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Аннотация

В настоящей дипломной работе разработан классификатор меж-
ду протонами и фотонами для обсерватории Telescope Array, а также
разработан алгоритм, вычисляющий верхнее ограничение на поток
фотонов. Методы основаны на результатах Монте-Карло моделиро-
вания. Верхняя граница потока фотонов составляет ∆γ

p
= 0.0014 для

частиц с энергией выше Emin = 10ЭэВ, ∆γ

p
= 0.0077 для частиц с

энергией выше Emin = 31.6ЭэВ и ∆γ

p
= 0.037 для частиц с энергией

выше Emin = 100ЭэВ.
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1. Введение

Широкий атмосферный ливень (ШАЛ) – это каскад частиц, образу-
ющихся в атмосфере при взаимодействии с ней космических лучей –
первичных высокоэнергетичных частиц. Изучение космических лу-
чей представляет большой интерес в частности потому, что их про-
исхождение достоверно не установлено (хотя известно, что они ча-
стично производятся в сверхновых [1]). Одной из интересных задач
этой области является определение химического состава космиче-
ских лучей сверх-высоких энергий – в частности, определение со-
отношения между количеством фотонов и протонов.

На данный момент работают три обсерватории космических лу-
чей сверх-высоких энергий: Якутская комплексная установка ШАЛ
[2], Pierre Auger Observatory [3] и Telescope Array [4].

Массив по изучению широких атмосферных ливней в Якутске
расположен на рекеЛене около деревниОктемцы (50 км кюго-западу
от Якутска, 61.7°N, 129.40°E, в 100м над уровнем моря). За время
работы обсерватории ее максимальная площадь достигала 17 км2. В
центральной части телескопа детекторы расположены на расстоянии
от 100м до 250м друг от друга. За все время, было зарегистрировано
около 106 широких атмосферных ливней с исходной энергией выше
30ПэВ, а также три события с энергией более 100ЭэВ с осью сим-
метрии внутри площади массива и зенитным углом меньше 60◦.

Обсерватория имени Пьера Оже (Pierre Auger) находится в за-
падной Аргентине (35.2068°S, 69.3160°W). Pierre Auger использует
два типа детекторов для наблюдения за космическими лучами. Один
тип детекторов представляет собой контейнер, наполненный 12000 л

4



воды, и обнаруживающий частицы с ней взаимодействующие. Мас-
сив состоит из 1600 контейнеров, размещенных в узлах гексагональ-
ной решетки с интервалом 1.5 км друг от друга. Также Pierre Auger
использует 24 флюоресцентных детектора, образующие 4 флюорес-
центные станции.

Telescope Array – эксперимент, находяшийся в штате Юта, США
(39.2969°N, 112.9086°W), также содержит два типа детекторов. Мас-
сив включает в себя 500 наземных сцинтилляционных детекторов,
покрывающих большую площадь (данные которых используются в
данной работе). Кроме того, инструмент включает в себя 38 флюо-
ресцентных детекторов, собранных в 3 станции.

Обычно для определения состава используется следующий ме-
тод: для каждого события вычисляется определенный параметр, чув-
ствительный к составу, строится распределение значений этого па-
раметра для данных и фотонного Монте-Карло и производится срав-
нение. Например, по тому насколько близко распределение парамет-
ра, построенное на основе данных, находится к распределению пара-
метра из моделирования, можно установить ограничение на наблю-
даемый поток фотонов.

На настоящий момент используются несколько таких наблюдае-
мых, самыми распространенными из которых являются следующие:

• Атмосферная глубина, на которой продольная эволюция ливня
достигает максимального количества частиц, Xmax.

• Мюонная плотность, регистрируемая подземным детектором,
ρµ.
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• Атмосферная глубина, на которой достигается максимальное
число мюонов, Xµ

max.

• Асимметрия времени от 10% до 50% интегрированного сигна-
ла [5].

Несмотря на то, что эти параметры позволяют установить опре-
деленные ограничения на поток частиц, они по-отдельности, тем не
менее, не позволяют надежно различать различные частицы, а сле-
довательно ограничения и измерения, полученные с помощью та-
ких методов, могут быть улучшены, если использовать параметры,
различающие первичные частицы более надежно. В данной работе
используются методы машинного обучения для классификации ча-
стиц, наблюдаемых обсерваторией Telescope Array, используя одно-
временно несколько параметров. На основе такого классификатора
строится параметр, равный вероятности классификации события в
качестве определенного типа частицы (например, фотона). Так как
распределения такого параметра значительно отличаются для раз-
личных типов частиц, можно установить гораздо лучшее ограниче-
ние на поток фотонов. В некотором смысле, используемый в дан-
ной работе метод объединяет сильные стороны ранее использован-
ных методов (использующих ранее перечисленные параметры по-
отдельности).
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2. Метод

2.1. Реконструкция событий Telescope Array

В качестве входных данных для классификации используются ре-
зультаты реконструкции (версии Moscow.i12) Монте-Карло модели-
рования событий Telescope Array [6]. Используются следующие па-
раметры:

1. Координата x ядра;

2. Координата y ядра;

3. F800;

4. Зенитный угол направления прихода первичной частицы θ;

5. Азимутальный угол направления прихода первичной частицы
ϕ;

6. Реконструированное значение энергии в предположении пер-
вичного протона;

7. Приемная башня связи (BRM, LR или SK);

8. Количество сработавших детекторов;

9. Количество сработавших детекторов на границе установки;

10. Количество насыщенных детекторов;

11. Количество детекторов с двумя сигналами, разделенными по
времени;
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12. Количество нулевых детекторов, включенных в реконструкцию;

13. Качество фита, χ2

N ;

14. η, параметр наклона функции пространственного распределе-
ния;

15. Параметр кривизны Линсли [7];

16. Наибольший сигнал;

17. Сумма сигналов на всех детекторах;

18. Расстояние от оси ливня до границы установки;

19. Размер симплекса итогового фита в пространстве параметров;

20. Количество детекторов, исключенных из фита фронта ШАЛ;

21. Количество пиков во временной развертке сигнала всех детек-
торов. Для пика необходимо значение сигнала выше опреде-
ленного порога, большее 3-х соседей слева и 3-х соседей спра-
ва;

22. Полный сигнал, используемый для асимметрии;

23. Асимметрия верхнего / нижнего слоев;

24. Количество пиков во временной развертке детектора с макси-
мальным сигналом;

25. Координаты детектора с максимальным сигналом;

26. Число асимметричных пиков (верхний > нижний);
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27. Число асимметричных пиков (верхний < нижний);

28. Число детекторов с r > 600м (не насыщенных, не исключен-
ных геометрически);

29. Параметр, определенный как Sb =
∑N

i=1

[
Si ×

(
ri
r0

)b]
, где сум-

ма производится по всем N сработавшим детекторам, r0 =

1000м– эталонное расстояние,Si – сигнал, измеренный на стан-
ции№i и ri – расстояние от данного детектора до оси ливня [8].

Всего используются 4505300 Монте-Карло событий фотонов и
3369284 событий протонов.

2.2. Отбор событий

Среди событий, описанных в предыдущей секции, есть события, вы-
званные случайным одновременным попаданием случайных мюо-
нов. Кроме того, качество реконструкции для многих событий не
позволяет точно восстановить параметры первичной частицы. По-
этому мы выполнили отбор событий, используя следующие условия:

• χ2

N < 5 (параметр №13);

• Количество детекторов включенных в геометрическийфит (раз-
ность параметров №8 и №20) не меньше 7;

• Расстояние до границы установки (параметр№18) больше, чем
1.2 км.

После применения приведенного выше фильтра, остаются 2569412

Монте-Карло событий фотонов и 249309 событий протонов.
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2.3. Вычисление выборки фотонов с согласующимся
распределением

Полученный набор событий, однако, пока нельзя использовать для
классификации, т.к. спектр фотонов, полученных из Монте-Карло
моделирования, сильно отличается от спектра протонов и железа, а
значит классификатор может использовать энергию и зависящие от
энергии параметры в качестве параметра отбора, следовательно точ-
ность классификации может быть существенно завышена.

Кроме того, набор фотонных событий Монте-Карло не изотро-
пен, т.к. в него включены дополнительные события с выделенных
направлений. Наконец, границы изменения параметра θ различны
для фотонов и протонов.

Для избежания этих проблем необходимо произвести случайную
выборку событий из множества фотонов таким образом, чтобы ее
спектр совпадал со спектром протонов.

Для этого используется алгоритм схожий сфильтрацией, рассмот-
ренной в предыдущей секции, выбираются события удовлетворяю-
щие следующим условиям:

• Пара углов (θ, ϕ) не содержится в списке выделенных направ-
лений, для которых проводилось отдельное моделирование;

• Угол θ не превосходит θmax = 60◦;

• Реконструированное значение энергии (параметр №6) не пре-
вышаетEmin. В данной работе рассматриваются 3 значенияEmin:
10 ЭэВ, 31.6 ЭэВ, 100ЭэВ;
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• r ≤
(

E
Emin

)p
, где r – случайное число, равномерно распреде-

ленное от 0 до 1; E,Emin – значения реконструированной и ми-
нимальной энергии из предыдущего пункта; p – разница меж-
ду степенным индексом исходного распределения фотонов и
необходимого их распределения (который совпадает со степен-
ным индексом распределения протонов). p зависит от Emin и
для исследуемых результатов Монте-Карло моделирования со-
ставляет, p = −2.2 для Emin = 10ЭэВ, p = −1.3 для Emin =

31.6ЭэВ и p = 0.0 для Emin = 100ЭэВ.

Распределение энергий фотонов и протонов для вышеописанной
выборки показано на Рис. 1. Из графика видно, что спектры энергий
фотонов и протонов в новой выборке совпадают с достаточно вы-
сокой точностью. В результате, классификатор не сможет различать
типы частиц исключительно по их энергии. После описанного выше
фильтра, выборка событий готова для классификации.

После построения данных выборок остаются следующие количе-
ства событий в зависимости от энергии:

1. Emin = 10ЭэВ. Остаются 98006 Монте-Карло событий фото-
нов и 29351 событий протонов.

2. Emin = 31.6ЭэВ. Остаются 123837 Монте-Карло событий фо-
тонов и 3992 событий протонов.

3. Emin = 100ЭэВ. Остаются 85749 Монте-Карло событий фото-
нов и 459 событий протонов.
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Рис. 1: Спектры наборов фотонов и протонов для различных значе-
ний минимальной энергии Emin, используемые для обучения алго-
ритмов классификации. Видно, что типы частиц не могут быть опре-
делены исключительно из их энергий.
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2.4. Выбор тренировочной и тестирующей выборки

Чтобыполучить объективное значение точности классификации, необ-
ходимо разделить данные моделирования на два набора: по одно-
му будет проводится тренировка классификатора, по другому будет
оцениваться его производительность.

Наборы для тренировки и тестирования классификатора выбира-
ются в соответствии с 3-я условиями:

1. Наборы данных для тренировки и тестирования должны быть
одинакового размера (для достижения баланса между качеством
классификации и точностью оценки производительности);

2. Количество событий в каждом наборе должно быть как можно
большим, но не более 215 (ограничение вводится из-за высокой
вычислительной сложности и высоких требований по количе-
ству памяти алгоритмов классификации);

3. События для наборов выбираются случайным образом в ко-
личестве, вычисленном в соответствии с предыдущими двумя
пунктами.

Для наборов данных, изучаемых в данной работе, остаются сле-
дующие количества событий в зависимости от минимального значе-
ния энергии Emin:

1. Emin = 10ЭэВ. Набор состоит из 29351 событий.

2. Emin = 31.6ЭэВ. Набор состоит из 3992 событий.

3. Emin = 100ЭэВ. Набор состоит из 459 событий.
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2.5. Алгоритмы классификации

Для обучения классификатора, разделяющего фотоны и протоны, ис-
пользуются следующие алгоритмы машинного обучения:

• Логистическая регрессия [9, p. 128]. Для предсказания ти-
па частиц используется фит логистической функцией F (t) =
et

et+1 , где t – функция значений параметров: t = β0 +
∑N

i=1 βixi,
где xi – значения параметров, а βi – параметры фита.

• Наивный байесовский классификатор [10]. Для классифи-
кации событий предполагается, что параметры независимы и
используется теорема Байеса из теории вероятностей.

• Метод k ближайших соседей [11]. В данном методе исполь-
зуются классы k соседей, ближайших в пространстве парамет-
ров, и выбирается класс, встречающийся среди соседей наибо-
лее часто. k – параметр метода, выбираемый для максимизации
качества классификации.

• Искусственная нейронная сеть [12]. Алгоритм, имитирую-
щий центральную нервную систему животных. Классифика-
ция происходит с помощью нескольких слоев функций (нейро-
нов), каждая из которых вычисляет свое значение как линей-
ную комбинацию значений нейронов предыдущего слоя. Ко-
эффициенты линейных функций, используемых каждым ней-
роном, являются параметрами классификации.

• Random forest [13]. Классификация работает путем конструи-
рования нескольких деревьев принятия решений, которые опре-
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деляют тип частицы исходя из ответов на множество вопросов
о параметрах события.

• Метод опорных векторов [14]. В данномметоде пространство
параметров делится на две области, в каждой из которых на-
ходятся события соответствующие разным типам частиц, та-
ким образом, что точки соответствующие разным частицам как
можно сильнее разделены. В базовом методе области различ-
ных классов разделены прямой, однако можно использовать
ядерный метод приводящий к полиномиальной границе меж-
ду областями.

2.6. Выбор наилучшей границы классификации

Результат работы классификатора для каждого события – вероятность
того, что данная частица является фотоном или протоном. Обычно,
для классификатора между фотонами и протонами, событие класси-
фицируется как фотон, если вероятность этого превышает 50%. Од-
нако, для установления верхней оценки на поток фотонов, оптималь-
нее использовать другую границу классификации, например, клас-
сифицировать частицу как фотон если вероятность этого более 95%.
Для того, чтобы понять, какую границу необходимо выбрать, нужно
провести вычисление погрешности потока фотонов как функции от
точностей классификации фотонов и протонов.

Пусть ϵpγ – часть протонов, ошибочно классифицирующихся как
фотоны, а ϵγp – часть фотонов, классифицирующихся в качестве про-
тонов. Кроме того, пусть γ и p – истинные количества фотонов и про-
тонов. Наконец, пусть γobs и pobs – количества событий, классифици-
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рованных в качестве фотонов и протонов соответсвенно.
Тогда, по определениям вышеприведенных величин,

γobs = γ
(
1− ϵγp

)
+ pϵpγ , (1)

pobs = p
(
1− ϵpγ

)
+ γϵγp . (2)

Решая данные уравнения для γ, получаем:

γ =
γobs − pobsϵpγ − γobsϵpγ

1− ϵpγ − ϵγp
(3)

Однако, так как γ ≪ p, в данной работе вычисляется только верх-
нее ограничение потока фотонов, а значит, необходимо вычислить
погрешность количества фотонов γ:

∆γ =

√√√√√√√√√√√√

 ∂

∂ϵpγ

(
γobs − pobsϵpγ − γobsϵpγ

1− ϵpγ − ϵγp

)
∆ϵpγ

2

+

 ∂

∂ϵγp

(
γobs − pobsϵpγ − γobsϵpγ

1− ϵpγ − ϵγp

)
∆ϵγp

2 (4)

Подставляя значения для γobs и pobs из уравнений 1 и 2, получаем:

∆γ =

√√√√∆2
ϵpγ
p2 +∆2

ϵγp
γ2(

1− ϵpγ − ϵγp
)2 (5)

Предполагая, что γ → 0, получаем:

∆γ =
∆ϵpγp

1− ϵpγ − ϵγp
(6)

Значение ∆ϵpγ можно оценить используя биномиальное распре-
деление, зная количество событий в наборе и само значение ϵpγ. Для
этого необходимо выполнить два шага:
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1. Найти такое биномиальное распределение путем подбора n,
чтобы вероятность получить в нем значение случайной вели-
чины совпадающее со значением ϵpγ, умноженным на количе-
ство событий, была не слишком маленькой (в данной работе
берется значение 5%).

2. Вычислить аргумент функции распределения, полученного в
предыдущемпункте, таким, чтобы ее значение было равно 95%.
Полученный аргумент является максимально возможным ко-
личеством частиц, которые могут быть неправильно классифи-
цированы как фотоны в наборе из данного количества частиц.

Считая в первом приближении, что ∆ϵpγ ≈ ϵpγ, получаем, что
необходимо сделать ϵpγ существенно меньшим, чем ϵγp, для того,
чтобы минимизировать ∆γ. Поэтому, можно пренебречь ϵpγ в зна-
менателе, и получить:

∆γ ≈
∆ϵpγp

1− ϵγp
, (7)

где∆ϵpγ вычисляется в соответствии с алгоритмом, приведенным вы-
ше.

Таким образом, задача состоит в том, чтобы выбрать границу ве-
роятностей разделения между фотонами и протонами так, чтобы ми-
нимизировать ∆γ из предыдущего уравнения.

2.7. Вычисление фотонного потока

Учитывая результат предыдущей подсекции, задача состоит в том,
чтобы вычислить значения формулы 7, используя разные алгоритмы
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Точность Точность Верхняя
Граница классификации классификации граница
классификации фотонов протонов потока
0.5 0.89 1− 8.1× 10−2 0.096

0.1 0.70 1− 1.5× 10−2 0.025

0.01 0.37 1− 2.4× 10−3 0.0092

0.001 0.14 1 0.0014

0.0002 0.068 1 0.0030

0.0001 0.048 1 0.0043

Таблица 1: Производительность классификатора на основе искус-
ственных нейронных сетей для набора событий с минимальной энер-
гией Emin = 10ЭэВ в зависимости от вероятностной границы разде-
ления типов частиц. Верхняя граница потока равна ∆γ

p

классификации и разные границы вероятностей разделения, и вы-
брать минимальное значение.

Лучшая производительность для всех трех диапазонов энергий
достигается с помощью алгоритма искусственных нейронных сетей.
Точность в зависимости от границы разделения приведена в табли-
цах 1, 2 и 3. На Рис. 2 можно увидеть распределение фотонности –
степени уверенности нейронной сети в том, что данное событие яв-
ляется фотоном.
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Точность Точность Верхняя
Граница классификации классификации граница
классификации фотонов протонов потока
0.5 0.92 1− 6.2× 10−2 0.082

0.1 0.78 1− 1.7× 10−2 0.031

0.01 0.48 1− 5.0× 10−3 0.019

0.001 0.19 1 0.0077

0.0002 0.088 1 0.017

Таблица 2: Производительность классификатора на основе искус-
ственных нейронных сетей для набора событий с минимальной энер-
гией Emin = 31.6ЭэВ в зависимости от вероятностной границы раз-
деления типов частиц. Верхняя граница потока равна ∆γ

p

Точность Точность Верхняя
Граница классификации классификации граница
классификации фотонов протонов потока
0.5 0.93 1− 5.2× 10−2 0.097

0.1 0.73 1− 1.7× 10−2 0.057

0.01 0.35 1 0.037

0.001 0.057 1 0.23

Таблица 3: Производительность классификатора на основе искус-
ственных нейронных сетей для набора событий с минимальной энер-
гией Emin = 100ЭэВ в зависимости от вероятностной границы раз-
деления типов частиц. Верхняя граница потока равна ∆γ

p
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Рис. 2: Распределение нового параметра – результата работы класси-
фикатора – фотонности. Видно, что фотонность для фотонов и про-
тонов существенно различается.

3. Результаты

В данной работе разработан классификатор между различными ти-
пами частиц для данных обсерватории Telescope Array, а также раз-
работан алгоритм, позволяющий оценить верхнюю границу пото-
ка фотонов. Для используемых результатов Монте-Карло моделиро-
вания, в зависимости от минимального значения энергии, верхние
оценки потока, определяемого данным алгоритмом, составляют:

1. Emin = 10ЭэВ. Верхняя граница на потокфотонов ∆γ

p = 0.0014.

2. Emin = 31.6ЭэВ. Верхняя граница на поток фотонов ∆γ

p =

0.0077.

3. Emin = 100ЭэВ. Верхняя граница на потокфотонов ∆γ

p = 0.037.
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После дополнительного тестирования метод будет представлен
коллаборации Telescope Array с целью получения разрешения на ис-
пользование данных установки.

Еще одним направлением развития данной работы может быть
использование исходных, не реконструированных, показаний детек-
торов в качестве входных данных классификатора. Данное измене-
ние существенно повысит вычислительную сложность алгоритмов
машинного обучения, однако может улучшить точность классифи-
кации, а значит, уменьшить верхнюю границу потока.
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