.
Собственные функции ψH гамильтониана, являющииеся собственными функциями операторов сдвига,

в таком случае должны удовлетворять обоим условиям (4) и (5). Тогда, применяя эти условия нужное
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количество раз, выразим значение ψH в произвольном узле решетки (l1, l2)w через её значение в узле
(0, 0)w, w = 1, 2:

ψ
(l1,l2)w
H = exp

(
i
p1l

1 + p2l
2

~

)
ψ
(0,0)w
H . (6)

Используя ранее введенное обозначение ~lw ≡ (l1, l2)w, а также вводя обозначение ~p ≡ (p1, p2) и операцию
"косоугольного"скалярного произведения (~a ∗~b) ≡ a1b1 + a2b

2, где a1, a2, b1, b2 - координаты векторов ~a,~b
в косоугольной системе координат, перепишем (6) как

ψ
~lw
H = exp

(
i

(~p ∗ ~lw)

~

)
ψ
~0w
H . (7)

Из (7) можно легко найти связь между значениями ψH в точках, соответствующих радиус-векторам ~l1w
и ~l2w:

ψ
~(l2)w
H = exp

(
i

(~p ∗ ((~l2)w − (~l1)w))

~

)
ψ

~(l1)w
H . (8)

Тогда найдем значения результата действия гамильтониана (1), (2) на функцию ψH =

(
ξz1

ξz+m
2

)
в узлах

первой решетки (которым будем, как и ранее, сопоставлять радиус-вектор z) и второй решетки (которым
будем сопоставлять вектор z+m)). Для выражения значения волновой функции в узлах, соседних с тем,
в котором считается значение гамильтониана, применим формулу (8), и, таким образом, получим:

(ĤψH)z = ξz1
[
ε+ 2t

(
cos p1~ + cos p2~ + cos p1+p2~

)]
+

+ ξz+m
2 γ

[
1 + exp

(
−ip2~

)
+ exp

(
−ip1+p2~

)]
≡ ξz1A+ ξz+m

2 B, (9)

(ĤψH)z+m = ξz+m
2

[
ε+ 2t

(
cos p1~ + cos p2~ + cos p1+p2~

)]
+

+ ξz1γ
[
1 + exp

(
ip2~
)

+ exp
(
ip1+p2~

)]
≡ ξz1C + ξz+m

2 D. (10)

Таким образом, получаем, что действие гамильтониана на волновую функцию ψH можно описать 2 × 2-

матрицей: ĤψH = Ĥ

(
ξz1

ξz+m
2

)
=

(
A B
C D

)(
ξz1

ξz+m
2

)
. Отметим, что A = D, а B = C̄, что соответствует тому,

что Ĥ - эрмитов оператор.

Тогда для нахождения спектра гамильтониана нам достаточно найти спектр матрицы
(
A B
C D

)
. Учи-

тывая, что A = D, а B = C̄, получаем, что он равен E = A± |B|. Подставляя A и B из (9), получаем:

E(~p) = ε+ t f(~p)± γ
√

3 + f(~p), где f(~p) ≡ 2

(
cos

p1
~

+ cos
p2
~

+ cos
p1 + p2

~

)
. (11)

Отметим, что каждому собственному значению соответствует подпространство собственных функций
размерности минимум 1, тогда суммарная размерность пространств решений равна минимум 2. Но так как
размерность пространства волновых функций равна 2, то каждому собственному значению соответствует
собственное подпространство размерности, равной 1, и суммарная размерность двух собственных подпро-
странств в точности равна размерности пространства волновых функций. Тогда найденные собственные
функции образуют базис. Это доказывает, что мы нашли все собственные функции гамильтониана, а
значит и все собственные значения.

Осталось вернуться к декартовым координатам, и выразить компоненты вектора ~p через компоненты
kx и ky квазиволнового вектора k, равного квазиимпульсу в системе отсчета, в которой ~ = 1.

Пусть a - расстояние между соседними узлами решетки графена, b - расстояние между соседними
узлами каждой из треугольных подрешеток. Тогда, очевидно, b =

√
3a.

Имеем из (6):

ψ
(l1,l2)w
H

ψ
(0,0)w
H

= exp

(
i

~
(p1l

1 + p2l
2)

)
= exp(ikx)⇐⇒ p1l

1 + p2l
2 = ~(kxx+ kyy). (12)
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В выбранной нами ранее декартовой системе координат связь между координатами l1, l2 и x, y выгля-
дит следующим образом: 

x =

√
3

2
l1

y = l2b− 1

2
l1b

. (13)

Подставляя (13) в (12), получаем связь между p1, p2, kx и ky:
p1
h

=

√
3

2
kxb−

1

2
kyb

p2
h

= kyb

(14)

Наконец, подставляя (14) в выражение (11), а также учитывая связь между b и a, получаем для спектра
электронов в графене:

E(k) = ε+ t f(k)± γ
√

3 + f(k), где f(k) ≡ 2 cos
(√

3ky a
)

+ 4 cos

(
3

2
kx a

)
cos

(√
3

2
ky a

)
, (15)

что совпадает с результатом, данным в [1].

2.2 Точки Дирака

Найдем минимумы функции f(k) = 2 cos
(√

3ky a
)

+ 4 cos
(
3
2kx a

)
cos
(√

3
2 ky a

)
= 4 cos2

(√
3
2 ky a

)
+

+ 4 cos
(√

3
2 ky a

)
cos
(
3
2kx a

)
− 2. При фиксированном kx минимум достигается при

cos

(√
3

2
ky a

)
= −1

2
cos

(
3

2
kx a

)
. (16)

Этот минимум равен − cos2
(
3
2kx a

)
−2. Отсюда легко видеть, что минимум f(k) на всей плоскости (kx, ky)

равен -3, и точки, в которых он достигается, удовлетворяют следующему условию:
cos

(
3

2
kx a

)
= ±1

cos

(√
3

2
ky a

)
= −1

2
cos

(
3

2
kx a

) . (17)

Решая систему (17), получаем условие на точки минимума f(k), которые называются точками Дирака.
kx =

2

3

π

a
m

ky = ±2
√

3

9

π

a
+

2
√

3

3

π

a
(m+ 1 + 2n)

m,n ∈ Z . (18)

Для того, чтобы выяснить физический смысл расположения полученных точек, установим область
физических значений kx и ky.

Для этого отметим, что поскольку ранее использовавшиеся p1 и p2 входили во все выражения как
аргументы тригонометрических функций, делёные на ~, то от прибавления к любому из них числа, крат-
ного 2π~, ничего не изменится. Таким образом, можно ограничить область физических значений p1 и
p2 квадратом [−π~;π~] × [−π~;π~], а остальные получаются сдвигом на вектор 2π~(η1, η2), где η1, η2 -
произвольные целые числа.
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Из системы уравнений (14) выразим kx и ky:
kx =

1

3~a
(2p1 + p2)

ky =
1√
3~a

p2

. (19)

Тогда при преобразовании, описываемого уравнениями (19), вершины квадрата [−π~;π~] × [−π~;π~] на
плоскости (p1, p2) перейдут в следующие вершины на плоскости (kx, ky):

(π~, π~) 7→
(
π

a
,
π√
3a

)
, (20)

(π~,−π~) 7→
(
π

3a
,− π√

3a

)
, (21)

(−π~, π~) 7→
(
− π

3a
,
π√
3a

)
, (22)

(−π~,−π~) 7→
(
−π
a
,− π√

3a

)
. (23)

Рис. 2: Области физических значений ~p (слева) и k (справа)

Отсюда же следует, что область физических значений k являет собой параллелограмм, показанный
на рис.2, а при сдвиге на вектор v = η1v1 + η2v2, где η1, η2, как и раньше, произвольные целые числа,
v1 =

(
4
3
π
a ; 0
)
, v2 =

(
2
3
π
a ; 2√

3
π
a

)
, ничто, в том числе f(k), не меняется. Тогда система точек Дирака тоже

инвариантна относительно сдвигов k на v1,v2.
Несколько ближайших к началу координат точек Дирака имеют координаты: k1,2 =

(
− 2

3
π
a ;± 2

√
3

9
π
a

)
,

k3,4 =
(

0;± 4
√
3

9
π
a

)
, k5,6 =

(
2
3
π
a ;± 2

√
3

9
π
a

)
. Легко видеть, что они образуют правильный шестиугольник,

притом k6−k2 = v1, а k3−k2 = v2. Наконец, накладывая область физических значений k на систему точек
Дирака, как это показано на рис. 3, получаем, что в ней лежат только две точки Дирака, а остальные, как
было показано выше, получаются из них сдвигом вдоль векторов v1, v2. Таким образом, точки Дирака
образуют шестиугольную решетку, аналогичную решетке графена.

Отсюда же можно определить оператор псевдоспина, который сопоставляет точке Дирака ей противо-
положную из области физических значений, и таким образом, осуществляет замену подрешеток шести-
угольной решетки точек Дирака.

Наконец, получим спектр графена в окрестности одной из точек Дирака k0. Для этого разложим f(k)
в ряд Тейлора в её окрестности. Так как k0 - точка минимума f(k), то первые частные производные f(k)
по kx и ky равны 0. Для вторых частных производных, учитывая связь (17) имеем:

∂2f

∂k2x
= −9a2 cos

(√
3

2
ky a

)
cos

(
3

2
kx a

)
=

9

2
a2,

7



Рис. 3: Точки Дирака (показаны красным) и область физических значений k (синий параллелограмм).
Как видно, только 2 точки Дирака попадают в область физических значений

Рис. 4: Спектр электронов в графене

∂2f

∂k2y
= −6a2 cos

(√
3ky a

)
− 3a2 cos

(
3

2
kx a

)
cos

(√
3

2
ky a

)
=

9

2
a2,

∂2f

∂kx∂ky
= 3
√

3 sin

(√
3

2
ky a

)
sin

(
3

2
kx a

)
= 0.

Отсюда получаем:
f(k0 + ∆k) = −3 +

(
3
2 a
)2 |∆k|2. (24)

Подставляя (24) вместо f(k) в (15) и пренебрегая членами, пропорциональными |∆k|2, для спектра элек-
тронов в графене в окрестности точек Дирака получаем:

E(k0 + ∆k) = ε− 3t± 3

2
γ a|∆k| . (25)
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3 (2+1)-мерное уравнение Дирака

3.1 Алгебра γ-матриц
В общем случае набор γ-матриц Дирака определяется как набор матриц γµ, удовлетворяющий антиком-
мутационным соотношениям, которые в 2+1-мерном случае выглядят следующим образом:

{γµ; γν} ≡ γµγν + γνγµ = 2gµνI ; µ, ν = 0, 1, 2, (26)

где I - единичная матрица, γ-матрицы имеют размер 2× 2, (gµν) - метрический тензор Минковского,

(gµν) = (gµν) =

1 0 0
0 −1 0
0 0 −1

 .

Отметим, что в случае больших, чем 2+1, размерностей, матриц 2×2 становится недостаточно, и в качестве
γ-матриц используются квадратные матрицы большего размера (например, в случае размерности 3+1
используются матрицы 4× 4).

В дальнейшем будем использовать в качестве индексов греческие буквы, если мы учитываем и про-
странственные, и временную компоненты; и латинские, если мы учитываем только пространственные
компоненты.

Возьмем в качестве γ-матриц следующие матрицы:

γ0 = σ1 ≡
(

0 1
1 0

)
, (27)

γ1 = iσ2 ≡ i
(

0 −i
i 0

)
=

(
0 1
−1 0

)
, (28)

γ2 = iσ3 ≡ i
(

1 0
0 −1

)
=

(
i 0
0 −i

)
. (29)

Здесь σ1, σ2, σ3 - матрицы Паули. Антикоммутационные соотношения (26) легко проверяются как пря-
мым перемножением матриц (27)-(29), так и из соответствующих антикоммутационных соотношений для
матриц Паули. Введем также следущие обозначения:

αj ≡ γ0γj , j = 1, 2, (30)

β ≡ γ0. (31)

Вычисляя явно α1, α2, получаем:

α1 =

(
−1 0
0 1

)
, (32)

α2 =

(
0 −i
i 0

)
. (33)

Отметим еще несколько вещей. Во-первых, в данной части работы мы будем пользоваться такой систе-
мой единиц, что c = ~ = 1. Во-вторых, мы будем пользоваться обозначениями Эйнштейна, то есть при
суммировании по повторяющимся 2 раза индексам, знак суммы мы ставить не будем.

Теперь мы ввели все необходимые обозначения для работы с основным уравнением движения кванто-
вой релятивистской частицы.

3.2 Спектр релятивистской частицы
П.Дирак предположил, что волновая функция ψ квантовой релятивистской частицы (электрона), являю-
щяяся в (2+1)-мерном случае 2-мерным вектором, удовлетоворяет следующему уравнению, именуемому
уравнением Дирака

iγµ
∂ψ

∂xµ
−mψ = 0. (34)

9



Для того, чтобы решить его, преобразуем его к виду, аналогичному уравнению Шредингера. Для этого
домножим обе части на γ0 и выделим отдельно слагаемое с µ = 0. Применяя определение (30) α-матриц,
а также учитывая, что x0 = t, получаем:

i
∂ψ

∂t
=

[
αj
(
−i ∂
∂xj

)
+mβ

]
ψ. (35)

Обозначая находящийся в квадратных скобках оператор, который по понятным причинам называется
гамильтонианом Дирака, как ĤD, получаем, что

i
∂ψ

∂t
= ĤDψ, где ĤD = αj p̂j +mβ. (36)

Здесь мы воспользовались тем фактом, что оператор j-той компоненты импульса имеет в нашей системе
единиц вид p̂j = −i ∂

∂xj .
Отметим, что если электрон находится в состоянии с энергией ω, то ω является собственным значением

ĤD, то есть
ĤDψ = ωψ. (37)

Тогда из (36) и (37), получим следующее уравнение, которое нам пригодится в дальнейшем:

i
∂ψ

∂t
= ωψ. (38)

Для отыскания вида собственных функций оператора ĤD отметим, что ĤD коммутирует с опера-
торами p̂k, k = 1, 2. Действительно, каждое из слагаемых в (36) коммутирует с p̂k, поскольку и β, и
p̂j (j = 1, 2) коммутируют с p̂k. Опять воспользуемся ранее сформулированной теоремой о том, что у двух
коммутирующих эрмитовых операторов есть общие собственные функции, и найдем вид этих функций.

Для собственных функций операторов p̂k, k = 1, 2, имеем:

p̂k ≡ −i
∂ψ

∂xk
= pkψ, (39)

где pk - собственное значение оператора p̂k. Решая получившуюся систему из двух дифференциальных
уравнений (домножая каждое из них на dxk и суммируя), получаем, что:

ψ = ϕ(t) exp(ipkx
k) = ϕ(t) exp(ipx). (40)

Тогда для нахождения общих собственных функций ĤD и p̂k, k = 1, 2, подставляя выражение (40) для
волновой функции, в уравнение Дирака (38), получаем дифференциальное уравнение для ϕ(t):

i
dϕ

dt
= ωϕ. (41)

Решая его, получаем выражение для ϕ(t):

ϕ(t) = up exp(−iωt), (42)

где up - константа, являющаяся вектором (так как ϕ является вектором). Наконец, подставляя (42) в (40),
для возможных собственных функций ĤD получаем:

ψ = up exp(−iωt+ ipx). (43)

Для того, чтобы установить при каких собственных значениях ω и векторов up волновая функция (43)
будет являться собственной функцией оператора ĤD, подставим её в уравнение Дирака (35) и получим
матричное уравнение на up: (

αjpj +mβ
)
up = ωup. (44)

Таким образом, задача свелась к нахождению собственных значений и собственных векторов матрицы(
αjpj +mβ

)
, которая после подстановки матриц αj и β из (32), (33) и (31), принимает вид

αjpj +mβ =

(
−p1 −ip2 +m

ip2 +m p1

)
. (45)
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Тогда, приравнивая детерминант матрицы αjpj +mβ − ωI к 0, для собственных значений ω получаем:

ω = ±
√

p2 +m2 , (46)

что при выборе знака „+” совпадает с выражением для энергии релятивистской частицы, полученным из
специальной теории относительности.

Для собственных векторов up тогда имеем:

up = C

(
m− ip2

p1 ±
√

p2 +m2

)
, (47)

где C - произвольная константа, а выбор знака при
√

p2 +m2 совпадает с выбором знака для ω в 46.
Тогда для собственных функций ψ имеем:

ψ = C

(
m− ip2

p1 ±
√

p2 +m2

)
exp(−iωt+ ipx). (48)

Отметим, что для каждого из двух значений ω размерность соответствующего подпространства собствен-
ных векторов равна 1. Так как размерность пространства волновых функций равна 2, то найденные нами
собственные функции образуют базис пространства волновых функций. Отсюда следует, что мы нашли
все собственные функции и все собственные значения гамильтониана ĤD.

3.3 Море Дирака
Отметим, однако, следующую особенность. Среди собственных значений гамильтониана Дирака есть как
положительные, так и отрицательные значения, притом эти значения не ограничены снизу. Для того,
чтобы это объяснить, Дирак предложил следующую конструкцию.

Поместим всю нашу систему в некий "ящик"достаточно большого размера L, и наложим на систему
периодические граничные условия:

ψ(x1 = −L/2, x2, t) = ψ(x1 = L/2, x2, t),

ψ(x1, x2 = −L/2, t) = ψ(x1, x2 = L/2, t).
(49)

Тогда, подставляя эти условия в (48), получаем условие на компоненты p:{
exp(ip1L) = 1

exp(ip2L) = 1
,

откуда получаем, что p может принимать только дискретные значения:

pr =
2π

L
(r1; r2; r3) , r1, r2, r3 ∈ N. (50)

Но тогда энергия ω тоже может принимать только дискретные значения ωr = ±
√

p2
r +m2, притом эти

уровни не ограничены снизу. Так как речь идет о фермионах, то в силу принципа Паули, не позволяющего
двум частицам иметь одинаковый набор квантовых чисел, на каждом из полученных энергетических
уровней может находиться лишь ограниченное число частиц. Уровни, на которых находится максимально
возможное число частиц, будем называть заполненными.

Отметим, что уровни расположены симметрично, притом они отстоят от нулевого уровня энергии не
менее, чем на m. Диаграмма ближайших к нулю энергетических уровней показана на рис.5.

Дирак заметил, что в такой конструкции состояние с наименьшей энергией - это состояние, в котором
все уровни с энергией меньше 0 полностью заполнены, а все уровни с энергией больше 0 полностью свобод-
ны. Такое состояние называется морем Дирака, или Дираковским вакуумом. В концепции Дирака, этому
состоянию соответствует отсутствие частиц, частицам же соответствуют возмущения этого состояния.
Основных типов возмущений два.
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Рис. 5: Диаграмма ближайших к нулю энергетических уровней, на которых может находиться фермион

1. Частица на энергетическом уровне ω > 0. Обозначим импульс этой частицы как p. Тогда у всей
системы будет импульс p и энергия ω > 0. Это состояние соответствует частице.

2. Отсутствие частицы на энергетическом уровне ω < 0. Обозначим импульс этой частицы как p.
Тогда у всей системы будет импульс −p и энергия −ω > 0. Это состояние Дирак назвал антича-
стицей.

Таким образом, набору из m частиц с энергиями ω1, ω2, ..., ωm и n античастиц с энергиями ω̃1, ω̃2, ..., ω̃n
соответствует возмущение моря Дирака, состоящее в наличииm частиц на положительных энергетических
уровнях ω1, ω2, ..., ωm и отсутствии n частиц на отрицательных энергетических уровнях−ω̃1, −ω̃2, ..., −ω̃n.

Также отметим следующее явление. Если на положительном энергетическом уровне присутствует ча-
стица (то есть имеется частица), а на отрицательном энергетическом уровне частица отсутствует (то
есть имеется античастица), то частица с положительного энергетического уровня может перескочить на
отрицательный энергетический уровень, после чего оба возмущения (т.е. и частица, и античастица) ис-
чезнут. Этот процесс соответствует аннигиляции частицы и античастицы, при этом выделяется энергия,
соответствующая разности энергий этих двух уровней.
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4 Сравнение спектра уравнения Дирака с низкоэнергетическим
спектром электронов в микроскопической модели графена

В случае безмассовой частицы формула (46) примет вид:

ω = ± |p| . (51)

Сравним формулу (25) для спектра электронов в графене вблизи точек Дирака и формулу (51) для
спектра безмассовой релятивистской частицы. Если для электронов в графене энергию E отсчитывать от
энергии в точках Дирака ED = ε − 3t: E = E − ED, а квазиимпульс K - от квазиимпульса k0 в точках
Дирака: K = k− k0 = ∆k, то формула (25) примет вид:

E = ±3

2
aγ |K| . (52)

Из идентичности формул (51) и (52) получаем, что спектр электрона в графене ведет себя, как спектр
безмассовой релятивистской частицы, движущейся со скоростью vF = 3

2aγ. Эта скорость называется ско-
ростью Ферми.

Отметим также следующее сходство. В обоих случаях каждому значению K или p соответствуют по 2
собственных значения энергии E или ω соответственно, одинаковых по модулю и различных по знаку, и при
этом размерность собственных подпространств, соответствующих этим решениям, в обоих случаях равна
1, а собственные векторы, соответствующие двум собственным значениям, образуют базис в пространстве
волновых функций.

5 Парадокс Клейна

5.1 Ток вероятности. Коэффициенты отражения и прохождения.
Прежде, чем сформулировать основную задачу этого раздела, введем несколько нужных в дальнейшем
определений.

Как известно из квантовой механики, плотность вероятности ρ нахождения частицы в определенной
точке связана с волновой функцией ψ как ρ = |ψ|2. Током вероятности называется вектор j, связанный
с плотностью вероятности соотношением:

∂ρ

∂t
+ div j = 0. (53)

Далее, пусть частица налетает на некий барьер. Тогда, в силу её волновых свойств, она частично отра-
жается, а частично проходит сквозь барьер. Коэффициенты отражения и прохождения определяются
следующим образом:

коэффициент отражения: R ≡ |jR|
|jI |

, (54)

коэффициент прохождения: T ≡ |jT |
|jI |

, (55)

где jI , jR, jT - токи вероятностей налетающей, отраженной и прошедшей частицы, соответственно.
Теперь мы можем перейти к постановке задачи.
Рассмотрим частицу, подчиняющуюся уравнению Дирака (нам в данном случае неважно, электрон ли

это в графене или же фермион), совершающую одномерное движение вдоль прямой Ox в направлении
возрастании координаты x и налетающую на полубесконечный прямоугольный потенциальный барьер

U(x) =

{
0 , при x < 0,

U0 , при x > 0.
(56)
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Пусть частица изначально имела коорднату x0 < 0 и её энергия удовлетворяет соотношению m < ω <
U0−m. При этом отметим, что это условие может быть выполнено только при U > 2m. Найдем коэффи-
циенты отражения и прохождения частицы.

Для начала получим из уравнения Дирака явное выражение для тока вероятности j. Для начала
отметим, что в потенциальном поле к гамильтониану Дирака ĤD прибавится слагаемое Uψ. Тогда для
уравнения Дирака в потенциальном поле получим:

i
∂ψ

∂t
= −iαj ∂ψ

∂xj
+mβψ + Uψ. (57)

Мы его решим позднее, а пока выразим из него
∂ψ

∂t
, и, эрмитово сопрягая, получим выражение для

∂ψ†

∂t
.

Имеем:

∂ψ

∂t
= −αj ∂ψ

∂xj
− imβψ − iUψ, (58)

∂ψ†

∂t
= −∂ψ

†

∂xj
αj + imψ†β + iUψ†. (59)

При переходе к последнему равенству был использован тот факт, что для любых матриц A, B справедливо
соотношение (AB)† = B†A†, а также тот факт, что матрицы αj и β являются эрмитовыми.

Тогда, так как плотность вероятности есть ρ = |ψ|2 = ψ†ψ, то, дифференцируя ∂ρ
∂t по частям, и

учитывая соотношения (58) и (59), получаем:

∂ρ

∂t
=
∂ψ†

∂t
ψ + ψ†

∂ψ

∂t
= −

[
∂ψ†

∂xj
αjψ + ψ†αj

∂ψ

∂xj

]
. (60)

Легко проверить, что выражение, заключенное в квадратные скобки, можно представить как дивергенцию
следующей величины, которая и будет являться током вероятности j:

j ≡

(
j1

j2

)
=

(
ψ†α1ψ

ψ†α2ψ

)
≡ ψ†~αψ, где ~α =

(
α1

α2

)
. (61)

Теперь найдем собственные значения гамильтониана Дирака (57) при U = const. Отметим, что выра-
жение (37) остается в силе в случае наличия потенциального поля, тогда остается в силе и выражение
(38). Также с видоизмененным гамильтонианом Дирака будут по-прежнему коммутировать операторы
импульса p̂k. Тогда вид (43) для собственной волновой функции тоже останется неизменным. Матричное
уравнение для up примет вид: (

αjpj +mβ + U0

)
up = ωup. (62)

Для собственных значений αjpj +mβ + U0 имеем:

ω = ±
√

p2 +m2 + U0. (63)

Собственные векторы up по-прежнему будут выражаться формулой (47).

5.2 Получение парадокса.
Вернемся к поставленной задаче. Так как в задаче движение одномерное, то p2 = p21, и для собственных
векторов (47) получаем

up = const ·
(

m

p1 ±
√
p21 +m2

)
, (64)

Отметим, что поскольку в данной задаче у частицы фиксирована энергия ω, то логичнее выражать up не
через m и p1, а через ω и m. В этом случае выражение для up будет зависеть от величины потенциальной
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энергии, и таким образом, up для случая отсутствия потенциального внешнего поля (в данной задаче при
x < 0) и случая его присутствия (при x > 0) будут отличаться. Действительно, для случая постоянного
потенциального внешнего поля U0 получаем:

up = const ·
(

m

ω − U0 ±
√

(ω − U0)2 −m2

)
. (65)

Отметим, что корень в данном случае являет собой вещественную величину: (ω − U0)2 > m2, так как
m < ω < U0 −m. Знак ± здесь связан с двумя возможностями выбора импульса частицы p1, и, очевидно,
не имеет никакого отношения к знаку ± в (64) - тот знак учтен в энергии ω − U . При U = 0 получаем:

up = const ·
(

m

ω ±
√
ω2 −m2

)
. (66)

Введем обозначения: p̃1 ≡
√
ω2 −m2, ˜̃p1 ≡

√
(ω − U0)2 −m2. Тогда при налетании частицы на барьер

при x < 0 волновая функция будет состоять из двух частей, соответствующих налетающей частице (дви-
жущейся в направлении возрастания координаты x) и отраженной частице(движущейся в направлении
убывания координаты x), то есть

ψx<0 = A

(
m

ω + p̃1

)
exp(−iωt+ ip̃1x) +B

(
m

ω − p̃1

)
exp(−iωt− ip̃1x). (67)

Для каждой из частей введем обозначение:

ψA = A

(
m

ω + p̃1

)
exp(−iωt+ ip̃1x), (68)

ψB = B

(
m

ω − p̃1

)
exp(−iωt− ip̃1x). (69)

Отметим, что так как p1ψ = p̂1ψ, то при p1 > 0 частица движется направо, а при p1 < 0 - налево. Таким
образом, налетающкй частице соответствует волновая функция ψA, а отраженной ψB .

При x > 0 волновая функция частицы состоит только из одной части, соответствующей прошедшей
частице. Тогда p1 > 0, откуда следует, что p1 = ˜̃p1. Тогда волновая функция частицы при x > 0 примет
вид:

ψx>0 = ψC = C

(
m

ω − U0 + ˜̃p1

)
exp(−iωt+ i ˜̃p1x). (70)

Выразим коэффициент отражения через A и B. Имеем:

R =

∣∣j1B∣∣
|j1A|

=

∣∣∣ψ†Bα1ψB

∣∣∣∣∣∣ψ†Aα1ψA

∣∣∣ =
|B|2

|A|2
· ω − p̃1
ω + p̃1

. (71)

Связь A, B и C найдем, требуя непрерывности волновой функции для частицы по каждой компоненте
в точке x = 0, т.е. приравнивая в точке x = 0 (67) и (70) в момент времени t = 0. Имеем:{

A+B = C

A (ω + p̃1) +B (ω − p̃1) = C
(
ω − U0 + ˜̃p1

) , (72)

откуда для связи B и A получаем:
B

A
=
p̃1 − ˜̃p1 + U0

p̃1 + ˜̃p1 − U0

, (73)

а для коэффициента отражения:

R =

(
p̃1 − ˜̃p1 + U0

p̃1 + ˜̃p1 − U0

)2

· ω − p̃1
ω + p̃1

. (74)

Устремляя m к 0, получаем, что R → ∞ при m → 0, то есть для безмассовых частиц (электронов в
графене) коэффициент отражения должен быть равен бесконечности, что соответствует бесконечному
числу отраженных частиц!

Таким образом, мы получили парадокс, именуемый парадоксом Клейна.
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5.3 Решение парадокса
Для того, чтобы решить этот парадокс, учтем следующий факт: направление полета частицы определя-
ется направлением её тока вероятности. Проверим, используя этот факт, правильно ли мы определили,
какая волновая функция соответствует налетающей частице, а какая - отраженной, в (67) и (70).

Выясним, какая из частей волновой функции (67) соответствует налетающей волне, а какая - отра-
женной. Для этого найдем для каждой из них ток вероятности, jA и jB , соответственно.

j1A = ψ†Aα
1ψA = |A|2

(
(ω + p̃1)2 −m2

)
= 2 |A|2 p̃1(p̃1 + ω) > 0, (75)

j2A = ψ†Aα
2ψA = 0, (76)

j1B = ψ†Bα
1ψB = |B|2

(
(ω − p̃1)2 −m2

)
= 2 |B|2 p̃1(p̃1 − ω) < 0, (77)

j2B = ψ†Bα
2ψB = 0, (78)

Таким образом, мы получили очевидный факт, что токи вероятности тоже направлены только вдоль
оси x. Также мы получили, что налетающей волне соответствует волновая функция ψA, а отраженной
ψB , то есть в (68), (69) выбор был сделан правильно.

При x > 0 волновая функция частицы состоит только из одной части, соответствующей току вероят-
ности, направленному по оси x. Волны с током вероятности, направленным в другую сторону, быть не
может.

Тогда осталось установить, при каком именно импульсе p1: ˜̃p1 или − ˜̃p1 ток вероятности положителен,
а при каком - отрицателен.

При p1 = ˜̃p1 волновая функция имеет вид:

ψC+ = C+

(
m

ω − U0 + ˜̃p1

)
exp(−iωt+ i ˜̃p1x), (79)

и для соответствующей компоненты тока вероятности имеем:

j1C+ = |C+|2
(
(ω − U0 + ˜̃p1)2 −m2

)
= 2|C+|2 ˜̃p1

(
˜̃p1 + ω − U0

)
< 0. (80)

Таким образом, получаем, что p1 > 0 соответствует частице, летящей налево, и наш выбор (70) был
ошибочным!

При p1 = − ˜̃p1 волновая функция имеет вид:

ψC− = C−

(
m

ω − U0 − ˜̃p1

)
exp(−iωt− i ˜̃p1x), (81)

и для соответствующей компоненты тока вероятности имеем:

j1C− = |C−|2
(
(ω − U0 − ˜̃p1)2 −m2

)
= 2 |C−|2 ˜̃p1

(
˜̃p1 − ω + U0

)
> 0. (82)

Таким образом, мы установили, что при x > 0 волновая функция имеет вид (81), а ток вероятности опре-
деляется выражением (82). В дальнейшем для упрощения обозначений будем писать C вместо C−.

Выразим коэффициенты отражения и прохождения через A, B и C. Имеем:

R =

∣∣j1B∣∣
|j1A|

=
|B|2

|A|2
· ω − p̃1
ω + p̃1

, (83)

T =

∣∣j1C∣∣
|j1A|

=
|B|2

|A|2
·

˜̃p1
p̃1
·

˜̃p1 + U0 − ω
p̃1 + ω

. (84)

Связь A, B и C, как и ранее, найдем из непрерывности волновой функции в точке x = 0. Имеем:{
A+B = C

A (ω + p̃1) +B (ω − p̃1) = C
(
ω − U0 − ˜̃p1

) (85)
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Отсюда для связи A и B получаем:
B

A
=
p̃1 + ˜̃p1 + U0

p̃1 − ˜̃p1 − U0

, (86)

а для связи A и C:
C

A
=

2p̃1

p̃1 − ˜̃p1 − U0

(87)

Подставляя (86) и (87) в (83) и (84), получаем:

R =

(
p̃1 + ˜̃p1 + U0

p̃1 − ˜̃p1 − U0

)2

· ω − p̃1
ω + p̃1

, (88)

T =

(
2p̃1

p̃1 − ˜̃p1 − U0

)2

·
˜̃p1
p̃1
·

˜̃p1 + U0 − ω
p̃1 + ω

. (89)

Найдем значения этих коэффициентов при m = 0 - случай, реализующийся в графене. Тогда p̃1 = ω,
а ˜̃p1 = U0 − ω. Тогда для коэффициентов R и T получаем:

R = 0 ; T = 1 (90)

Таким образом мы получили, что для релятивистских безмассовых фермионов, при 0 < ω < U0 происходит
полное прохождение частиц под потенциальный барьер. Этот эффект, наблюдаемый экспериментально
как для безмассовых фермионов, так и для электронов в графене, получил название эффекта Клейна.

Применим к полученному результату концепцию моря Дирака: так как справа при энергии ω частица
занимает нижнюю часть моря Дирака, то отсутствие каких-либо частиц справа на данном энергетическом
уровне означает присутствие справа двух позитронов, а не вакуума: отсутствие частицы с импульсом
˜̃p1 дает позитрон с импульсом − ˜̃p1, и, наборот, отсутствие частицы с импульсом − ˜̃p1 дает позитрон с
импульсом ˜̃p1. После же прохода частицы под барьер и слева мы имеем Дираковский вакуум, а справа
у нас не хватает частицы летящей направо (поскольку положительному току вероятности соответствует
волновая функция с отрицательным импульсом), то есть справа мы имеем позитрон, летящий налево.
Таким образом, описанный процесс является аннигиляцией электрона, летящего направо и позитрона,
летящего тоже направо.
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6 Заключение
В работе получены следующие результаты.

• Рассмотрена микроскопическая модель графена. Получен спектр электронов в этой модели:

E(k) = ε+ t f(k)± γ
√

3 + f(k), где f(k) ≡ 2 cos
(√

3ky a
)

+ 4 cos

(
3

2
kx a

)
cos

(√
3

2
ky a

)
. (91)

• Исследован низкоэнергетический спектр в окрестности точек минимума функции f(k), именуемых
точками Дирака:

E(k0 + ∆k) = ε− 3t± 3

2
γ a|∆k|. (92)

• Получен спектр (2+1)-мерного релятивистского фермиона, описываемого уравнением Дирака:

ω = ±
√

p2 +m2. (93)

• При m = 0 получен спектр для безмассового релятивистского фермиона.

ω = ±|p|. (94)

• Произведено сравнение двух спектров (92) и (94). Сделан вывод о том, что электроны в графене
можно описать с помощью уравнения Дирака для безмассовых фермионов, движущихся со скоро-
стью Ферми:

vF =
3

2
aγ (95)

• Также получен парадокс Клейна, заключающийся в том, что вероятность прохождения безмассовой
частицы (безмассового фермиона или электрона в графене) под полубесконечный прямогуольный
барьер стремится к ∞. Разрешение парадокса связано с тем, что для частицы, находящейся в на
отрицательном энергетическом уровне моря Дирака (94), знак тока вероятности противоположен
знаку импульса, поэтому прошедшая частица соответствует частице с импульсом, направленным
влево.

• Учитывая явление, описанное выше, парадокс Клейна был разрешен: получено, что для безмас-
совой частицы коэффициент прохождения равен 1, этот эффект экспериментально наблюдается и
носит название эффекта Клейна. В концепции Дирака описанный процесс прохождения есть про-
цесс аннигиляции электрона, летящего направо и позитрона, летящего направо, соответствующего
отсутствию частицы с импульсом, направленным влево, на данном энергетическом уровне.
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