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Введение

Общая теория относительности (ОТО) является на данный момент основной тео-
рией гравитации, хорошо подтверждённой наблюдениями. Одним из её базовых
принипов является симметрия пространства-времени относительно преобразова-
ний Лоренца. Иначе, эквивалентность систем отсчёта представлена
Лоренц-инвариантностью (далее ЛИ - Лоренц-инвариантность). Однако имеются
предпослыки к отклонениям от ОТО, и в некоторых модификациях теории нару-
шается именно Лоренц-инвариантность (ЛН - нарушение Лоренц-инвариантности).
Некоторые теории предполают, что ЛИ может быть нарушена при высоких
энергиях. Такие энергии недоступны современным ускорителям. Но они могут
достигаться, например, в ультра-энергетических космических лучах (обо всём
выше см. [3]). В ряде подходов ЛН вводится с помощью параметра M , по по-
рядку величины равному Планковской массе MP ≈ 1019 GeV . Исходное дис-
персионное соотношение (ДС): E2 = p2 + m2, заменяется на соотношение вида:
E2 = p2 + m2 + p4

M2 . При низких энергиях происходит подавление последнего сла-
гаемого. Мотивация данной модели также изложена в [3].

Постановка задачи

В работе рассматривается свободная частица с нарушением M с ДС:

E2 = p2 +m2 +
p4

M2
, M � m (1)

А также модели связанных состояний. Выводятся ограничения на движение
такой системы, исследуется вопрос о том, как соотносятся массы и нарушения
для результирующей частицы и определяется вид её ДС.
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Лагранжиан частицы с ЛН

Гамильтониан свободной частицы с энергией, определяющейся из (1) равен:

H =

√
p2 +m2 +

p4

M2
(2)

Найдём функцию Лагранжа. Для этого запишем обратное преобразование Ле-
жандра в общем виде [1]:

L =
∑
i

pj q̇j −H (3)

С самого начала предположим движение одномерным с обобщённой координа-
той x, скоростью v и импульсом p. Тогда, используя уравнение Гамильтона:

v =
∂H

∂p
(4)

v ·
√
p2 +m2 +

p4

M2
= p+

p3

M2
(5)

Заменяя p2 на y и возводя обе части в квадрат, получаем кубическое уравнение
на y:

4

M4
y3 +

4− v2

M2
y2 + (1− v2)y −m2v2 = 0 (6)

Его решение в пределе M → ∞ должно быть выражением для квадрата им-
пульса ЛИ частицы m2v2

1−v2 , поэтому решение будем искать в виде:

y =
m2v2

1− v2
+

δ

M2
(7)

Подставляя (6) в (7) и пренебрегая всеми степенями 1
M

старше квадрата, на-
ходим δ и y:

δ =
m4v4(v2 − 4)

(1− v2)3
=⇒ y = p2 =

m2v2

1− v2
+
m2v2(v2 − 4)

(1− v2)3
1

M2
(8)

Используя (3) и (4):

L = pv −
√
p2 +m2 +

p4

M2
=

p+ 4p3

M2√
p2 +m2 + p4

M2

−
√
p2 +m2 +

p4

M2
=

p4

M2 −m2√
p2 +m2 + p4

M2

(9)
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Подставив p2 и разложив выражение в ряд Тейлора по степеням 1
M

с точностью
до членов второго порядка включительно, получим окончательно:

L = −m
√

1− v2︸ ︷︷ ︸
лагранжиан релятивистской частицы

− m3v4

2(1− v2)3/2
1

M2︸ ︷︷ ︸
ЛН добавка

+o

(
1

M3

)
(10)

Связанное состояние ЛИ-ЛН частиц

Был получен лагранжиан свободной частицы с ЛН:

L = −m
√

1− v2 − m3v4

2M2(1− v2)3/2
(11)

Рассмотрим одномерную задачу о движении взаимодействующих ЛИ частицы
с лагранжианом:

Lli = −m
√

1− v21 (12)

и частицы с ЛН с лагранжианом:

Lln = −m
√

1− v22 −
m3v42

2M2(1− v22)3/2
(13)

для простоты массы частиц одинаковы
Потенциал взаимодействия равен:

U =
k(x2 − x1)2

2
(14)

Здесь и далее в данной главе индексы 1 относятся к ЛИ частице, а индекс 2
к частице с нарушением. Дополнительно предположим, что частица 2 заряжена
(e = 1) и поместим её в электрическое поле E Тогда функция Лагранжа системы
частиц будет иметь вид:

L = Lli + Lln − U + Ex2 (15)

L = −m
√

1− v21 −m
√

1− v22 −
m3v42

2M2(1− v22)3/2
− k(x2 − x1)2

2
+ Ex2 (16)

v1 = ẋ1 v2 = ẋ2 (17)

Зададимся вопросом, можно ли заменить данную систему эквивалентной
частицей и найдём её массу.
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Запишем уравнения Эйлера-Лагранжа, выбрав за обобщенные координаты x1

и x2:

d

dt

∂L

∂v1
− ∂L

∂x1
= 0 (18)

d

dt

∂L

∂v2
− ∂L

∂x2
= 0 (19)

Дифференцируя, и проводя преобразования, получим систему уравнений:
mẍ1

(1−ẋ2
1)

3/2 + k(x1 − x2) = 0

mẍ2

(1−ẋ2
2)

3/2 − 6m3

M2

ẋ2
2ẍ2

(1−ẋ2
2)

5/2 − 15m3

2M2

ẋ4
2ẍ2

(1−ẋ2
2)

7/2 − k(x1 − x2)− E = 0
(20)

Введём новые переменные:

x =
x1 + x2

2
v =

ẋ1 + ẋ2
2

(21)

r =
x2 − x1

2
u =

ẋ2 − ẋ1
2

(22)

Выразим старые переменные через новые:

x1 = x− r v1 = v − u (23)

x2 = x+ r v2 = v + u (24)

Складывая уравнения системы (20) и заменяя старые координаты новыми,
получим:

m(v̇ − u̇)

(1− (v − u)2)3/2
+

m(v̇ + u̇)

(1− (v + u)2)3/2
−6m3

M2

(v + u)2(v̇ + u̇)

(1− (v + u)2)5/2
−15m3

2M2

(v + u)4(v̇ + u̇)

(1− (v + u)2)7/2
= E

(25)
Пренебрежём относительной скоростью u, считая жёсткость k достаточно боль-

шой. (Обоснование данного шага будет приведено ниже при рассмотрении общего
случая связанного состояния). Преобразуя (25)

v̇

(1− v2)3/2

(
2m− 3m3

2M2

v4 + 4v2

(1− v2)2

)
= E (26)

Получили равноускоренное движение частицы c эффективной массой
meff = 2m − 3m3

2M2
v4+4v2

(1−v2)2 под действием постоянной силы E. Как видим возникает
ЛН "добавка"к массе, которая будет зависеть от системы отсчёта.

Покажем, что такой частице может соответствовать частица с нарушением
с лагранжианом типа (11), установим её параметры и ДС. Далее штрихи над
символами соответствуют такой частице
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Функция Лагранжа "штрихованной"частицы в электрическом поле E

Ĺ = −ḿ
√

1− v́2 − ḿ3v́4

2Ḿ2(1− v́2)3/2
+ Ex́ (27)

Проводя аналогичные проделанным ранее вычисления, получим:

´̇v

(1− v́2)3/2

(
ḿ− 3ḿ3

2Ḿ2

v́4 + 4v́2

(1− v́2)2

)
= E (28)

Сравнивая данное уравнение с (26) и приравнивая коэффициенты при одина-
ковых степенях скорости, находим:

ḿ = 2m Ḿ = 2
√

2M (29)

Тогда ДС для "штрихованной"частицы

É2 = ṕ2 + ḿ2 +
ṕ4

Ḿ2
(30)

запишется в виде:

É2 = ṕ2 + 4m2 +
ṕ4

8M2
(31)
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Общий случай связанного состояния

Обобщим задачу на случай взаимодействия двух частиц m1 и m2 с нарушениями
M1 и M2. Для каждой из них справедливо дисперсионное соотношение вида (30),
лагранжиан этих частиц даётся формулой (11). Поле E действует на частицу m2.

Лагранжиан системы имеет вид:

L = −m1

√
1− v21−

m3
1v

4
1

2M2
1 (1− v21)3/2

−m2

√
1− v22−

m3
2v

4
2

2M2
2 (1− v22)3/2

−k(x2 − x1)2

2
+Ex2

(32)
Запишем систему уравнений движения:

m1ẍ1

(1−ẋ2
1)

3/2 −
6m3

1

M2
1

ẋ2
1ẍ1

(1−ẋ2
1)

5/2 −
15m3

1

2M2
1

ẋ4
1ẍ1

(1−ẋ2
1)

7/2 + k(x1 − x2) = 0

m2ẍ2

(1−ẋ2
2)

3/2 −
6m3

2

M2
2

ẋ2
2ẍ2

(1−ẋ2
2)

5/2 −
15m3

2

2M2
2

ẋ4
2ẍ2

(1−ẋ2
2)

7/2 − k(x1 − x2)− E = 0
(33)

Выберем координаты:

x =
m1x1 +m2x2
m1 +m2

v =
m1ẋ1 +m2ẋ2
m1 +m2

(34)

r =
x2 − x1

2
u =

ẋ2 − ẋ1
2

(35)

Выражаем через них координаты и скорости частиц:

x1 = x− m2

m1 +m2

r (36)

x2 = x+
m1

m1 +m2

r (37)

Заменяя переменные в уравнениях системы (33), сложим их, пренебрегая от-
носительной скоростью u.

m1v̇

(1− v2)3/2
+

m2v̇

(1− v2)3/2
− 6m3

1

M2
1

v̇v2

(1− v2)5/2
− 6m3

2

M2
2

v̇v2

(1− v2)5/2
−

−15m3
1

2M2
1

v̇v4

(1− v2)7/2
− 15m3

2

2M2
2

v̇v4

(1− v2)7/2
= E (38)

v̇

(1− v2)3/2

(
m1 +m2 −

6v̇v2

1− v2

(
m3

1

M2
1

+
m3

2

M2
2

)
− 15v̇v4

2(1− v2)2

(
m3

1

M2
1

+
m3

2

M2
2

))
= E

(39)

v̇

(1− v2)3/2

(
m1 +m2 −

3

2

(
m3

1

M2
1

+
m3

2

M2
2

)
v4 + 4v2

(1− v2)2

)
= E (40)
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Сравнивая данное уравнение с (28), убеждаемся, что оно описывает движе-
ние частицы с нарушением в поле E, параметры которой будут определяться из
системы уравнений:

ḿ = m1 +m2
ḿ3

Ḿ2
=
m3

1

M2
1

+
m3

2

M2
2

(41)

В случае частиц с равными массами m1 = m2 = m и нарушениями
M1 = M2 = M :

ḿ = 2m Ḿ = 2M (42)

Эквивалентная штрихованная частица будет иметь дисперсионное
соотношение:

É2 = 4ḿ2 + ṕ2 +
ṕ4

4Ḿ2
(43)

Данный результат согласуется со статьёй [2], в которой дается ДС для A оди-
наковых взаимодействующих частиц.

При получении ответа в задаче мы принебрегли членами m2
m1+m2

u и m1

m1+m2
u

перед v. То есть должны выполняться соотношения:

u� m1 +m2

m2

· v, u� m1 +m2

m1

· v (44)

Преобразуем систему (33) к виду:
v̇1

(1−v21)3/2

(
m1 − 3m3

1

2M2
1

v41+2v21
(1−v1)2

)
+ k(x1 − x2) = 0

v̇2
(1−v22)3/2

(
m2 − 3m3

2

2M2
2

v42+2v22
(1−v2)2

)
− k(x1 − x2)− E = 0

(45)

Вычтем из первого уравнения системы (45) второе и заменим старые перемен-
ные новыми, получим громоздкое выражение вида:

F (u, v, u̇, v̇) = 2kr − E (46)

Введём γ = 1√
1−v2 , m = m1 +m2. Устремим u→ 0. Так как в ограничения (44)

не входят нарушения M1 и M2, опустим все члены, содержащие 1
M1

1
и 1

M2
2
, считая

M1 � m1,M2 � m2. Проводя преобразования:

F (u, v, u̇, v̇)→ −m(m2 −m1)v̇ + 2m1m2r̈

m
γ3 (47)
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Считаем теперь, что скорость v медленно стремится к 1. Из уравнения (46):

r̈ +
k

µγ3
· r =

E

2
(48)

Добавим начальные условия:

r(0) = 0 ṙ(0) = 0 (49)

Оценим амплитуду колебаний скорости частицы. Общее решение уравнения:

r(t) = A sinωt+B cosωt+
E

2k
µγ3, ω2 =

k

µγ3
(50)

Учитывая начальные условия, находим:

B = − E
2k
µγ3 A = 0 (51)

Тогда

u(t) = − E
2k
µγ3ω sinωt+

E

2k
µγ3 (52)

Так, приходим к неравенству:

v ≤ E

2

√
µγ3

k
=
E

2

√
m1m2

m1 +m2

γ3/2

k1/2
(53)

Как видим при k →∞, условие (53) гарантирует выполнение (44).
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Заключение

Модифицированное ДС можно представить в виде:

E2 = p2 +m2
eff (54)

Где meff - не являеся инвариантом, что приводит к появлению выделенных
систем отсчёта. В работе был определён вид meff для частного случая ЛИ-ЛН
связи частиц, который даётся формулой (26), а также для общего случая (см. фор-
мулу (53)). Из неё следует закон преобразования масс и нарушений частиц (41),
который находится в согласии с [2]. В ходе решения задачи, мы пренебрегали отно-
сительным движением частиц по сравнению с их общим поступательным. Ограни-
чения на относительную скорость (44) обеспечиваются выполнением условия (53)
при достаточно больших k.
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