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Аннотация
В данной работе изучается процесс нелинейного коллапса возмущений ска-
лярного поля методами численного моделирования. Так, для описания об-
разования структур из поля инфлатона в ранней Вселенной можно вос-
пользоваться нерелятивистским приближением. Это позволяет существен-
но упростить уравнения, записав их в виде системы Шредингера-Ньютона,
и тем самым осуществить полное трехмерное моделирование динамики по-
левой конфигурации, которое планируется выполнить в рамках данного
проекта. Полученные результаты будут использованы для вычисления ам-
плитуды гравитационных волн, излучаемых в процессе коллапса структур
инфлатонного поля.
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1 Введение
После окончания космологической инфляции Вселенная пуста, а вся энер-
гия заключена в практически однородном классическом поле инфлатона. В
этот момент закон расширения Вселенной становится степенным, начинает
работать джинсовская неустойчивость. В результате коротковолновые воз-
мущения поля инфлатона, рожденные из квантовых флуктуаций на стадии
инфляции, начинают расти. Особенно сильный рост наблюдается в инфля-
ционных моделях, где пост-инфляционное расширение происходит так, как
если бы Вселенная была заполнена нерелятивистским веществом. Во мно-
гих реалистичных моделях разогрев наступает достаточно поздно, так что
возмущения успевают выйти на нелинейную стадию. В результате образу-
ются гравитационно-связанные структуры из инфлатонного поля, похожие
на гало тёмной материи в современной Вселенной, которые затем распада-
ются во процессе разогрева Вселенной. Однако, нелинейная эволюция этих
структур сопровождается излучением гравитационных волн, которые несут
уникальную информацию об этом процессе и могут быть обнаружены на
следующем поколении детекторов.

В литературе было предложено три механизма генерации гравитацион-
ных волн в процессе эволюции структур инфлатона [1]. Они действуют: на
стадии первичного коллапса, на стадии слияния соседних гало и на стадии
разрушения гало из-за распада инфлатонного конденсата в релятивистские
частицы. Наивные оценки, основанные на аналитическом рассмотрении мо-
дельных ситуаций, которые приведены в этой работе, показывают, что об-
разующиеся гравитационные волны вполне могут оказаться доступными
для исследования на следующем поколении детекторов гравитационных
волн.

Отметим, что рассматриваемые гравитационные волны несут уникаль-
ную информацию о ранней Вселенной. В частности, положение максиму-
ма гравитационно-волнового сигнала от распада инфлатонного конденса-
та будет указывать на величину температуры разогрева Вселенной. Де-
тали спектра гравитационных волн содержат в себе информацию о пер-
вичных скалярных возмущениях с длинной волны порядка 1011 см, ни-
как иначе не доступных для наблюдений. Ожидается, что по форме спек-
тра гравитационно-волнового сигнала можно будет судить об особенностях
первичных скалярных возмущений, таких как изменение наклона спектра,
появление пиков, а также негауссовости возмущений, которые предсказы-
ваются в некоторых моделях инфляции.
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Для того чтобы дать более точную оценку возможного гравитационно-
волнового сигнала, необходимо исследовать нелинейную стадию эволюции
мелкомасштабных возмущений инфлатонного поля. В рамках данного про-
екта планируется рассмотреть стадию первичного коллапса неоднородно-
стей с использованием численного моделирования динамики полевой кон-
фигурации на решетке. Для этого будет найдено необходимое приближе-
ние, которое позволит существенно упростить уравнения, управляющие
эволюцией системы, а также будет разработан численный алгоритм их ре-
шения. Алгоритм планируется опробовать в задаче моделирования коллап-
са центрально симметричной конфигурации.

2 Вывод системы уравнений
Теория свободного скалярного поля с гравитацией в предположении мини-
мальной связи имеет следующее действие:

S = Sgravity + Smatter ,

Smatter =
1

2

∫
d4x
√
−g((∂µϕ)2 −m2ϕ2) ,

Sgravity = −M
2
Pl

16π

∫
d4x
√
−gR .

В данной работе мы будем изучать нелинейную стадию эволюции пер-
вичных возмущений скалярного поля (поля инфлатона), поскольку именно
на этой стадии происходят процессы, дающие интересный вклад в грави-
тационное излучение. Для описания этой стадии достаточно ограничить-
ся нерелятивистским приближением, а гравитацию рассматривать ньюто-
новской. Действительно, релятивистские моды первичных возмущений с
k
a > H ∼ m всегда находились под горизонтом во время инфляции, и по-
этому остались в вакуумном состоянии. Во-вторых, начальные возмущения
существенно сферически несимметричны, что означает отсутствие процес-
са образования черных дыр в процессе их коллапса (см. работу [4]). Тогда
для метрики имеем

ds2 = (1 + 2U)dt2 − a2(t)δijdxidxj , (1)

где a(t) — масштабный фактор. В нерелятивистском режиме вместо поля
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ϕ можно ввести поле ψ следующим образом:

ϕ =
1√

4πGa
3
2

(e−imtψ + h.c.) . (2)

Тогда считая ψ медленно меняющейся функцией (нерелятивистское при-
ближение), приходим к системе уравнений Шредингера-Ньютона (подроб-
ный вывод уравнений см., например, в работе [2]): iψ̇ = − 1

2a2(t)
∆ψ + Uψ ,

∆U = (|ψ|2 − |ψ0|2)/a(t) ,
(3)

где мы определили безразмерные переменные

mx→ x mt→ t

, а ψ0 — однородная компонента поля ψ. В процессе нелинейной эволю-
ции расширением Вселенной можно пренебречь, тогда в системе (3) можно
положить a(t) = 1.

Полученная система уравнений (3) в терминах нового комплексного ска-
лярного поля ψ представляет собой систему, описывающую нерелятивист-
скую частицу, движущуюся в своем собственном гравитационном потенци-
але.

3 Численный алгоритм
Систему уравнений (3) в нелинейном режиме будем решать численно. Для
этого определим вычислительную сетку, в узлах которой зададим значе-
ния всех полевых переменных. Производные по времени и пространству
дискретизуем стандартными формулами второго порядка точности.

С целью иллюстрации и апробации алгоритма рассмотрим случай цен-
трально симметричных начальных конфигураций.

3.1 Сферически симметричный случай
В сферически симметричном случае удобно ввести следующие переменные:

V = rU ,
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φ = r(ψ − ψ0) .

Тогда система уравнений (3) запишется в виде
iφ̇ = −1

2

∂2φ

∂r2
+
V

r
(φ+ φ0)

r
∂2V

∂r2
= |φ|2 + 2Re(φ0φ) ,

(4)

где φ0 = rψ0 введено для удобства записи. По координатам r и t опреде-
лим равномерную вычислительную сетку с шагом ∆r и ∆t соответственно.
Поля φ и V будем считать заданными в узлах вычислительной сетки, так
что

φnj = φ(n∆t, j∆r) ,

V n
j = V (n∆t, j∆r) .

(5)

Тогда, заменяя производные конечными разностями, для системы уравне-
ний (3) имеем

i
φn+1
j − φnj

∆t
= −1

2

φ
n+1/2
j+1 + φ

n+1/2
j−1 − 2φ

n+1/2
j

∆r2
+
V
n+1/2
j

rj

(
φ
n+1/2
j + φ0

)
+

+O(∆t2,∆r2) ,

rj
V
n+1/2
j+1 + V

n+1/2
j−1 − 2V

n+1/2
j

∆r2
=

1

2

(
|φn+1
j |2 + |φnj |2

)
+ Re(φ0φ

n+1
j )+

+Re(φ0φ
n
j ) +O(∆t2,∆r2) ,

(6)
где мы ввели обозначение φn+1/2

j = (φn+1
j + φnj )/2. В граничных точках

вычислительной сетки имеем условия:

φn0 = φnN−1 = 0 ,

V
n+1/2
0 = V

n+1/2
N−1 = 0 ,

(7)

где N — число пространственных узлов вычислительной сетки.
Система (6) представляет собой систему из 3(N −2) нелинейных алгеб-

раических уравнений на переменные φn+1
j и V n+1/2

j , определенные в следую-
щий момент времени. Однако, можно заметить, что первое уравнение этой
системы при заданных V n+1/2

j является линейным уравнением на 2(N − 2)

неизвестные ψn+1
j . Второе уравнение, наоборот, является линейным уравне-

нием на V n+1/2
j при заданных ψn+1

j . Таким образом, систему уравнений (6)
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можно решать следующими итерациями. Для этого в качестве нулевого
приближения положим в первом уравнении системы (6) (0)V n+1/2 = V n−1/2.
Решим это уравнение, например, методом прогонки, найдем нулевое при-
ближение для поля (0)φn+1. Далее подставим это поле в правую часть второ-
го уравнения системы. Решив второе уравнение также методом прогонки,
найдем (1)V n+1/2. Используем это приближение для потенциала в первом
уравнении системы (6), решив которое мы находим (1)φn+1. Подставим это
поле в правую часть второго уравнения, решаем его и т.д.. В конечном ито-
ге, выполнив некоторое число итераций, мы находим решение системы (6) с
заданной точностью. Наши вычисления показывают, что для нахождения
решения с точностью, сравнимой с ошибкой дискретизации O(∆t2,∆r2)
достаточно трех итераций.

3.2 Результаты
Для демонстрации результатов применения разработанного в предыдущем
разделе алгоритма, рассмотрим эволюцию возмущения скалярного поля, в
качестве начальной конфигурации для которого выберем

ψ(r) =
√
|ψ0|2 + s(r), где

s(r) =
3σ2 − r2√

2πσ5
exp(− r2

2σ2
)

(8)

Явный вид конфигурации (8) подобран таким образом, чтобы обеспечить
〈δρ〉 =

∫
V d

3x(|ψ|2 − |ψ0|2)/V = 0, что справедливо для первичных возму-
щений, представляющих собой гауссово случайное поле.

Результаты для зависимости поля в центре и характерного размера воз-
мущения от времени представлены на Рис. 1 и Рис. 2 соответственно. Из
данных рисунков видно, что коллапс происходит экспоненциально быст-
ро. Пространственные конфигурации возмущений в различные моменты
времени, отмеченные на Рис. 1, 2, представлены на Рис. 3, 4. Их этих ри-
сунков видно, что поле в процессе коллапса собирается в центре, причем его
размер становится достаточно малым. Такое поведение приведет к пробле-
ме в трехмерной задаче, где пространственное разрешение конфигурации
потребует очень большой вычислительной сетки. Вторя проблема связана
с «утеканием» массы через границу конечного вычислительного объема.
Эти две проблемы можно решить, используя следующую динамическую
неоднородную вычислительную сетку.

7



Рис. 1: Значение поля в центре возмущения |ψ(0)| от времени.

Рис. 2: Зависимость характерного размера возмущения от времени.

3.3 Неоднородная динамическая вычислительная сет-
ка.

Изначально широкие конфигурации начальных возмущений скалярного
поля в процессе коллапса переходят в конфигурации маленького разме-
ра, которые и представляют основной интерес задачи. Они могут быть на-
столько узкими, что шаг решетки будет слишком велик для них, В резуль-
тате эти конфигурации начинают деформироваться и могут потерять свои
свойства, либо вообще пропасть из массива решения.

Для решения данной проблемы можно воспользоваться новыми про-
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Рис. 3: Поле |ψ(r)| в различные моменты времени, отмеченные на Рис. 1, 2

Рис. 4: Поле |φ(r)| в различные моменты времени, отмеченные на Рис. 1, 2

странственными координатами, которые выполняют функцию масштаби-
рования вычислительной сетки. В процессе коллапса можно регулировать
шаг решетки в центральной части. В качестве таких переменных можно
выбрать

w =
1

1 + r/r0
, (9)

где r0 — параметр, характеризующий размер коллапсирующей конфигура-
ции. Сделаем несколько замечаний относительно удобства использования
координат (9). Во-первых, заметим, что в терминах этой переменной задача
формулируется на отрезке w ∈ [0, 1], причем пространственная бесконеч-
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ность r → ∞ соответствует конечному значению w = 0. Во-вторых, легко
видеть, что однородная вычислительная сетка по координатам w соответ-
ствует неоднородной вычислительной сетке по r, причем половина узлов
приходится на центральную область до от начала координат до r0. Таким
образом, меняя значение r0 со временем можно изменять пространственное
разрешение центральной части вычислительной сетки. Таким образом, бу-
дем считать этот параметр зависящим от времени, r0 = r0(t). Анализируя
решения на каждом шаге по времени и меняя этот параметр мы тем самым
будем подстраивать вычислительную сетку.

Выполняя замену (9) в системе уравнений (4), получаем:
i
∂φ

∂t
+ i(1− w)w

ṙ0
r0
φ′ = −w

3(wφ′′ + 2φ′)

2r20
+ V φ

w

r0(1− w)
+ V ψ0 ;

w(1− w)2

r20
(wV ′′ + 2V ′) = |φ|2 + 2Re(φ0φ) .

(10)

В сферически симметричном случае дискретизованную систему уравне-
ний (10) можно решать тем же итерационным методом, представленным
в предыдущей главе.

4 Заключение
В заключении сформулируем результаты, достигнутые в данной работе.

• Разработан численный алгоритм решения системы уравненийШредингера-
Ньютона, описывающий коллапс неоднородностей скалярного поля.

• Алгоритм опробован для случая сферически-симметричных полевых
конфигураций.

• Предложен вариант динамической неоднородной вычислительной сет-
ки, используя которую можно исследовать эволюцию неоднородно-
стей скалярного поля достаточно малых пространственных размеров.

5 План на будущее
В ближайшем будущем планируется опробовать предложенную неоднород-
ную динамическую вычислительную сетку для сферически симметричного
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случая. Планируется исследовать стабильность итерационного алгоритма,
а также точность численного решения. Следующим шагом в данной работе
планируется переход к сферически несимметричному случаю, что гораздо
более важно для вычисления сигнала гравитационных волн, излучаемых в
процессе коллапса неоднородностей скалярного поля. Для этого планирует-
ся ввести неоднородную динамическую сетку, выполнив аналогичную заме-
ну (9) вдоль каждой из координат. Однако, решение системы нелинейных
уравнений в трехмерном случае потребует использования других числен-
ных методов. Так, для этого планируется использовать метод Multigrid [3],
который позволит разрешить данную систему в этом случае.

Планируется изучить процесс эволюции конфигураций с течением вре-
мени в трехмерном случае. Это позволит вычислить амплитуду гравита-
ционных волн, излучаемых в результате коллапса и нелинейной эволюции
конфигураций поля. Полученные значения для сигнала можно будет срав-
нить с чувствительностью текущих и будущих детекторов гравитационных
волн. Данное исследование позволит получить важнейшую информацию о
процессах, происходивших до постинфляционного разогрева.
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