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1. Введение
Уравнение Шрёдингера представляет собой дифференциальное уравнение второго по-

рядка в координатном представлении. Точное решение уравнения Шрёдингера может быть
найдено лишь в сравнительно небольшом числе простейших случаев. Большинство задач
квантовой механики приводит к слишком сложным уравнениям, которые не могут быть ре-
шены аналитически.

Однако в ряде случаев решения уравнения Шрёдингера можно найти, решая дифферен-
циальные уравнения первого порядка. Для этого гамильтониан частицы факторизуют. Идея
факторизовать гамильтониан идет от хорошо известного решения задачи гармонического ос-
циллятора. По аналогии с гармоническим осциллятором, рассмотрим метод факторизации
гамильтонианов для упрощения решений некоторых задач квантовой механики.

2. Гармонический осциллятор
Рассмотрим гамильтониан, то есть полную энергию частицы, с потенциальной энергией,

квадратично зависящей от координат.

H =
1

2
P 2 +

1

2
Q2 (1)

Найдем собственные значения энергии осциллятора. Гамильтониан можно представить в
виде произведения двух взаимно эрмитово сопряженных операторов, откуда следует, что все
собственные значения гамильтониана не отрицательны.

H = a+a− +
1

2
(2)

a+ =
1√
2
(Q− iP ), a− =

1√
2
(Q+ iP ) (3)

Их коммутаторы равны

[a−, a+] = 1, [a−, H] = a−, [a+, H] = −a+ (4)

Построенная алгебра имеет большое значение и называется алгеброй Гейзенберга.
Найдем собственные значения оператора a+a−. Все собственные значения – неотрица-

тельные. (
H − 1

2

)
ψn =

(
En −

1

2

)
ψn

a+
(
H − 1

2

)
ψn =

(
En −

1

2

)
a+ψn

a+(a−a+ − 1)ψn =

(
En −

1

2

)
a+ψn(

H − 1

2

)
a+ψn =

(
En +

1

2

)
a+ψn (5)

Аналогично (
H − 1

2

)
a−ψn = (En −

1

2
)a−ψn (6)

Так как энергия повышается на одинаковые значения (уровни эквидистантны), можно
рассматривать разные уровни энергии осциллятора как стандартные возбуждения, а повы-
шение и понижение энергии на одну и ту же величину как рождение возбудждения. Опера-
торы a+ и a− называют операторами рождения и уничтожения. Таким образом действуя на

2



собственную функцию ψn оператором a+ получаем собственную функцию ψn+1 с собствен-
ным значением n+1. При последовательном действии оператора a− на собственные функции
получим собственную функцию ψ0 с собственным значением равным нулю

a+a−ψ0 = 0 · ψ0 (7)

Из соотношения a−ψ0 = 0 найдем ψ0

ψ0 = A0exp

(
−x

2

2

)
(8)

Где A0 - константа, которую можно найти из условия нормировки

A2
0

+∞∫
−∞

exp
(
−x2

)
dx = 1

ψ0(x) =
1
4
√
π
exp

(
−x

2

2

)
(9)

При n-кратном применении оператора a+ к функции ψ0 можно получить выражение для
ψn (см. [1])

ψn =
1√

2nn!
√
π
e−

x2

2 Hn(x), (10)

где Hn -полином Эрмита.
Таким образом, с учетом (5) и (6) мы нашли все собственные функции оператора a+a−.

Cобственные значения энергии гармонического осциллятора равны

En =

(
n+

1

2

)
, n = 0, 1, 2 . . . (11)

3. Некоторые общие соотношения при факторизации гамильтони-
ана

Рассмотрим случай, когда гамильтониан можно факторизовать следующим образом

2H = b+b−

b+ = − d

dx
+ f(x), b− =

d

dx
+ f(x) (12)

В этом случае гамильтониан будет равен

2H = − d2

dx2
+ f 2(x)− f ′(x) (13)

Введем обозначение
2H = H ′ (14)

Далее будем вводить новые элементы как коммутаторы уже найденных операторов, пока
не найдем операторов, которые будут коммутировать друг с другом. Наша задача выразить
коммутаторы через известные операторы, чтобы получить замкнутую систему, аналогичную
алгебре Гейзенберга для гармонического осциллятора.

[b−, b+] = 2f ′(x) (15)

[b+, H ′] = −2f(x)f ′(x) + 2f ′′(x) + 2f ′(x)
d

dx
(16)
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[b−, H ′] = 2f ′(x)
d

dx
+ 2f ′(x)f(x) (17)

Из этого видно, что коммутатор [b−, b+] и разность коммутаторов [b−, H ′] − [b+, H ′] не
зависят от оператора дифференцирования.

[b−, H ′]− [b+, H ′] = 2f ′′(x)− 2f(x)f ′(x)− 2f ′(x)f(x) (18)

Можно подобрать такие операторы f(x), что удастся выразить разность коммутаторов
[b−, H ′]− [b+, H ′] через коммутатор [b−, b+]. Рассмотрим конкретный пример.

4. Осциллятор Морса
Рассмотрим случай, когда оператор f(x) имеет вид

f(x) = −e−αx, α = const > 0 (19)

Тогда операторы b+, b− примут вид

b+ = − d

dx
− e−αx, b− =

d

dx
− e−αx (20)

И гамильтониан будет равен

2H = b+b− = − d2

dx2
+ e−2αx − αe−αx (21)

Этот гамильтониан соответствует частице, движущейся в потенциале Морса. Известно
[1], что при отрицательных значениях энергий спектр потенциала Морса дискретен и имеет
конечное число уровней, в то время как при энегриях больших нуля, спектр сплошной. Мы
можем найти собственную функию, отвечающую нулевому собственному значению. В самом
деле

b+b−ψ0 = 0 (22)

b−ψ0 = 0

ψ0 = A0exp

(
− 1

α
e−αx

)
(23)

Теперь попробуем найти цепочку коммутаторов, которая приводит к коммутирующим
операторам. Найдем коммутатор [b−, b+]

[b−, b+] = 2αe−αx (24)

Введем обозначения
2H = H ′, W = e−αx (25)

Как мы увидим дальше, остальные коммутаторы получится выразить через оператор W .
Для потенциала Морса коммутаторы, найденные в пункте 3 имеют вид

[b+, H ′] = 2αe−2αx − 2α2e−αx + 2αe−αx
d

dx
= −2αWb+ − 2α2W

[b−, H ′] = 2αe−αx
d

dx
− 2αe−2αx = 2αWb−

[b−, H ′]− [b+, H ′] = −4αe−2αx + 2α2e−αx = −4αW 2 + 2α2W (26)

Таким образом оператор [b−, H ′]− [b+, H ′] коммутирует с оператором [b−, b+]

[[b−, H ′]− [b+, H ′], [b−, b+]] = [−4αW 2 + 2α2W, 2αW ] = 0 (27)
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Так как операторы коммутируют, то можно построить новую алгебру, отличную от алгеб-
ры Гейзенберга, которая является разрешимой и нильпотентной. Действительно мы строили
новые операторы из двух основных b+, b− как коммутаторы двух этих операторов, до тех
пор как один из коммутаторов не обращался в ноль.

В некоторых случаях при удачной замене операторов удаётся найти не только собствен-
ную функцию, отвечающую нулевому значению, но и остальные собственные функции и
энергии осциллятора. Например в потенциале Калоджеро.

5. Потенциал Калоджеро
Рассмотрим вырожденный случай потенциала Калоджеро с одной спененью свободы:

b+α =
1√
2

(
− d

dx
+ x+ αx−1

)
, b−α =

1√
2

(
d

dx
+ x+ αx−1

)
(28)

Гамильтониан задаётся ввиде

H = b+α b
−
α +

1

2
− α =

1

2

(
− d2

dx2
+ x2 + 2x−2

)
(29)

Где α = −2; 1. Операторы не образуют алгебру Гейзенберга, как для гармонического
осциллятора. Однако, существуют операторы B+, B−,

B+ = b+α b
+
−α =

1

2

(
d2

dx2
+ x2 − 2x−2 − 2x

d

dx
− 1

)
(30)

B− = b−α b
−
−α =

1

2

(
d2

dx2
+ x2 − 2x−2 + 2x

d

dx
+ 1

)
(31)

которые удовлетворяют соотношению [2]:

[B±, H] = ∓2B± (32)

То есть образуют алгберу, похожую на алгебру гармонического осциллятора. С учетом

b−αψ0(x) = 0 (33)

собственная функция, отвечающая нулевому значению энергии равна

ψ0(x) = x−αe−
x2

2 (34)

Тогда в соответсвии с ψn = (B+)nψ0 можно найти остальные собственные функции и
собственные значения энергии

ψ
(−2)
0 (x) = P2n+2(x)e

−x2

2 , En =
5

2
+ 2n (35)

где полином P2n+2 содержит только чётные степени x.

ψ
(1)
0 (x) = (x−1 + P2n−1(x))e

−x2

2 , En = −1

2
+ 2n (36)

где полином P2n−1(x) содержит только нечётные степени x.
Уровни энергии потенциала Калоджеро эквидистантны как и у гармонического осцилля-

тора. Интересно посмотреть, возможно ли благодаря выбору другого начального состояния
придти от задачи на потенциал Калоджеро к задаче гармонического осциллятора.
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6. Осциллятор со степенной ангармоничностью
Расмотрим потенциалы со степенной зависимостью, степень которых не привышает 4.

Для того чтобы было возможно факторизовать такой гамильтониан, необходимо, чтобы ко-
эффициенты при степенях x были взаимосвязаны. Например:

Рассмотрим гамильтонианы, которые можно представить в виде произведения двух опе-
раторов следующего вида

b+ = − d

dx
+ αx+ βx2, b− =

d

dx
+ αx+ βx2 (37)

Следовательно, гамильтониан будет равен

2H = b+b− = − d2

dx2
+ α2x2 + 2αβx3 + β2x4 − α− 2βx (38)

Рассмотрим случай, когда α = β = 1. Тогда

2H = b+b− = − d2

dx2
+ x2 − 2x+ 2x3 + x4 − 1 (39)

Введем обозначения
2H = H ′, W = x (40)

Можно выразить следующие коммутаторы через W и b+, b−, как было сделано для по-
тенциала Морса

[b−, b+] = 2 + 4x (41)

[b+, H ′] = −4x3 − 6x2 − 2x+ 4 + 2
d

dx
+ 4x

d

dx
= 4− 4xb+ − 2b+ (42)

[b−, H ′] = 4x3 + 6x2 + 2x+ 2
d

dx
+ 4x

d

dx
= 4xb− + 2b− (43)

Тогда
[b−, H ′]− [b+, H ′] = 8x3 + 12x2 + 4x− 4 = 8x3 + 12x2 + 4x− 4 (44)

И мы получаем замкнутую систему, так как два оператора коммутируют

[[b−, H ′]− [b+, H ′], [b−, b+]] = [8x3 + 12x2 + 4x− 4, 2 + 4x] = 0 (45)

Таким образом мы получили новую алгберу, которую можно изучать дальше. Она как и
в случае потенциала Морса будет разрешимой или нильпотентной.

Из условия b−ψ0 = 0 найдем собственную функцию ψ0

ψ0 = A0exp

(
−x

2

2
− x3

3

)
(46)

7. Двойственные потенциалы
Можно показать что, если известна собственная функция частицы основного состояния,

то мы знаем потенциал частицы [4]. Действительно

H1ψ0(x) = −
d2ψ0

dx2
+ U1(x)ψ0(x) = 0 (47)

U1(x) =
ψ′′0(x)

ψ0(x)
(48)

Тогда гамильтониан можно факторизовать так

H1 = b+b−, b− =
1√
2

d

dx
+ f(x), b+ = − 1√

2

d

dx
+ f(x) (49)
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Таким образом потенциал U1(x) равен

U1(x) = f 2(x)− 1√
2
f ′(x) (50)

и
f(x) = − 1√

2

ψ′0(x)

ψ0(x)
(51)

Теперь рассмотрим другой гамильтониан заданный в виде H2 = b−b+

H2 = −
d2

dx2
+ U2(x), U2(x) = f 2(x) +

1√
2
f ′(x) (52)

Потенциалы H1, H2 будем называть двойственными потенциалами. Можно показать, что
собственные функции операторов H1, H2 взаимосвязаны [4]

E(2)
n = E

(1)
n+1, E

(1)
0 = 0, (53)

ψ(2)
n = (E

(1)
n+1)

−1/2 b−ψ
(1)
n+1, (54)

ψ
(1)
n+1 = (E(2)

n )−1/2 b+ψ(2)
n , (55)

Интересно, что двойственные гамильтонианы связаны суперсимметрией. Они описыва-
ются единым образом - матричным гамильтонианом

H =

(
H1 0
0 H2

)
(56)

Возникает дополнительная симметрия, включающая коммутаторы и антикоммутаторы.
Это есть объект изучения суперсимметрии. Можно ввести матрицы рождения и уничтожения

Q− =

(
0 0
b− 0

)
, Q+ =

(
0 b+

0 0

)
(57)

образующие замкнутую супералгебру

[H,Q−] = [H,Q+] = 0, {Q−, Q+} = H, {Q+, Q+} = {Q−, Q−} = 0. (58)

8. Заключение
В работе было рассмотрено решение нескольких задач квантовой механики с помощью

факторизации гамильтониана. Этот подход позволил упростить решение задачи о квантовом
гармоническом осцилляторе и найти собственные значения и функции в одномерном случае
потенциала Калоджеро.

Кроме того, в задачах со степенной ангармоничностью и потенциалом Морса удалось
найти нулевые собственные функции и построить новые нильпотентные и разрешимые ал-
гебры. Возможно, при дальнейшем анализе алгебр удасться узнать больше информации об
энергетических спектрах разобранных гамильтонианов.
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9. Дополнение
Опр. Алгебра Ли g называется нильпотентной,если найдется такое натуральное N , что

для любого набора x1, . . . , xN ∈ g выполнено [x1, [x2, . . . [xN−1, xN ] . . . ]] = 0.

L ⊇ L1 ⊇ L2 ⊇ . . . ; L0 = L, L1 = [L0, L], L2 = [L1, L], . . . , Lk = [Lk−1, L], Lk = 0

Опр. Производным рядом алгебры Ли g называется цепочка идеалов g = L0g ⊇ L1g ⊇ . . . ,
определяемая индуктивно как Dkg = [Dk−1g,Dk−1g]. Алгебра Ли g называется разрешимой,
если найдется такое натуральное N , что LNg = 0.

L ⊇ L1 ⊇ L2 ⊇ . . . ; Lk = [Lk−1, Lk−1], Lk = 0
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