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ВВЕДЕНИЕ 

• Графен представляет собой двумерный кристалл 

углерода с шестиугольной решеткой. 

• Впервые был теоретически описан при изучении 

графита, может быть представлен как изолированный 

плоский слой атомов кристалла графита. 

• Впервые получен в 2004 году. 
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ПОСТАНОВКА ЗАДАЧИ 

• Рассматривается электрон, находящийся в 

кристаллической решетке графена. Пусть 

энергия его нахождения в узле ε, а 

переходить он может только на соседние 

узлы с энергией перехода 𝛾 , а также на 

узлы, ближайшие к соседним, с энергией 

перехода t. Требуется найти спектр 

электронов в данной модели. 

• Рассматривается релятивистская частица, 

удовлетворяющая уравнению Дирака. 

Найти её спектр. 

• Электрон в графене налетает на 

полубесконечный прямоугольный 

потенциальный барьер. Найти 

коэффициенты прохождения и отражения. 
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СПЕКТР ЭЛЕКТРОНОВ В ГРАФЕНЕ 

• Графен можно разбить на две одинаковые треугольные решетки 

• Волновая функция электрона в графене представима как 
𝜉1
𝐳

𝜉2
𝐳+𝐦 . 

• Действие гамильтониана на волновую функцию определяется как: 
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• 𝑈 1, 𝑈 2 - операторы сдвига на 𝑢1, 𝑢2. 

• [𝐻 , 𝑈 1] = 0,            [𝐻 , 𝑈 2] = 0,            [𝑈 1, 𝑈 2] = 0  . 

 

 

• У 𝐻 ,𝑈 1 и 𝑈 2 есть общий набор собственных функций 

 

• Эти собственные функции в косоугольной системе 

координат имеет вид: 

 

СПЕКТР ЭЛЕКТРОНОВ В ГРАФЕНЕ 
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СПЕКТР ЭЛЕКТРОНОВ В ГРАФЕНЕ 

• Получаем матричное уравнение: 

𝐻 
𝜉1
𝐳

𝜉2
𝐳+𝐦 =

𝐴 𝐵
𝐶 𝐷

𝜉1
𝐳

𝜉2
𝐳+𝐦 =   𝐸

𝜉1
𝐳

𝜉2
𝐳+𝐦  

• Спектр электронов в графене: 

Собственные функции,  

соответствующие этому спектру,  

образуют базис в пространстве  

волновых функций 

Найдены все  

собственные функции 

и собственные значения 
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ТОЧКИ ДИРАКА 
• Точки минимума функции f(k) называются точками 

Дирака, и образуют шестиугольную решетку, 

аналогичную решетке графена. 

• В область физических значений k, являющую собой 

параллелограмм, попадают только 2 точки Дирака. 
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ТОЧКИ ДИРАКА 

• В окрестности точек Дирака спектр линейно 

зависит от Δ𝐤 : 
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УРАВНЕНИЕ ДИРАКА 

• Релятивистские (2+1)-мерные частицы удовлетворяют 
уравнению Дирака: 

 

 

 

 

 

 

• [𝐻 𝐷 , 𝑝 1] = 0  ;     [𝐻 𝐷 , 𝑝 2] = 0  ;     [𝑝 1, 𝑝 2] = 0 

 

 

• У 𝐻 𝐷 , 𝑝 1, 𝑝 2 есть общий набор собственных функций. 

(μ =0, 1, 2) 
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СПЕКТР РЕЛЯТИВИСТСКОЙ ЧАСТИЦЫ 

• Собственные функции имеют вид: 

 

 

• Требуя 𝐻 𝐷𝜓 = 𝜔𝜓, получаем спектр: 

 

 

• Для собственных функций получаем: 

Полученные волновые функции 

образуют базис пространства 

волновых функций 

Мы нашли все 

собственные функции и  

собственные значения 
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СРАВНЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ 

Спектр электронов в графене в 

окрестностях точек Дирака: 

 
 

 

 

Δ𝐸 =  ±
3

2
𝛾𝑎|Δ𝐤| 

 

Спектр безмассового фермиона: 

Спектр электронов в графене совпадает со спектром 

безмассовых фермионов, движущихся со скоростью 

- скоростью Ферми 

Электроны в графене описываются уравнением Дирака 
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ПАРАДОКС КЛЕЙНА 

• Рассмотрим релятивистскую частицу массы m c 

энергией ω, налетающую вдоль оси на потенциальный 

барьер: 

 

 

• Выражение собственных функций через p и m не 

изменится, спектр примет вид: 

 

 

• Данному значению энергии ω соответствуют две 

собственные функции: при 𝑝1 > 0 и 𝑝1 < 0, как в случае 

наличия, так и отсутствия потенциального поля. 

 

𝑈0 > 2m 

 𝑚 <  𝜔 < 𝑈0 − 𝑚 
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ПАРАДОКС КЛЕЙНА 

• Так как 𝑝 1𝜓 = 𝑝1𝜓, то частице, движущейся 

направо, соответствует волновая функция с 𝑝1 > 0, а 

движущейся налево - волновая функция с 𝑝1 < 0. 

• Ток вероятности есть: 

 

 

• Коэффициент отражения, определяемый как            ,, 

равен 

 

 

 

• При 𝑚 → 0  𝑅 → ∞                 
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РЕШЕНИЕ ПАРАДОКСА КЛЕЙНА 
• Частица летит туда же, куда направлен её ток вероятности 

• В случае налетающей и отраженной частицы импульс 

направлен туда же, куда и ток вероятности. 

• Для прошедшей частицы: 

𝑝1 = 𝑝  1 > 0:  
 

𝑝1 = −𝑝  1< 0:  

Т.е. у прошедшей частицы импульс отрицателен! 

• Правильно выбирая волновую функцию прошедшей частицы, 

получаем: 

 

 

 

 

• Безмассовые частицы полностью проходят под барьер. 

 

= 0 при 𝑚 = 0 

= 1 при 𝑚 = 0 
 

Эффект Клейна 
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МОРЕ ДИРАКА И ЭФФЕКТ КЛЕЙНА 

• Спектр релятивистской частицы не ограничен снизу. 

• Наложим на систему периодические граничные условия, тогда в 

системе будут энергетические уровни 

• «Дираковский вакуум»: полностью заполнены все 

отрицательные энергетические уровни, положительные – 

полностью свободны. 

• «Частица» (p, ω): частица с импульсом p на положительном 

уровне ω>0 . 

• «Античастица» (-p, ω): отсутствие частицы с импульсом p на 

отрицательном уровне  –ω<0. 
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МОРЕ ДИРАКА И ЭФФЕКТ КЛЕЙНА 
• Энергетический уровень, на котором находится частица, слева от 

барьера находится в верхней части спектра, а справа – в нижней. 

• Сначала слева – частица, летящая направо, справа – 2 

античастицы, летящие в разных направлениях. 

• После прохождения под барьер слева – вакуум, справа – 

античастица, летящая налево. 

• Таким образом, процесс прохождения частицы под барьер есть 

процесс аннигиляции частицы, летящей направо и античастицы, 

летящей направо. 
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ЗАКЛЮЧЕНИЕ 

В работе получены следующие результаты: 

• Получен спектр электронов в микроскопической модели графена 

 

 

• Исследован низкоэнергетический спектр в окрестностях точек минимума 

функции f(k), называемых точками Дирака. 

 

 

• Получен спектр (2+1)-мерного релятивистского фермиона, описываемого 

уравнением Дирака: 

 

• Произведено сравнение спектров электронов в графене и безмассового (2+1)-

мерных релятивистских фермионов. Показано, что электроны в графене 

можно описать уравнением Дирака для безмассовых фермионов, 

движущихся со скоростью Ферми                . 

• Получен и разрешен парадокс Клейна. Показано, что в случае 

полубесконечного прямоугольного барьера коэффициент подбарьерного 

прохождения безмассовых фермионов равен 1. 
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