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1 Введение
По современным представлениям Вселенная после окончания инфляционной эпохи, до разогрева, была

заполнена частицами — так называемыми инфлатонами. Как и в любом поле, в поле инфлатона существова-
ли пространственные неоднородности. В областях, где этих частиц чуть больше, гравитационный потенциал
также немного больше. Тогда туда из других областей начинают стягиваться частицы, тем самым только
увеличивая этот потенциал. Таким образом, неоднородности становятся все больше, и частицы собираются в
гало.

Можно рассмотреть модель, в которой пространственные неоднородности объединяются с другими в двой-
ные системы и, вращаясь друг вокруг друга, излучают гравитационные волны. При этом под действием
гравитационных сил гало постепенно сближаются и сливаются воедино. Как раз в этот период в виде грави-
тационных волн излучается наибольшая энергия.

Эту гипотезу можно проверить экспериментально. Излученные гравитационные волны доживают до на-
ших дней и могут быть зарегистрированы в следующем поколении экспериментов. Таким образом, возможны
экспериментальные исследования процессов в послеинфляционную эпоху. В данной работе рассматривается
модель, описанная выше, и оценивается спектр реликтовых гравитационных волн.
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2 Определение интенсивности излучения двойной системы
неточечных масс

В работе [2] подробно описано нахождение интенсивности излучения гравитационных волн от двойной
системы точечных объектов, двигающихся вокруг общено центра масс по эллиптическим орбитам. Расчитаем
по аналогии, какой будет интенсивность излучения в случае неточечных объектов с гауссовым распределе-
нием плотности массы.

Как известно, тензор квадрупольного момента масс вычисляется по формуле

Dαβ =

∫
V

ρ(r′)(3xαxβ − r2δαβ) dV,

где r — расстояние от центра масс системы до точки объема dV ; xα, xβ — его проекции на оси системы
координат.

Учитывая, что система состоит из двух объектов, перепишем формулу для тензора квадрупольного мо-
мента в виде:

Dαβ =

∫
V1

ρ(r′)[3(d− r′)α(d− r′)β − r2δαβ ] dV +

∫
V2

ρ(r′)[3(l − r′)α(l − r′)β − r2δαβ ] dV.

Выберем систему координат таким образом, чтобы движение объектов происходило только в плоскости
XY . Тогда очевидно, что все компоненты тензора квадрупольного момента, в которых есть хотя бы один
индекс z обнуляются. Найдем остальные компоненты:

Dxx =
2π∫
0

dα
∫
V1

ρ1(r′)[3(d+ r′ cosα)(d+ r′ cosα)− (r′2 + d2 + 2dr′ cosα)]dV+

+
2π∫
0

dβ
∫
V2

ρ2(r′)[3(d+ r′ cosβ)(d+ r′ cosβ)− (r′2 + d2 + 2dr′ cosβ)]dV.

Рис. 1. Двойная система гало

Далее, подставляя ρi(r′) = ρ0ie
− r′2

r20 , где r0 — характерный размер системы, получим выражение:

Dxx = 4πρ01d
2

∫
V1

e
− r′2

r20 dV − πρ01

∫
V1

e
− r′2

r20 r′2 dV + 4πρ02l
2

∫
V2

e
− r′2

r20 dV − πρ02

∫
V2

e
− r′2

r20 r′2 dV.
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Замечая, что dV = d( 4
3πr

′3) = 4πr′2dr′, имеем:

Dxx = 16π2ρ01d
2

+∞∫
0

e
− r′2

r20 r′2 dr′ − 4π2ρ01

+∞∫
0

e
− r′2

r20 r′4 dr′ + 16π2ρ02l
2

+∞∫
0

e
− r′2

r20 r′2 dr′ − 4π2ρ02

+∞∫
0

e
− r′2

r20 r′4 dr′.

Далее воспользуемся тем, что

+∞∫
0

e−x
2

x2 dx =

√
π

4
,

+∞∫
0

e−x
2

x4 dx =
3
√
π

8
.

Интегрирование будем вести от 0 до +∞, поскольку скорость убывания плотности по мере удаления от
центра очень велика, и интегрирование в таких пределах не внесет значительных изменений. В итоге получим:

Dxx = 4π5/2ρ01d
2r0

3 − 3

2
π5/2ρ01r0

5 + 4π5/2ρ02l
2r0

3 − 3

2
π5/2ρ02r0

5. (1)

Теперь вспомним, что при движении двух массивных объектов вокруг общего центра масс их удаление от
центра масс вычисляется по формулам:

d =
m2

m1 +m2
· a(1− ε2)

1 + ε cosϕ
, l = − m1

m1 +m2
· a(1− ε2)

1 + ε cosϕ
.

Также из законов Кеплера известно, что

ϕ̇ =
(1 + ε cosϕ)

√
G(m1 +m2)a(1− ε2)

a2(1− ε2)
2 , (2)

где m1,2 — массы объектов, a — большая полуось эллипса, ε — эксцентриситет, ϕ — угол между радиус-
вектором центра объекта относительно центра масс системы и осью 0X (см. рис.2), G — гравитационная
постоянная.

Подставляя выражения для d и l в (1) и дифференцируя получившееся выражение три раза по времени,
используя (2), получим:

...
Dxx =

8π5/2G3/2

a5/2(1− ε2)
5/2
· ρ01m

2
2 + ρ02m

2
1

(m1 +m2)
1/2
· r3

0ε sinϕ(1 + ε cosϕ).

Аналогичным образом вычисляются и другие ненулевые компоненты тензора квадрупольного момента
масс: Dxy, Dyx, Dyy, а также их третьи производные по времени:

...
Dxy =

...
Dyx =

...
Dyy =

4π5/2G3/2

a5/2(1− ε2)
5/2
· ρ01m

2
2 + ρ02m

2
1

(m1 +m2)
1/2
· r3

0ε sinϕ(1 + ε cosϕ).

Согласно общей теории относительности, интенсивность излучения гравитационных волн можно найти по
формуле:

I = −dE
dt

=
G

45c5
D2
αβ =

G

45c5
[
...
D

2

xx +
...
D

2

xy +
...
D

2

yx +
...
D

2

yy].
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Тогда для интенсивности в зависимости от угла ϕ имеем:

I(ϕ) =
112π5G4

45c5
· (ρ01m

2
2 + ρ02m

2
1)

2

m1 +m2
· ε2r6

0

a5(1− ε2)
5 · (sinϕ+ ε sinϕ cosϕ)2. (3)

Для нахождения средней интенсивности излучения за один период проинтегрируем (3) по ϕ в пределах
от 0 до 2π:

〈I〉T =
112π6G4

45c5
·
r6
0ε

2(1 + ε2

4 )

a5(1− ε2)
5 ·

(ρ01m
2
2 + ρ02m

2
1)

2

m1 +m2
. (4)

Далее будем обозначать 〈I〉T просто как I.
Теперь можно найти всю энергию, излученную системой в виде гравитационных волн в течение всей ее
эволюции. За время dt система, очевидно, излучает энергию

dE = Idt,

Тогда вся энергия

E =

t0∫
0

I dt,

где t0 — время существования системы.

Для упрощения расчетов будем считать, что I(t) = const, в таком случае

E = I

t0∫
0

dt = It0.

Теперь требуется оценить время существования системы.

3 Оценка времени существования системы
Вращаясь вокруг общего центра масс, гало постоянно обмениваются массой: маленькая постепенно "пе-

ретекает" на большую. Таким образом, система эволюционирует, излучая гравитационные волны, и превра-
щается в один эллипсоидальный объект, не излучающий волн. Посчитаем время этого процесса.

Будем считать, что за один период обращения область пересечания (см. рис.2) переходит полностью к
массе m1. Это измемение массы

∆m =
1

2
ρ01

+∞∫
OB
r0

e
− r′2

r0
2 dV +

1

2
ρ01

+∞∫
OD
r0

e
− r′2

r0
2 dV.
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Рис. 2. Пространственное распределение плотности в гало

Очевидно, что плотность первого гало в центра второго составляет ρ01
e . Поэтому, согласно нашему предпо-

ложению, если ρ02 <
ρ01
e , то вся система просуществует всего один период. Из рисунка видно, что ρ02 ·e

−OD2

r20 =

ρ01 · e
−OB2

r20 . Кроме того, OB+OD = r0. Из этих уравнений находим, что OB = 1
2r0

(
1 + ln ρ01

ρ02

)
. Предполагая,

что ρ02 = ρ01
e (если ρ02 еще меньше, что время существования — один период), находим

∆m ≈ 2.26πρ01r
3
0

Такая масса перейдет отm2 кm1 за один период. Общее же количество периодов, за которыеm2 полностью
"перетечет" в m1, равно

NT ≈
m1

∆m
=

√
π

2.26
.

Тогда время существования системы:

t0 = T ·NT =
S

σ
NT ,

где σ = 1
2r

2ϕ̇ — секторная скорость, S — площадь эллипса, по которому движутся гало.

t0 =
π3/2ab

1.13
√
G(m1 +m2)a(1− ε2)

,

где b — меньшая полуось эллипса.

Тогда легко вычислить энергию, излученную системой в виде гравитационных волн за все время ее суще-
ствования:

E = It0 ≈
14π15/2G7/2

13c5
·
r6
0ε

2(1 + ε2

4 )b

a9/2(1− ε2)
11/2
· (ρ01m

2
2 + ρ02m

2
1)

2

(m1 +m2)
3/2

.

Или, учитывая, что m = ρ0

+∞∫
0

e
− r′2

r0
2 dV = π3/2ρ0r0

3,

E =
14π45/4G7/2

13c5
·
r

27/2
0 ε2(1 + ε2

4 )b

a9/2(1− ε2)
11/2

· ρ2
01ρ

2
02(ρ01 + ρ02)

1/2
. (5)
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4 Нахождение объемной плотности энергии гравитационных волн
Мы получили энергию, излученную системой с гало, центральные плотности которых равны ρ01 и ρ02. Од-
нако, для более точной оценки спектра реликтовых гравитационных волн нам требуется усреднение этой
величины по всей Вселенной. Сделаем это следующим образом.

Теория инфляции имеет представление о том, насколько часто встречаются гало различных масс. Они рас-
пределены таким образом, что на один сгусток массы 1 приходится десять сгустков массы 1/10, сто сгустков
массы 1/100 и т.д. То есть вклад в излучение от объектов различной массы одинаков.

Пусть существует функция f , характеризующая частоту, с которой в Вселенной встречаются гало неко-
торой массы m, и пусть функция f такова, что

N =

∫
fdm =

∫
f ·m · dm

m
,

где N — общее количество двойных систем, рассматриваемых нами, во Вселенной.

Тогда очевидно, что f ∼ 1
m => f = C

m , где C — некоторая константа.

Таким образом, получаем, что средняя энергия гравитационных волн, излученных одной системой гало,
равна

〈E〉 = C

∫
E · 1

m1
· 1

m2
dm1dm2 = C

∫
E · 1

ρ01
· 1

ρ02
dρ01dρ02.

Подставляя энергию E из (5), имеем:

〈E〉 = C ·A
∫
ρ01ρ02 · (ρ01 + ρ02)

1/2
dρ01dρ02,

где A — первые две дроби из (5)

После довольно длинных вычислений получим среднюю энергию:

〈E〉 =
C ·A
195

(ρ01 + ρ02)
5/2 ·

(
152

5
ρ02

2 + 20ρ01ρ02 − 8ρ01
2

)
. (6)

Теперь определим константу C. Из приведенных выше соотношений следует, что

Mhalo =

∫
Cdm = m · C = C · Vhor · ρ̄Un

,

гдеMhalo — суммарная масса всех частиц, которые к тому времени собрались в гало, Vhor — объем горизонта,
ρ̄

Un
— средняя плотность вещества во Вселенной в послеинфляционную эпоху.

Будем считать, что в гало к тому времени собралось около половины всех частиц, находящихся под гори-
зонтом, то есть Mhalo = 1

2M, где M = Vhor · ρ̄Un
.

Тогда C = M
2Vhor·ρ̄Un

= 1
2 .

Подставляя это выражение в (6), получаем среднюю энергию излучения гравитационных волн от одной
системы:

〈E〉 =
14π45/4G7/2

1755c5
·
r

27/2
0 ε2(1 + ε2

4 )b

a9/2(1− ε2)
11/2

· (ρ01 + ρ02)
5/2 ·

(
152

5
ρ02

2 + 20ρ01ρ02 − 8ρ01
2

)
. (7)

Чтобы найти объемную плотность энергии гравитационных волн в послеинфляционную эпоху, достаточно
среднюю энергию, определяемую в (7), поделить на объем горизонта, в котором и существуют гало, испуска-
ющие гравитационные волны. Получаем, что

ρ∗
GW

=
7π41/4G7/2

1170c5
·
r

21/2
0 ε2(1 + ε2

4 )b

a9/2(1− ε2)
11/2

· (ρ01 + ρ02)
5/2 ·

(
152

5
ρ02

2 + 20ρ01ρ02 − 8ρ01
2

)
. (8)
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Итак, мы нашли объемную плотность энергии гравитационных волн в послеинфляционную эпоху. Ко-
личество гравитонов с тех пор, разумеется, не изменилось, а размеры Вселенной увеличились. Кроме того,
увеличилась и длина гравитационной волны. А поскольку плотность энергии падает пропорционально увели-
чению объема и увеличению длины волны, то плотность энергии гравитационных волн уменьшилась пропор-
ционально четвертой степени отношения масштабных факторов в рассматриваемые моменты времени. Тогда
для плотности энергии в современной Вселенной получаем:

ρ
GW

=

(
a∗

a

)4

ρ∗
GW

,

где a — масштабный фактор, а символ "*" означает, что величина рассматривается в послеинфляционную
эпоху, то есть в эпоху образования гравитационных волн.

Очевидно также, что отношение масштабных факторов связано с отношением температур соотношением
a∗

a = T
T∗ . Таким образом,

ρ
GW

=

(
T

T ∗

)4

ρ∗
GW

.

Для получения численной оценки длины волны и амплитуды реликтовых гравитационных волн сделаем
оценку некоторых величин в (8). Во-первых, отметим, что длина гравитационной волны λ

GW
должна быть

равна характерному размеру двойной системы, то есть r0. Далее возьмем плотности ρ01 и ρ02 такими, что
ρ01 = 100 · σ1ρ̄Un

, ρ02 = 100 · σ2ρ̄Un
, где σ1,2 — числа, близкие к единице, то есть σ1 + σ2 ≈ 2, σi · σj ≈ 1.

Параметры эллиптической орбиты возьмем следующими: a = r0, b = 2
3r0, ε =

√
1− b2

a2 =
√

5
3 . Также учтем,

что ρ
GW
∼ h2, где h — амплитуда гравитационной волны.

T

T ∗
= 10−5,

откуда найдем
ρ

GW
= 10−20 · ρ∗

GW
.

Используя все приведенные оценки и приближения, найдем окончательно численную связь частоты ре-
ликтовых гравитационных волн ν и их амплитуды h:

h2
GW

ν2
GW

= 4.32 · 10−37s−2.

Отметим также, что частота волн должна быть равна характерной частоте вращения гало вокруг общего
центра масс. Эту частоту легко оценить, исходя из законов движения гало в двойной системе. Поскольку в
различных системах гало имели различные массы, а значит, давали различный вклад в общее излучение,
ответ представим в виде зависимости:
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Рис. 3. Итоговый спектр

Современные детекторы гравитационных волн пока еще не способны зарегистрировать волны такой ам-
плитуды. Их чувствительность сейчас достигает порядка 10−21, а этого, как видно, не достаточно для прямой
регистрации.

5 Выводы
В результате работы была рассмотрена модель двойных систем гало инфлатонов, испускающих в процессе

своей эволюции гравитационные волны. Был вычислен спектр этих волн, который приведен в параграфе 4.
Полученные значения амплитуды гравитационных волн были сравнены с чувствительностью современных
детекторов.
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