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1 Введение.

Неоднородности плотности вещества и метрики играют значитель-

ную роль в космологии. Если бы первичные возмущения отсутствовали,

то Вселенная оставалась бы абсолютно однородной и изотропной, в ней

никогда не появились бы структуры (галактики, скопления галактик и

т.д.). Характер эволюции возмущений зависит от их начального спек-

тра, а так же зависит от свойст среды и темпа расширения Вселенной

на различных космологических этапах. Наличие первичных возмуще-

ний во Вселенной хорошо объясняет теория инфляции, в рамках кото-

рой неоднородности развиваются из квантовых флуктуаций инфлатон-

ного поля. Обычно возмущения раскладывают на скалярные (нулевая

спиральность), векторные (спиральность 1) и тензорные (спиральность

2). Некоторые инфляционные теории дают характеристики скалярных

и тензорных возмущений, которые хорошо согласуются с современны-

ми результатами эксперимента [1]. Что касается векторных возмущений,

то практически во всех моделях они убывают и достаточно быстро ста-

новятся пренебрежимо малыми. Такое поведение векторных мод носит

общий характер для инфляционных моделей. Однако, есть целый класс

моделей, для которых отличительной чертой является заметный вклад

векторных мод [2, 3, 4, 5].

2 Модели с космологическими дефектами.

Естественно предположить, что в результате расширения и остыва-

ния Вселенной, на различных этапах в результате фазовых переходов

формировались космологические дефекты, которые наравне с кванто-

выми флуктуациями инфлатонного поля могли служить источниками
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неоднородностей [2, 6]. Модели с космологическими дефектами, так же

как и инфляционные, предсказывают практически плоский спектр воз-

мущений, что хорошо согласуется с современными экспериментальными

данными [1]. Однако, спектры реликтового излучения для случая мо-

делей с дефектами отличаются от полученных в моделях инфляции в

области акустических пиков. Пики оказываются сдвинутыми в область

больших мультиполей и имеют меньшую амплитуду, что является при-

знаком мод постоянной кривизны [7, 8]. Однако, поскольку допустимо

присутствие небольшой доли мод постоянной кривизны (∼ 4%) [1], де-

фекты могут рассматриваться в качестве дополнительных источников

возмущений. Другим отличием моделей с космологическими дефектами

от инфляционных является непрерывная генерация возмущений на всех

этапах развития Вселенной. Согласно инфляционному механизму, кван-

товые флуктуации инфлатонного поля усиливаются за счет ускоренного

расширения Вселенной и подчиняются однородным уравнениям, линей-

ным по возмущениям. В моделях с космологическими дефектами воз-

мущения генерируются на всех стадиях и подчиняются неоднородным

уравнениям. Как правило, дефекты описываются нелинейными уравне-

ниями, что затрудняет аналитическое решение задачи. Следует отме-

тить, что в моделях с постоянной генерацией возмущений все три типа

возмущений вносят заметный вклад. Наличие неубывающих векторных

мод является отличительной чертой моделей с дефектами.

В качестве дополнительных источников можно рассматривать любую

неоднородно распределенную форму энергии, которая дает небольшой

вклад в суммарную плотность энергии вещества во Вселенной. Само-

организующееся многокомпонентное скалярное поле является одним из

примеров космологических дефектов. Привлекательность этой модели в
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том, что, в зависимости от количества компонент у скалярного поля, в

результате спонтанного нарушения симметрии модели будут формиро-

ваться топологические (N ≤ 4) или нетопологические (N > 4) дефекты.

Случай N > 4 хорош тем, что уравнения движения для скалярного поля

решаются аналитически, в отличие от случая топологических дефектов.

Данный вид дополнительных источников возмущения хорошо вписыва-

ется в инфляционную концепцию. Например, результаты коллаборации

BICEP2 для B-моды поляризации реликтового излучения [9] лучше объ-

ясняются с точки зрения модели, где на фоне инфляции присутствует

дополнительное самоорганизующееся скалярное поле, также выступаю-

щее источником возмущений [10], чем если описывать результаты чисто

инфляционной теорией. Другим примером необходимости учета возмож-

ного наличия космологических дефектов является генерация гравитаци-

онных волн. Было показано, что в рамках модели самоорганизующегося

скалярного поля генерируются гравитационные волны с плоским спек-

тром [11, 12]. Поскольку экспериментальное обнаружение гравитацион-

ных волн было бы серьезным аргументом в пользу теории инфляции,

необходимо учитывать, что посторонние источники могут давать свой

вклад в спектр мощности, который необходимо будет выделить из об-

щего результата. Подобный анализ проведен для самоорганизующегося

скалярного поля, например, в [13].

Рассмотрим безмассовое N–компонентное скалярное поле Φ с потен-

циалом V (Φ) = λ/4 · (Φ2 − v2)2, где v - вакуумное значение поля Φ. Пусть

в некоторый момент времени (T � v) происходит фазовый переход, в

результате которого O(N)-симметрия системы спонтанно нарушается до

O(N − 1). Будем считать, что фазовый переход происходит после окон-

чания инфляции. Это равносильно условию H � v. Скалярное поле
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фиксируется на вакуумном многообразии с помощью условия Φ†Φ = v2.

Поскольку фазовый переход происходит после окончания инфляции, до

фазового перехода направление поля произвольно меняется от точки к

точке. После нарушения симметрии системы, поле в причинно-связанных

областях переориентируется, так чтобы система обладала минимальной

энергией. При этом направления Φ(x, η) и Φ(x′, η) в точках вакуумного

многообразия, расстояние между которыми превышает размер горизонта

|x′−x| > H−1, не скоррелированы вследствие причинной несвязанности.

Иными словами, за горизонтом направление поля изменяется случайным

образом от точки к точке, а под горизонтом поле полностью упорядоче-

но. С образовавшимися в результате спонтанного нарушения симметрии

N − 1 голдстоуновскими бозонами связана энергия ρ ∼ (∇Φ)2. По ме-

ре того как Вселенная расширяется, под горизонт входят новые области,

где поле может быть направлено произвольным образом. Стремясь к ми-

нимуму энергии, поле переориентируется так, чтобы в рамках причинно-

связанной области оно было упорядочено. Вследствие такой перестрой-

ки выделяется энергия и образуются неоднородности плотности энергии

фонового вещества. Также генерируются возмущения метрики, где век-

торные возмущения оказываются существенными. Их вклад в B-моду

поляризации фотонов оказывается больше вклада от тензорных возму-

щений [10] (то же оказывается справедливым для вклада в анизотропию

температуры [14]).

3 Анизотропия реликтового излучения.

Современная Вселенная заполнена газом невзаимодействующих фо-

тонов – реликтовым излучением. Реликтовое излучение является одним
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из ценнейших источников данных в космологии. С одной стороны, неод-

нородности температуры и поляризации фотонов малы, что позволяет

описывать их в рамках линейной теории возмущений. С другой сторо-

ны, анизотропии фотонного газа были с высокой степенью точности из-

мерены целым рядом различных экспериментов [1, 15, 16]. Самые ак-

туальные результаты опубликованы коллаборацией Planck [16]. Анизо-

тропия реликтового излучения содержит важную информацию о состо-

янии Вселенной эпохи рекомбинации и последующих этапах развития.

После рекомбинации, происходящей при температуре T ' 0, 25, Вселен-

ная становится практически прозрачной для фотонов первичной плазмы.

С этого момента и до сегодняшнего дня эти фотоны распространяются

во Вселенной практически свободно (их длина свободного пробега вели-

ка по сравнению с размером горизонта H−1
0 ). Распределение фотонов по

энергиям имеет тепловой планковский спектр, характеризуемый средней

температурой фотонов

T0 = 2, 725± 0, 001K.

Экспериментально установлено, что средняя температура и поляризация

зависят от направления прихода фотонов. Наибольшая угловая вариа-

ция температуры δT/T ∼ 10−3 имеет дипольный характер и связана с

движением Земли. Более мелкая структура вариации имеет амплитуду

δT/T ∼ 10−5 и является основным объектом исследования.

Данные по изучению зависимости температуры реликтового излу-

чения от направления прихода фотона n представляют в виде зави-

симости T0(n), а также вводят отклонение T0(n) от среднего значения

δT0(n) ≡ T0(n) − T0. Относительную флуктуацию температуры раскла-

дывают по сферическим гармоникам Ylm(n), которые образуют полную
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систему на сфере,

δT0(n)

T0

=
∞∑
l=1

m=l∑
m=−l

almYlm(n), (1)

где коэффициенты разложения alm удовлетворяют условию действитель-

ности a∗l,m = (−1)mal,−m и статистической независимости для различных

l и m 〈alma∗l′m′〉 = Cl · δll′δmm′ (следствие гауссовости флуктуаций темпе-

ратуры). Предположение, что флуктуации температуры δT (n) являются

случайным гауссовым полем, согласуется с наблюдательными данными.

Сами коэффициенты alm дают представление об амплитуде флуктуаций

на угловых размерах ∼ π/l. Для коэффициентов Cl справедливо выра-

жение

Cl =
1

2l + 1

∫
d3k

m=l∑
m=−l

〈
|alm(k)|2

〉
. (2)

Они определяют корреляцию между флуктуациями температуры в раз-

ных направлениях

〈δT (n′)δT (n′′)〉 =
∑
l

2l + 1

4π
Cl Pl(cos θ), (3)

где Pl – полиномы Лежандра, θ – угол между направлениями n′ и n′′. По-

лучение результатов рассчета для флуктуации температуры фотонов в

терминах Cl удобно, поскольку экспериментальные данные, как правило,

представлены в виде зависимости величины l(l+ 1)Cl от l. Характер за-

висимости Cl от мультиполей l, определяется рядом параметров ранней

Вселенной, поэтому измерение спектра анизотропии несет космологиче-

ски важную информацию.

В работе основное внимание будет уделено вкладу в анизотропию

температуры реликтового излучения от эффекта Доплера, вычисленно-

го для векторных возмущений в рамках модели с самоорганизующимся

скалярным полем на фоне инфляции. Вклад векторных возмущений в
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эффект Доплера для малых l будет вычислен для двух сценариев с раз-

личным временем фазового перехода (после окончания инфляции и во

время инфляции). Это позволит, исходя из вычисленных спектров мощ-

ности флуктуации температуры, получить ограничение для вакуумного

среднего скалярного поля v и параметра Хаббла H в конце эпохи инфля-

ции.

Мы будем рассматривать плоскую Вселенную с метрикой Фридмана-

Робертсона-Уокера ds2 = a2(η)·ηµν dxµ dxν , где ηµν = diag(+1,−1,−1,−1),

η – конформное время. Параметр Хаббла в терминах конформного вре-

мени: H = a′/a2, где штрих обозначает производную по конформному

времени.

4 Модель со скалярным полем с нарушенной

симметрией O(N).

4.1 Решение уравнения движения.

Лагранжиан теорииN−компонентного безмассового скалярного поля

Φ = (φ1, φ2, . . . , φN), обладающего O(N)–симметрией

L =
1

2

N∑
α=1

∂µφα∂
µφα −

λ

4

(
N∑
α=1

φαφα − v2

)2

. (4)

Будем рассматривать случай N > 4, когда в пространстве размерно-

сти 3 + 1 не возникает топологических дефектов. Также будем считать,

что фазовый переход со спонтанным нарушением O(N)-симметрии до

O(N − 1) происходит после окончания инфляции. Образовавшиеся гол-

дстоуновские бозоны описываются нелинейной сигма-моделью, где усло-

вие фиксации поля на вакуумном многообразии ((N − 1)–мерной сфере)
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N∑
α=1

φ2
α = v2 вводится с помощью множителя Лагранжа [17]

L̃ =
1

2

N∑
α=1

∂µφα∂
µφα +

λ

2

(
N∑
α=1

φ2
α − v2

)
. (5)

Варьируя (5) по φ и λ и вводя обозначение βα ≡ φα/v, получим урав-

нение для нормированных компонент поля Φ

�βα + (∂µβ · ∂µβ)βα = 0, (6)

где

(∂µβ · ∂µβ) =
∑
α

gµν∂µβ
α(x, η)∂νβ

α(x, η), (7)

∑
α

βα(x, η)βα(x, η) = 1. (8)

Полученное уравнение нелинейно, но в пределе больших N нелиней-

ный член можно заменить его средним по ансамблю от одной из компо-

нент поля [18]∑
α

gµν∂µβ
α(x, η)∂νβ

α(x, η) = N
〈
gµν∂µβ

1(x, η)∂νβ
1(x, η)

〉
= w2(η). (9)

В последнем равенстве (9) среднее по ансамблю заменено пространствен-

ным средним (эргодическая гипотеза). Т.к. из размерных соображений

w2(η) может быть пропорционально a ·H2 и a ·H ′, то

w2(η) = w2
0 η
−2, (10)

где w2
0 – действительная положительная константа, которая находится

самосогласованно.

Заменяя нелинейный член в (6) и переходя к Фурье-представлениям,

получим

η2β′′α + 2γηβ′α + (k2η2 − w2
0)βα = 0, (11)

9



где штрихи обозначают производную по конформному времени, а γ = d log a
d log η

.

На радиационно-доминированной стадии γRD = 1, а на пылевидной ста-

дии γMD = 2. В результате применения приближения (9), полученное

уравнение движения для нормированного поля β можно решить точно.

Общий вид решения уравнения (11)

βα(k, η) = (kη)
1
2
−γ [C1Jν(kη) + C2Yν(kη)] , (12)

где

ν2 =

(
1

2
− γ
)2

+ w2
0. (13)

Выбирая ν > 0 и учитывая, что в таком случае Yν(kη) расходится при

малых значениях аргумента, получим

βα(k, η) = (kη)
1
2
−γCkJν(kη), (14)

где Ck = Ck(k) находится из начальных условий и не зависит от η.

Как отмечалось выше, в случае фазового перехода после окончания

инфляции, поле βα под горизонтом упорядочено, а за горизонтом имеет

произвольное направление в различных точках. Это соответствует на-

чальным условиям

〈βa(k, η∗)βb(k′, η∗)〉 =


C

(2π)3
δab δ(k + k′) , kη∗ ≤ 1

0 , kη∗ > 1,

(15)

где η∗ – начальный момент времени сразу после фазового перехода, а

константа C находится из условия β2 = 1. Вообще говоря, условие (5)

накладывает связь между различными компонентами βα, но это вносит

малые поправки, которыми мы будем пренебрегать. Будем считать, что

поле β является гауссовым [19]. Это позволит вычислять корреляторы

более высоких порядков с помощью теоремы Вика.

10



Из условия нормировки β2 = 1 получаем выражение для C

β2(x, η∗) ≡
〈
β2(x, η∗)

〉
'
∫
d3k d3k′ 〈βα(k, η∗)βα(k′, η∗)〉 eix(k+k′) =

=
C

6π2η3
∗

= 1, (16)

откуда C = 6π2η3
∗.

Величины Ck, входящие в (14), имеют явный вид

Ck(k) =
βα(k, η∗)

(kη∗)
1
2
−γ Jν(kη∗)

' βα(k, η∗)

(kη∗)
1
2
−γ (kη∗)ν

. (17)

Чтобы вакуумное среднее v не зависело от времени и решение (14) было

нормировано на 1, 〈β2(k, η)〉 = 1, необходимо потребовать:

〈
β2(k, η)

〉
= 6π2η3

∗ A

∫
d3k

(2π)3

(
η

η∗

)(1−2γ)
J2
ν (kη)

(kη∗)2ν
'

' 3A

(
η

η∗

)2(1+γ−ν)
∞∫

0

dyy2(1−ν)J2
ν (y) = 1, (18)

где добавлен нормировочный множитель A. Из условия (18) получаем

ν = γ + 1, (19)

A =
4Γ(2ν − 1/2) Γ(ν − 1/2)

3Γ(ν − 1)
. (20)

Учитывая (13), находим явный вид константы w2
0

w2
0 = 3(γ + 1/4). (21)

Из начального условия для βα(k, η), (16) и (17), следует начальное

условие на Ck

〈Ck Ck′〉 =


1

(2π)2
6π2

k3
δ(k + k′) , kη∗ ≤ 1

0 , kη∗ > 1.

(22)

В результате, решение (14) можно представить в виде

βα(k, η) =
√
A(kη)

1
2
−γCkJν(kη). (23)
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4.2 Тензор энергии-импульса скалярного поля φα.

В терминах нормированного поля βα тензор-энергии импульса имеет

вид

Θµν(β) = v2

[
∂µβ

α∂νβ
α − 1

2
gµν∂λβ

α∂λβα
]

(24)

Разложим тензор энергии-импульса по спиральным компонентам кос-

мологических возмущений. В рамках линейной по возмущениям теории

уравнения для различных спиральностей разделяются на независимые

и могут быть решены поотдельности. Везде далее, если не оговорено об-

ратное, выражения записаны в Фурье-представлении, k – конформный

импульс, k = |k|.

В векторном секторе компоненты Θµν(β) имеют вид

Θ
(V )
00 (β) = 0 , Θ

(V )
0i (β) = −v

2

a2
w

(v)
i ,

Θ
(V )
ij (β) = −v2 i

2

(
w

(π)
i kj + w

(π)
j ki

)
, (25)

где w(v)
i и w(π)

i – поперечные векторы (kjw(v)
j = kjw

(π)
j = 0), соответствую-

щие вкладам векторных возмущений в скорость потока частиц и тензор

анизотропных натяжений.

Найдем как ведут себя векторные возмущения метрики в присутствии

источников в виде скалярного поля βα. Запишем явный вид возмущен-

ной метрики Фридмана–Робертсона–Уокера в конформной ньютоновой

калибровке

ds2 = a2[(1 + 2(Ψs + Ψf ))dη
2−

− (1 − 2(Φs + Φf ))δijdx
idxj − 2Σidtdx

i + 2hijdx
idxj]. (26)

В (26) величины Φs и Ψs относятся к вкладу в гравитационные потенци-

алы от скалярного поля, а Φf и Ψf описывают вклад в возмущения от

12



доминирующего вещества и других типов материи (радиации и пыли); Σi

и hij описывают векторные и тензорные возмущения метрики, которые

также являются суммой двух компонент от разных источников. Т.к. нас

интересуют только векторные возмущения, выпишем возмущения мет-

рики в векторном секторе:

h
(V )
00 = 0, h

(V )
0i = −Σi, h

(V )
ij = 0. (27)

Уравнения Эйнштейна, записанные в линейном порядке по возмущени-

ям, для векторных мод Σ
(s)
i (k, η)

(0i) : − k2Σ
(s)
i = 4εw

(v)
i , (28)

(ij) : ∂0Σ
(s)
i + 2

a′

a
Σ

(s)
i = −2εa2w

(π)
i , (29)

где ∂0 означает производную по конформному времени и введен малый

параметр ε = 4π Gv2. Уравнениe (28) следует рассматривать как опреде-

ление Σ
(s)
i (k, η), поскольку, вообще говоря, уравнения Эйнштейна долж-

ны записываться для суммы вкладов от доминирующего вещества и до-

полнительных источников.

Для получения выражения для Σ
(s)
i достаточно получить явный вид

источников в правой части уравнений (28). Поскольку Θµν(β) не содер-

жит фоновой составляющей, тензор энергии-импульса поля β в линейном

порядке по возмущениям удовлетворяет невозмущенному закону ковари-

антного сохранения. Выразим w
(v)
i из (25):

w
(v)
i = −a

2

v2
Θ0i(β) (30)

Из (24) следует

w
(v)
i (k, η) = −

∫
d3q(−iqi)∂0β(k− q, η) · β(q, η), (31)

13



поскольку при переходе к Фурье-представлению, произведение полей,

входящее в тензор-энергии, превращается в свертку. Зная w(v)
i , с помо-

щью ковариантного сохранения Θµν можно найти выражение w(π)
i . При-

ведем здесь только закон сохранения, связывающий w(π)
i и w(v)

i :

∂0w
(v)
i + 4

a′

a
w

(v)
i −

1

2
4 w

(π)
i = 0. (32)

Явное выражения для w(π)
i нам не понадобится.

5 Вклад в анизотропию температуры релик-

тового излучения от векторных возмуще-

ний.

В этом разделе будет получен вклад от векторных возмущений мет-

рики Σi в выражение для относительного отклонения температуры ре-

ликтового излучения от среднего значения. При вычислении отклонения

температуры будет использовано приближение мгновенного отщепления

фотонов, в рамках которого фотоны первичной плазмы описываются

приближением идеальной жидкости вплоть до момента рекомбинации.

После отщепления фотоны движутся по геодезическим. Взаимодействия-

ми фотонов в пострекомбинационной Вселенной мы будем пренебрегать.

Вычисления аналогичны проделанным в [20].

В силу инвариантности действия для безмассовых частиц относитель-

но преобразований gµν → a2gµν , ds → a2ds, геодезические xµ(τ), вычис-

ленные в конформных координатах, совпадают с геодезическими xµ(λ),

вычисленными в пространстве-времени с метрикой γµν = gµν/a
2. Поэто-

му для удобства дальнейшие вычисления будут проводиться в метрике
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γµν , при этом в качестве времени, координат и импульсов будут пони-

маться конформные величины.

Траектория движения фотона является решением уравнения геоде-

зической
d2x

dλ2
+ Γµνρ

dxν

dλ

dxρ

dλ
= 0, (33)

где λ – параметр вдоль мировой линии, а символы Кристоффеля Γµνρ

вычисляются по метрике γµν = ηµν + hµν .

С учетом определения импульса фотона

Pµ =
dxµ

dλ
, (34)

получим из (33) уравнения для нулевой компоненты импульса:

dP 0

dη
+ Γ0

νρ

P ν

P 0

P ρ

P 0
= 0 , (35)

где Pµ зависит от конформного времени, а не от параметра λ вдоль тра-

ектории
dPµ
dλ

=
dx0

dλ

dPµ
dx0

= P0
dPµ
dη

. (36)

Символы Кристоффеля, вычисленные по метрике γµν , в линейном по-

рядке по возмущениям с учетом (27):

Γ0
00 =

1

2
∂0h00 = 0, Γ0

0i =
1

2
∂ih00 = 0,

Γ0
ij =

1

2
[∂ih0j + ∂jh0i − ∂0hij] = −1

2
[∂iΣj + ∂jΣi] .

(37)

Из (33) следует, что в нулевом порядке по возмущениям P0 = const и Pi =

const, а ni = Pi/P0 соответствует единичному вектору в направлении

движения фотона. Тогда (35) принимает вид:

dP 0

dη
− 1

2
[∂iΣj + ∂jΣi]n

injP0 = 0 . (38)
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Проинтегрируем (38) вдоль траектории фотона:

P 0(η0)− P 0(ηr)

P 0(ηr)
=

η0∫
ηr

1

2
ni[∂iΣj + ∂jΣi]n

jdη (39)

Связь частоты фотона, его 4-импульса и скорости, справедливая в про-

извольной системе отсчета [20]:

Ω = UµP
µ. (40)

В линейном порядке по возмущениям U
(V )
0 = 1, U (V )

i = −vi, где vi -

возмущение скорости. Тогда

Ω = P 0(1− vini). (41)

Относительная разность частот фотона, испущенного в направлении n

в момент времени ηr и поглощенного в момент времени η0:

Ω(n, η0)− Ω(n, ηr)

Ω(n, ηr)
=

1

2

η0∫
ηr

ni[∂iΣj + ∂jΣi]n
jdη + nv(ηr)− nv(η0). (42)

Относительный сдвиг конформной частоты оказался пропорциональным

самой частоте, поэтому форма спектра фотонов после отщепления оста-

нентся неизменной. Следовательно, в расширяющейся Вселенной физи-

ческий спектр фотонов - планковский с T ∝ 1/a. Формула для относи-

тельного изменения температуры имеет такой же вид, как и (42). С уче-

том

ni =
P i

P 0
=
dxi

dλ

dλ

dx0
=
dxi

dx0
, (43)

выражение для относительной флуктуации температуры в случае век-

торных возмущений принимает вид:

δT

T
(n, η0) = nv(ηr) +

η0∫
ηr

∂0Σjn
jdη. (44)
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Первое слагаемое в (44) соответствует эффекту Доплера, второе слага-

емое является аналогом интегрального эффекта Сакса-Вольфа для век-

торных мод. В выражении (44) опущено слагаемое nv(η0), которое также

обусловлено эффектом Доплера и возникает из-за движения Земли от-

носительно реликтового излучения. Этот вклад не несет космологически

интересной информации и вычитается при анализе анизотропии темпе-

ратуры. Скорость v, входящюю в (44), можно вычислить из закона ко-

вариантного сохранения тензора энергии-импульса, включающего в себя

вклады от скалярного поля β и барион-фотонной плазмы.

5.1 Вычисление скорости фотонов в момент реком-

бинации.

Отщепление фотонов происходит на материально-доминированной ста-

дии, когда поведение масштабного фактора определяется доминирую-

щим веществом – пылью, а скалярное поле β и барион-фотонная плаз-

ма считаются субдоминантными компонентами. До рекомбинации фо-

тоны, электроны и барионы активно взаимодействуют, вследствие че-

го можно считать барион-фотонную плазму единой средой в том смыс-

ле, что скорости барионной (B) и фотонной (γ) компонент совпадают:

vB = vγ = v(Bγ). Такое приближение справедливо до момента рекомбина-

ции для мод с достаточно большой длиной волны (k ≥ 30/ηr) [20]. Таким

образом, до момента рекомбинации можно описывать барион фотонную

плазму в рамках приближения идеальной жидкости, с учетом равенства

скоростей двух компонент.

Для барион-фотонной плазмы на пылевидной стадии справедливы

законы ковариантного сохранения как для суммы вкладов барионов и

фотонов, так и по отдельности. Последнее является следствием того,

17



что барионы на интересующей нас стадии являются нерелятивистскими.

Поэтому перенос энергии от фотонов к барионам и наоборот отсутствует,

а следовательно ковариантный закон сохранения энергии выполняется

по отдельности для барионов и фотонов.

Записывая закон сохранения тензора энергии-импульса, включающе-

го в себя вклады от барион-фотонной компоненты и скалярного поля β,

можно выразить возмущения скорости фотонов в момент рекомбинации

- v(ηr).

Ковариантное сохранение тензора энергии-импульса (пространствен-

ная компонента):

∇µT
µ
i = ∂µT

µ
i + ΓµµλT

λ
i − ΓλµiT

µ
λ , (45)

T µi = Θi
µ(β) + T µi (B) + T µi (γ). (46)

Символы Кристоффеля для метрики gµν = a2(ηµν + hµν):

Γ0
0i =

1

2
∂ih00 −

a′

a
h0i , Γk0i =

a′

a
δki −

1

2
h′ik +

1

2
(∂kh0i − ∂ih0k) , (47)

Γ0
ji =

a′

a
(1− h00)δij −

a′

a
hij −

1

2
h′ij +

1

2
(∂ih0j + ∂jh0i) , (48)

Γkji = −1

2
(∂jhki + ∂ihkj − ∂khij) +

a′

a
hk0 δ

i
j , (49)

Γµµ0 = 4
a′

a
+

1

2
h′00 −

1

2
h′ii , Γµµj =

1

2
∂jh00 −

1

2
∂jhii . (50)

Здесь учтены члены нулевого и первого порядка малости.

Для векторного сектора сумма тензоров энергии-импульса барион-

фотонной плазмы и скалярного поля β имеет вид:

T
(V )
00 = ρ, T

(V )
0i = −(ρ+ p)vi −M2ω

(v)
i ,

T
(V )
ij = −p δij −

M2

2
[∂iω

(π)
j + ∂jω

(π)
i ] ,

(51)
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где ρ = ρB + ργ, p = pγ = 1
3
ργ.

Подставляя (47)-(50) и (51) в (45), а также используя закон ковари-

антного сохранения (32) для ω(π)
i , получим:

∂0((ρ+ p)vi) + 4
a′

a
(ρ+ p)vi = −a

′

a
(ρ+ p)Σi (52)

Учитывая законы сохранения энергии для барионов ρ′B = −3a
′

a
ρB и

фотонов ρ′γ = −4a
′

a
ργ, преобразуем (52) к виду

v′i(Bγ) +
a′

a

RB

1 +RB

vi(Bγ) = −a
′

a
Σi , (53)

где введено обозначение RB(η) = 3ρB
4ργ

. Оценка численного значения вели-

чины RB на момент последнего рассеяния фотонов [20]: RB(ηr) = 0, 48.

Совершая замену RB(η) = RB(ηr)
a(η)
a(ηr)

, где ηr – момент рекомбинации,

находим решение уравнения (53)

vBγi (k, η) = − 2(
RB(ηr)

(
η
ηr

)2

+ 1

) η∫
0

dη′

η′

(
RB(ηr)

(
η′

ηr

)2

+ 1

)
Σi(k, η

′),

(54)

где мы воспользовались известным поведением масштабного фактора на

пылевидной стадии: a = const · η2. Скорость фотонов в момент рекомби-

нации дается выражением

vBγi (k, ηr) = − 2

(RB(ηr) + 1)

ηr∫
0

dη

η

(
RB(ηr)

(
η

ηr

)2

+ 1

)
Σi(k, η), (55)

Интеграл по конформному времени в vBγi можно вычислить аналити-

чески. Для это нужно выразить Σi(k, η) в терминах поля β. Используя

(28), (31) и (23), перепишем Σi(k, η) в виде

Σi(k, η) = −4ε

k2
A

∫
d3q(−iqi)CqCk−qq1/2−γ|k− q|3/2−γη1−2γ×

× Jν(qη)

[
3

2

Jν(|k− q|η)

(|k− q|η)
− Jν+1(|k− q|η)

]
, (56)
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где использовались (19) и рекуррентное соотношения для производной

функции Бесселя d
dx
Jν(x) = ν

x
Jν(x)− Jν+1(x). В результате из (55) полу-

чим выражение для скорости vBγi

vBγi (k, ηr) =
8Aε

(RB(ηr) + 1)

1

k2

∫
d3q(−iqi)CqCk−qq1/2−γ|k− q|3/2−γ×

×
ηr∫

0

dη

η2γ

(
RB(ηr)

(
η

ηr

)2

+ 1

)[
3

2

Jν(|k− q|η)

(|k− q|η)
Jν(qη)− Jν+1(|k− q|η) Jν(qη)

]
.

(57)

Рассмотрим большие угловые масштабы, когда lηr/η0 ≤ 1. Поскольку

сферическая функция Бесселя jl(kη0) близка к нулю при kη0 < l и убы-

вает при kη0 � l, то основной вклад возмущений с длинами волн 2π/k

приходится на угловые гармоники l ∼ kη0. Тогда для больших угловых

масштабов kηr ≤ 1. Моды с соответствующими k входят под горизонт

на пылевидной стадии (γ = 2, ν = 3). Поскольку в (57) kη < kηr ≤ 1,

то для функций Бесселя справедлива асимптотика при малых значениях

аргумента

Jν(x)→ 1

Γ(ν + 1)

(x
2

)ν
. (58)

Тогда в приближении l ≤ 50, заменяя функции Бесселя степенными

функциями,

vBγi (k, ηr) =
8Aε

(RB(ηr) + 1)

1

k2

∫
d3q(−iqi)CqCk−qq−3/2|k− q|−1/2×

×
ηr∫

0

dη

η4

(
RB(ηr)

(
η

ηr

)2

+ 1

)[
3

2

|k− q|2η2

3!23

q3η3

3!23
− |k− q|4η4

4!24

q3η3

3!22

]
. (59)

Интеграл по конформному времени теперь можно вычислить аналити-
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чески

vBγi (k, ηr) =
Aε

3(RB(ηr) + 1)

1

27 k2

∫
d3q(−iqi)CqCk−q(q |k− q|)3/2η2

r×

×
[
RB(ηr)

2
+ 1− |k− q|2η2

r

12

(
RB(ηr)

3
+

1

2

)]
(60)

5.2 Вклад эффекта Доплера в спектр анизотропии

температуры реликтового излучения.

Вычислим вклад в коэффициенты Cl от эффекта Доплера (44) на

больших угловых масштабах. Выберем систему отсчета с центром в точ-

ке наблюдения и обозначим за n вектор в направлении наблюдения. По-

скольку до этого n обозначал направление движения фотона, введем

обозначение

Θ0(n) ≡ δT

T
(−n, η0). (61)

Совершая Фурье-преобразование и используя новое обозначение (61),

эффект Доплера в (44) примет вид

Θ0(n) =

∫
d3kei(η0−ηr)nknivBγi (k, ηr) , (62)

где учтено, что в правой части (44) vBγi = vBγi (ηr, (η0 − ηr)n). Для

плоской волны справедливо представление в виде ряда по полиномам

Лежандра:

ei(η0−η)knkn =
∞∑
l=0

il(2l + 1)jl((η0 − η)k)Pl(nnk) , (63)

где nk = k/k, jl(x) - сферическая функция Бесселя порядка l.
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Из (1) и (62) получим выражение для коэффициентов alm(k)

alm(k) =

∫
dnY ∗lm(n)

∞∑
l′=0

il
′
(2l′ + 1)Pl′(nnk)jl′((η0 − ηr)k)ni vBγi (k, ηr) .

(64)

Введем помимо заданного вектора k два единичных вектора e(1) и

e(2), которые ортогональны k, друг другу и образуют правую тройку.

Поперечный вектор Σi можно представить в виде разложения по поля-

ризациям

Σi = Σ+e
+
i + Σ−e

−
i , (65)

где e± = e(1) ± ie(2). Поскольку Σi и vBγi связаны уравнением (55), то

раскладывая Σi по поляризациям, мы автоматически раскладываем по

поляризациям vBγi :

vBγi = vBγ+ e+
i + vBγ− e−i . (66)

Подставляя в (64) разложение (66), получим

alm(k) =

∫
dnY ∗lm(n)

∞∑
p=0

ip(2p+1)Pp(nnk)jp((η0−ηr)k) (vBγ+ e+
i ni+v

Bγ
− e−i ni).

(67)

Подынтегральное выражение в (2) не зависит от направления вектора

k, поэтому вычисления в (67) можно проводить в произвольной систе-

ме координат. Выберем сферическую систему координат (θ, ϕ), с осью

направленной вдоль nk. Тогда k = (0, 0, k), nnk = cos θ, а свертки с

векторами поляризации принимают вид

ni e
+
i = sin θ eiϕ , ni e

−
i = sin θ e−iϕ . (68)

Сферические гармоники можно записать через полиномы Лежандра:

Ylm(θ, ϕ) = (−1)
m+|m|

2 ·

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

sin|m| θ · d
|m|Pl(cos θ)

(d cos θ)|m|
· eimϕ. (69)
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Подставляя (68), (69) в (67) и переходя к интегрированию по (θ, ϕ), вы-

пишем получшившиеся интегралы по угловым координатам

2π∫
0

dϕe−imϕ e±iϕ = − 1

i(m± 1)

(
e−i(m±1) 2π − e−i(m±1) 0

)
, (70)

π∫
0

dθ sin θ sin2 θ
dPl(cos θ)

d(cos θ)
Pl′(cos θ) =

= δl−1,l′
2l(l + 1)

(2l + 1)(2l − 1)
− δl+1,l′

2l(l + 1)

(2l + 1)(2l + 3)
. (71)

Из (70) следует, что интеграл по ϕ отличен от нуля только при m = ±1.

Из (71) получаем связь между l′ и l. C учетом ограничений на l, m и из-

вестных рекуррентных соотношений для сферических функций Бесселя

jl−1(x) + jl+1(x) =
2l + 1

x
jl(x),

коэффициенты alm принимают вид

al,±1(k) = il+1 4π

√
2l + 1

4π

(l + 1)!

(l − 1)!

jl((η0 − ηr)k)

(η0 − ηr)k
[(m+ 1)v+ − (m− 1)v−] .

(72)

Подставляя (72) в (2),

l(l + 1)Cl = l2(l + 1)2

∞∫
0

dk k2 26π2

(
jl((η0 − ηr)k)

(η0 − ηr)k

)2 ∑
A=+,−

〈vAv∗A〉 . (73)

Используя найденное решение для vBγi (60) в (73) и снимая суммирование
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по поляризациям,

l(l + 1)Cl = l2(l + 1)2 A2ε2π2

9(RB(ηr) + 1)2

η4
r

27

∞∫
0

dk

k2

(
jl((η0 − ηr)k)

(η0 − ηr)k

)2

×

×
∫
d3q(−iq1)(q |k− q|)3/2

[
RB(ηr)

2
+ 1− |k− q|2η2

r

12

(
RB(ηr)

3
+

1

2

)]
×

×
∫
d3p(−ip1)(p |−k−p|)3/2

[
RB(ηr)

2
+ 1− | − k− p|2η2

r

12

(
RB(ηr)

3
+

1

2

)]
×

× 〈CqCk−qCpC−k−p〉 . (74)

Поскольку поле β является случайной гауссовой величиной, то четы-

рехточечный коррелятор вычисляется с помощью теоремы Вика (то же

справедливо для коэффициентов Ck (17)). Тогда

〈CqCk−qCpC−k′−p〉 =
36π2

(2π)3

δ(k− k′)

q3|k− q|3
[δ(q + p) + δ(k − q + p)]. (75)

Представляя |k− q| =
√
k2 + q2 − 2kqµ, где µ = cos θ, имеем

l(l + 1)Cl =
ε2A2π

3(RB(ηr) + 1)2

η6
r

213
l2(l + 1)2

∞∫
0

dk

k2

(
jl((η0 − ηr)k)

(η0 − ηr)k

)2

×

×
1∫

−1

dµ

∞∫
0

dqq4(1−µ2)

[
RB(ηr)

2
+ 1− (k2 + q2 − 2kqµ)η2

r

12

(
RB(ηr)

3
+

1

2

)]
×

×
(
RB(ηr)

3
+

1

2

)
(2kqµ− k2) (76)

Переходя в (76) к интегрированию по qr ≡ qηr, необходимо учесть, что

на импульсы q в (59) также было наложено условие qηr ≤ 1. Интегралы

по qr и µ берутся аналитически:

l(l + 1)Cl =
ε2A2π

3(RB(ηr) + 1)2

ηr
213

l2(l + 1)2×

×
∞∫

0

dk

(
jl((η0 − ηr)k)

(η0 − ηr)k

)2
[
B +

1

45

(
RB(ηr)

3
+

1

2

)2

k2η2
r

]
, (77)
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где B =
(

1
63

+ 4
315

) (RB(ηr)
3

+ 1
2

)2

− 4
15

(
RB(ηr)

3
+ 1

2

)(
RB(ηr)

1
+ 1
)
.

В оставшемся интеграле по k сделаем замену u = kη0
l

и воспользу-

емся асимптотическим представлением сферической функции Бесселя

jl((η0 − ηr)k), справедливым для l ≥ 5

jl((η0 − ηr)k) =
1

l
√
u(u2 − 1)1/4

cos

{(
l +

1

2

)
Φ

[
u

(
1− ηr

η0

)]}
, (78)

где

u =
kη0

l + 1/2
, Φ(x) =

√
x2 − 1− arccos

(
1

x

)
− π

4
.

При интегрировании по u быстро осциллирующие функции усредняются:

cos2

{(
l +

1

2

)
Φ

[
u

(
1− ηr

η0

)]}
→ 1

2
.

Совершив все перечисленные замены в (77), интеграл сведется к виду

l(l + 1)Cl =
ε2A2π

3(RB(ηr) + 1)2

1

214

(l + 1)2

l

ηr
η0

1(
1− ηr

η0

)2

∞∫
1

du

u3
√
u2 − 1

×

×

[
B +

l2

45

(
RB(ηr)

3
+

1

2

)2(
ηr
η0

)2

· u2

]
. (79)

Интегрирование по k ведется по области kη0 > l. Окончательно получаем

для l(l + 1)Cl

l(l + 1)Cl =
(4πGv2)2A2π

3(RB(ηr) + 1)2

1

214

(l + 1)2

l

ηr
η0

1(
1− ηr

η0

)2×

×

[
B
π

4
+
l2

45

(
RB(ηr)

3
+

1

2

)2(
ηr
η0

)2
π

2

]
. (80)

Входящее в (80) отношение η0/ηr известно [20] (значение получено при

определенном выборе параметров):

η0

ηr
= 49, 5. (81)
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В (80) в явном виде присутствует вакуумное значение скалярного

поля φα, для которого было получено ограничение [12, 18, 22]. Одна-

ко, оценка является достаточно грубой, поскольку в выражении для v

фигурирует параметр, значение которого может меняться на несколько

порядков. Это не позволяет сделать вывод о действительном масштабе

v.

Получим ограничение на v из условия, что полученный вклад в ани-

зотропию от векторных возмущений должен быть меньше вклада от ска-

лярных возмущений. Для больших угловых масштабов известно анали-

тическое выражение для вклада скалярных возмущений в спектр анизо-

тропии температуры [20], при условии плоского спектра мощности пер-

вичных возмущений:

l(l + 1)Cl =
18π

100
AΦ, AΦ ≡ PΦ = 1, 1 · 10−9. (82)

Налагая условие (l(l + 1)Cl)V < (l(l + 1)Cl)S, имеем численную оценку

вакуумного среднего поля φα

v < 8 · 1016 ГэВ. (83)

В результате, ограничение совпадает по порядку с оценкой, приведенной

в [12].

6 Оценка параметра Хаббла в конце инфля-

ции.

В предыдущих разделах был рассмотрен случай, когда спонтанное

нарушение глобальной симметрии происходит после окончания инфля-

ции. В этом случае к моменту фазового перехода направления поля в
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различных точках могут сильно отличаться друг от друга (H � v).

Случай, когда H � v, соответствует фазовому переходу во время эпохи

инфляции. На ранних стадиях размер горизонта мал и в рамках неболь-

шой причинно-связанной области отклонения направления поля φa от

некоторого усредненного направления в различных точках будут малы.

Т.е. направление поля будет флуктуировать около фиксированного на-

правления. Таким образом, поле, находясь на (N−1)–мерной сфере после

нарушения симметрии, полностью упорядочено под горизонтом и испы-

тывает небольшие флуктуации для причинно-несвязанных точек.

Определим для этого случая величины βα как

βα =
φα − φ0

v
, (84)

где φ†0 = (0, 0, . . . , v) характеризует зафиксированное направление поля.

Величины βα по определению малы. В качестве спектра мощности пер-

вичных возмущений βα можно взять спектр скалярного поля на стадии

инфляции в режиме медленного скатывания [20]

Pϕ(k) =
H2
k

(2π)2
, (85)

где мы будем пренебрегать зависимостью параметра Хаббла от импульса,

т.е. Hk = H = const. В результате, начальные условия в виде двухточеч-

ного коррелятора для β имеют вид

〈βa(k, η∗)βb(k′, η∗)〉 =


H2

2(2π)3v2
1
k3
δab δ(k + k′) , kη∗ ≤ 1

0 , kη∗ > 1.

(86)

Для такого выбора величин β нелинейный по полю член в уравнении

движения становится пренебрежимо малым. Уравнение движения для β

сводится к

η2β′′α + 2γηβ′α + k2η2βα = 0. (87)
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Решение (87)

βα(k, η) = (kη)
1
2
−γDkJn(kη), n = γ − 1

2
, (88)

где аналогично (17)

Dk(k) =
βα(k, η∗)

(kη∗)
1
2
−γ (kη∗)n

, (89)

〈DkDk′〉 =


H2

2(2π)3v2
1
k3
δ(k + k′) , kη∗ ≤ 1

0 , kη∗ > 1.

(90)

Начальные условия соответствуют полю, упорядоченному под горизон-

том и слабо флуктуирующему за горизонтом (H � v).

Аналогично уже приведенным расчетам, вычислим вклад векторных

возмущений метрики в анизотропию температуры. Для этого необходимо

вычислить скорость фотонного газа vBγi (55) для нового определения β

(84). Совершая вычисления, аналогичные (56), получим выражение для

скорости

vbγi (k, ηr) = − 8ε

(RB(ηr) + 1)

1

k2

∫
d3q(−iqi)DqDk−q×

×
ηr∫

0

dη

η1+2n

(
RB

η2

η2
r

+ 1

)
q−n|k− q|1−nJn(qη)Jn+1(|k− q|η). (91)

Будем рассматривать мультиполи l ≤ 50, для которых kηr < 1. Сле-

довательно, рассматриваемые моды входят под горизонт после эпохи

рекомбинации (n = 3/2). Снова можно использовать асимптотическое

приближение функций Бесселя при малых значениях аргумента. Анало-

гично (58) - (60), вычисляя интеграл по η аналитически, окончательно

получим

vbγi (k, ηr) = − 16ε

45π(RB(ηr) + 1)

1

k2

(
RB

3
+ 1

)∫
d3q(−iqi)DqDk−q|k−q|2.

(92)
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Выражение для коэффициентов Cl для рассматриваемого случая

l(l + 1)Cl = l2(l + 1)2 211

452 π3

H4G2

(RB(ηr) + 1)2

(
RB(ηr)

3
+ 1

)2

×

×
∞∫

0

dk

k2

(
jl((η0 − ηr)k)

(η0 − ηr)k)

)2
1∫

−1

dµ

∞∫
0

dq (1− µ2) q

[
|k− q| − q2

|k− q|

]
. (93)

Совершая замену переменной qr ≡ qηr, интегралы по qr и µ вычисля-

ются аналитически. Затем, как и в (79), используем асимптотическое

представление (78), получим

l(l + 1)Cl =
(l + 1)2

l

210

452 π3

H4G2

(RB(ηr) + 1)2

(
RB(ηr)

3
+ 1

)2

×

× ηr
η0

[
π

5
+

2π

105

(
ηr
η0

)2

l2 − 1

3

(
ηr
η0

)
l

]
, (94)

С помощью вычисленного спектра анизотропии температуры можно по-

лучить оценку для параметра Хаббла H, который относится к концу

эпохи инфляции.

Известны выражения для спектров мощности тензорных и скалярных

возмущений в моделях инфляции [20, 2, 1]. Спектр мощности тензорных

возмущений пропорционален квадрату параметра Хаббла

PT =
16

π

H2
k

MP l2
. (95)

Для численной оценки PT используем отношениe тензорного и скалярно-

го спектров r ≡ PT/PR. Cовременные экспериментальные ограничения

для параметра r и скалярного спектра известны [1]:

r < 0, 12 , ln(1010AR) = 3, 089+0,024
−0,027 , ns = 0, 9603± 0, 0073 . (96)

Из (96) следует модельно-независимое ограничение для параметра Хаб-

бла незодолго до окончания стадии инфляции:

H < 1 · 10−5MPl. (97)
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Получим ограничение на параметр Хаббла, исходя из вычисленного спек-

тра анизотропии температуры (94). Как и ранее, вклад векторных воз-

мущений в анизотропию температуры должен быть меньше, чем вклад

скалярных мод (82). Отсюда ограничение на H

H < 1 · 10−2MPl. (98)

Ограничение более слабое, нежели чем (97), полученное из эксперимен-

тальных данных. Это означает, что вклад в анизотропию температуры

реликтового излучения от эффекта Доплера в случае векторных возму-

щений мал для l ≤ 50 и реальных значений параметра Хаббла.

7 Заключение.

В работе рассмотрены две модели генерации векторных мод, в кото-

рых источником возмущений выступает безмассовое скалярное поле со

спонтанно нарушенной O(N)–симметрией.

В рамках первой модели, где направление поля за горизонтом сильно

некоррелировано, рассчитан вклад векторных возмущений в анизотро-

пию реликтового излучения. Внимание сконцентрировано на эффекте

Доплера на больших угловых масштабах. Из сравнения с известными

ограничениями на вклады в анизотропию скалярных и тензорных мод,

получено ограничение на вакуумное среднее скалярного поля, которое

близко к известному в литературе.

Во второй модели, где поле за горизонтом флуктуирует около фикси-

рованного направления, произведены аналогичные расчеты вклада век-

торных возмущений в спектр мощности флуктуаций температуры и по-

казано, что с учетом ограничений на вклад тензорных и скалярных мод,
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вклад эффекта Доплера в случае векторных возмущений оказывается

мал на больших угловых масштабах.
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