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1. Введение
В работе [1] выдвинуто предположение, что в некотором классе теорий поля рассеяние вы-

сокоэнергетических частиц происходит особым образом. Утверждается, что при столкновении
рождаются широкие полевые конфигурации состоящие из мягких частиц. Такие конфигурации
называют классикалонами. Чем больше энергия E рассеянных частиц, тем больше классикалон.
Это явление называется классикализацией. Характерный размер классической конфигурации
называется радиусом классикализации r?.

В данной работе мы рассматриваем конкретную модель, в которой ожидается появление
классикалонов. Модель содержит размерную константу в знаменателе, то есть является непе-
ренормируемой.

2. Простая модель
Рассмотрим самый простой случай - одномерное скалярное поле. Рассмотрим задачу, в ко-

торой начальный волновой пакет ударяется о стенку. Пусть действие одномерного скалярного
поля Φ(t, x) в (1 + 1)-мерном пространстве задается следующим функционалом:

S =

∫
x>0;t>0

(∂µΦ)
2

2
dxdt+ Λ

∫
x=0;t>0

f

(
∂tΦ

Λ

)
dt,

где f - некая нелинейная функция, а Λ - размерная константа.

2.1. Уравнения поля

Применим принцип наименьшего действия. Найдем вариацию действия:

δS =

∫
x>0;t>0

[
∂tΦδ(∂tΦ)− ∂xΦδ(∂xΦ)

]
dxdt+

∫
x=0;t>0

f ′
(
∂tΦ

Λ

)
δ(∂tΦ)dt

Интегрируя оба слагаемых по частям, найдем (сразу учтем, что вариация поля на временных
границах равна нулю):

δS =

∫
x>0;t>0

∂2
tΦδΦdxdt −

∫
t>0

(∂xΦδΦ)
∣∣∣∞
0
dx +

∫
x>0;t>0

∂2
tΦδΦdxdt −−

∫
x=0;t>0

f ′′
(
∂tΦ

Λ

)
∂2
tΦ

Λ
δΦ

Учтем теперь, что вариация поля на бесконечности также равна 0, и приравняем вариацию
действия к нулю. Тогда, из этого следует два уравнения:

∂2
tΦ− ∂2

xΦ = 0, x > 0, t > 0 (1)

f ′′
(
∂tΦ

Λ

)
∂2
tΦ

Λ
= ∂xΦ, x = 0, y > 0 (2)

Решением (1) является:

Φ(t, x) = Φin(t+ x) + Φout(t− x), (3)
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где Φin - "входящий"(начальный) волновой пакет, а Φout - "исходящий"(тот, который образо-
вался после столкновения). Уравнение (2) - это граничное условие для (1). Подставим (3) в
(2):

f ′′
(
Φ′

in(t) + Φ′
out(t)

Λ

)
Φ′′

in(t) + Φ′′
out(t)

Λ
= Φ′

in(t)− Φ′
out(t)

2.2. Сохраняющиеся величины

Из функционала действия выразим лагранжиан поля:

L = θ(x)
(∂µΦ)

2

2
+ δ(x)Λf

(
∂tΦ

Λ

)
, (4)

где θ(x) - функция Хевисайда, а δ(x) - дельта-функция.

2.2.1. Заряд

Заметим, что в уравнения (1) и (2) входят только первые производные поля. Значит, поле
будет определено с точностью до константы, то есть существует глобальное преобразование,
относительно которого лагранжиан инвариантен:

Φ → Φ + C

Поскольку лагранжиан инвариантен относительно таких преобразований, его производная по
C будет равна 0. Её можно записать в виде суммы двух производных по ∂xΦ и ∂tΦ. Получим
Нётеровский ток:

jx =
∂L

∂(∂xΦ)
= −θ(x)∂xΦ

jt =
∂L

∂(∂tΦ)
= θ(x)∂tΦ + δ(x)Λf ′

(
∂tΦ

Λ

)
Производные тока по соответствующим координатам равны:

∂xj
x = −θ(x)∂2

xΦ− δ(x)∂xΦ

∂tj
t = θ(x)∂2

tΦ + δ(x)f ′′
(
∂tΦ

Λ

)
∂2
tΦ

Λ

Видно, что сумма производных токов равна нулю (это следует из (1) и (2)). Исходя из этого,
существует сохраняющийся заряд Q:

Q =

∞∫
−∞

dxjt = f ′
(
∂tΦ

Λ

)∣∣∣
x=0

+

∞∫
0

dx∂tΦ

Запишем
∞∫
0

dx∂tΦ через Φin и Φout и проинтегрируем:

∞∫
0

dx∂tΦ =

∞∫
0

dx [Φ′
in(t+ x) + Φ′

out(t− x)] = [Φin(t+ x)− Φout(t− x)]
∣∣∣x=∞

x=0
= Φin(t)− Φout(t)
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Подставляя результат в предыдущее выражение, получим окончательное значение заряда:

Q = f ′
(
Φ′

in(t) + Φ′
out(t)

Λ

)
+ Φin(t)− Φout(t) (5)

Если теперь продифференцировать заряд по времени, то получится (2), а это значит, что заряд
действительно сохраняется. Из выражения для заряда также следует, что заряд локализован-
ных волновых пакетов будет равен нулю. Предполагая, что функция f ′ имеющей обратную,
запишем:

Φ′
out(t) = ΛF (Q− Φin(t) + Φout(t))− Φ′

in(t), (6)

где F (f ′(x)) = x. Уравнение (6) - обыкновенное дифференциальное уравнение на Φout(t), то есть
из него можно находить отраженную волну, зная падающую волну и граничную функцию.

2.2.2. Энергия

Независимость лагранжиана от времени приводит к сохранению энергии. Она, в случае
одномерного скалярного поля, может быть подсчитана с помощью известной формулы:

E =

∞∫
0

dx

[
∂L

∂(∂tΦ)
∂tΦ− L

]
=

∞∫
0

dx

[
(∂tΦ)

2

2
+

(∂xΦ)
2

2
− δ(x)Λf

(
∂tΦ

Λ

)
+ δ(x)f ′

(
∂tΦ

Λ

)
∂tΦ

]

Подставляя в интеграл решение (3) и полагая t = 0, получим:

E =

∞∫
0

dx
(
Φ′2

in(x) + Φ′2
out(−x)

)
+

[
f ′
(
∂tΦ(0)

Λ

)
∂tΦ(0)− Λf

(
∂tΦ(0)

Λ

)]

Дифференцируя по времени, получим под интегралом сумму (1) и (2). Значит, энергия дей-
ствительно сохраняется.

Для дальнейших численных расчетов нам понадобится знание энергии гауссова волнового

пакета Φin = Ae−
(t−t0)

2

b2 . Вычислим ее по выведенной формуле (не интегральный член был
отброшен ввиду малости значения ∂tΦ(0)):

E =
4A2

b4

∞∫
0

dt(t− t0)
2e−

2(t−t0)
2

b2 = −A2

b2
t0e

− 2t20
b2 +

A2

b2

∞∫
0

dte−
2(t−t0)

2

b2 ∼ A

b2

3. Решение уравнений поля

Мы будем решать уравнение (6) для начального гауссова пакета Φin = Ae−
(t−t0)

2

b2 . Из выра-
жения (5) следует, что заряд локализованного, далекого от нуля в начальный момент времени
волнового пакета равен нулю. В силу этого перепишем (6):

Φ′
out(t) = ΛF (Φout(t)− Φin(t))− Φ′

in(t)
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Рис. 1. Аналитическое решение

3.1. Аналитическое решение

Найдем решение для F (x) = x (соответственно, f(x) = x2

2
):

Φ′
out(t) = Λ (Φout(t)− Φin(t))− Φ′

in(t)

Решая это линейное неоднородное уравнение, получим:

Φout = Ae−
(t−t0)

2

b2 + 2AΛeΛ(t−t0)+
Λ2

4b2

(
erf

(
t− t0
b

+
Λb

2

)
− 1

)
,

где erf(x) =
x∫
0

e−s2ds. Проанализируем решение. При t >> t0 второе слагаемое обращается

в ноль, а при t << t0 оно приближенно равно минус экспоненте. Радиус классикализации
r? может быть оценен как Λ. Значит, этот случай не является классикализацией, т.к. размер
классикалона не много больше размера пакета, что и видно на рис. 1.

3.2. Численное решение

С помощью компьютерной программы на языке Python были получены численные решения
уравнения (6) для многих других функций F (x). Были произведенны серии расчетов для волно-
вых пакетов с фиксированной энергией, но разной шириной. Режим классикализации ожидался
при A

b2
>> Λ (т.е. когда аргумент F (x) стремился к бесконечности в некоторой точке). Ниже

приведены графики для разных F (x) в этом режиме. Значения всех рассчетных параметров
указаны на графиках: L - это Λ, A0 - начальная амплитуда, b0 - начальная ширина, % - изме-
нение амплитуды в процентах.
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Рис. 2. Численные решения для F (x) = x

4. Результаты
1. Получены уравнения поля для задачи, в которой ожидается классикализация.

2. Получены формулы для нётеровского тока, заряда и энергии.

3. Получено решение для простейшего случая и численные для более сложных. Однако,
классикализация так и не была найдена ни в одном из случаев.
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