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1. Введение
Теория формирования космологических структур входит в стандартный инструментарий современ-
ной космологии [1],[2]. Спектр мощности распределения материи, которой предсказывает эта теория,
может быть использован для экспериментального измерения параметров и свойств Вселенной, к при-
меру, свойств темной материи и темной энергии.

В свою очередь, природа темной материи — одна из современных загадок в космологии. Значи-
тельная часть исследований направлена на попытку понять свойства этой материи, которая составля-
ет 23% от всего вещества во Вселенной. Все модели темной материи находятся за гранью стандартной
модели физики частиц. Одной из интересных возможностей является представление темной мате-
рии, как свободного массивного скалярного поля. Рост космологических структур в данной модели
происходит иным образом по сравнению с стандартной моделью слабовзаимодействующих массив-
ных частиц (WIMP). В качестве физической реализации этого сценария может выступать аксионное
поле [2], которое вдобавок объясняет проблему сильного CP -нарушения.

Уравнения скалярного самогравитирующего поля являются сильно нелинейными и их решения
в общем в виде затруднены. Но оказывается, что в нерелятивистском приближении эволюция та-
кой материи описывается системой нелинейных уравнений типа Шредингера—Ньютона [4]. В работе
изучается эта система с помощью с помощью космологической теории возмущений [3],[5],[6]. Вы-
числяется спектр мощности космологичесих возмущений в однопетлевом приближении. Этот спектр
сравнивается со стандартным случаем WIMP.
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2. Скалярное поле как темная материя
В модели свободного массивного скалярного поля записывается действие:

S =

∫
d4x
√
−g
(

1

2
gµν∂µφ∂νφ−

m2

2
φ2

)
. (2.1)

Тензор энергии-импульса поля имеет вид

T νµ = gµλ∂νφ∂λφ− δµν
(

1

2
gµν∂µφ∂νφ−

m2

2
φ2

)
, (2.2)

а уравнения поля записываются следующим образом

1√
−g

∂µ
(√
−ggµν∂νφ

)
+m2φ = 0 . (2.3)

2.1. Уравнения поля в нерелятивистском приближении

Как отмечалось в введении к этой главе, анализ начинается с действия (в данном разделе вывод,
следует изложению статьи [4])

S =

∫
d4x
√
−g
(

1

2
gµν∂µφ∂νφ−

m2

2
φ2

)
. (2.4)

Метрика расширяющейся вселенной записывается в следующем виде

ds2 = − (1 + 2Ψ) dt2 + a2(t) (1− Φ) δijdx
idxj , (2.5)

где a(t) – космологический масштабный фактор, Ψ, Φ — малые добавки.
В данном случае тензор энергии-импульса запишется как

Tµν =
1

2
∂µφ∂νφ−

1

2
gµν
(
∂σφ∂σφ+m2φ2

)
. (2.6)

Запишем ковариантный закон сохранения тензора энергии-импульса: T µν;ν = 0. Используя (2.5) и
(2.6), получаем

(1− 2Ψ) φ̈+
(

3H − Ψ̇− 3Φ̇− 6HΨ
)
φ̇− a−2 (1 + 2Φ)52 φ− a−25 (Ψ− Φ) · 5φ+m2φ = 0 . (2.7)

С другой стороны, 00— компонента уравнения Эйнштейна имеет вид уравнения для гравитационных
потенциалов, напоминающий уравнения Пуассона

52 Φ− 3Ha2(Φ̇ +HΨ) = 4πGa2δρ , (2.8)

где δρ = ρT − ρ̄T , а ρT = ρφ + ρΛ — полная плотность энергии, ρ̄T — однородная компонента. Так как
растут возмущения только темной материи, то δρ = ρφ − ρ̄φ, где

ρφ = −T 0
0 =

1−Ψ

2
|φ̇|2 +

1 + 2Φ

2a2
| 5 φ|2 +

1

2
m2|φ|2 (2.9)
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и ρ̄φ = 1
2

(
| ˙̄φ|2 +m2|φ̄|2

)
.

После подстановки φ = a−3/2e−imtψ + h.c. и Φ = Ψ получается

1− 2Ψ

2
(ψ̈ − 2imψ̇)− 2HΨ(ψ̇ − imψ) =

1 + 2Ψ

2a2
52 ψ −

[
(m2 + 2H2)Ψ− 3

4

(
Ḣ +

3

2
H2

)
(1− 2Ψ)

]
ψ ,

(2.10)

a3ρφ =
1− 2Ψ

2

[
|ψ̇|2 − 3HRe(ψ̇ψ∗) + 2mIm(ψ̇ψ∗)

]
+

1 + 2Ψ

2a2
| 5 ψ|2+

+m2|ψ|2
[
1 +

9

8

H2

m2
−Ψ

(
1 +

9

4

H2

m2

)]
+ h.c. . (2.11)

Как и говорилось в введении, эти уравнения являются крайне нелинейными. Для их упрощения
применяется нерелятивистское приближение гравитационного потенциала: Ψ = O(ε2) [2], другой шаг
для упрощения – Ψ(t,x) = Ψ0(t,x)/a(t), так же вводятся обезразмеренные пременные:

√
4πGψ ↔ ψ

mt↔ t, mx↔ x, тогда уравнения (2.10) и (2.11) перейдут в

1

2a2
52 ψ − 1

2
ψ̈ + iψ̇ =

1

a

[
1 + 2

H2

m2
− 2i

H

m
+

9

4

H2

m2

(
1 +

2

3

Ḣ

H2

)]
Ψ0ψ −

9

8

H2

m2

(
1 +

2

3

Ḣ

H2

)
ψ , (2.12)

52 Ψ0 − 3
H

m
a2Ψ̇0 =

1

2
|ψ̇|2 − 3

2

H

m
Re(ψ̇ψ∗) + Im(ψ̇ψ∗) +

| 5 |2

2a2
+ (|ψ|2 − |ψ̄|2)

(
1 +

9

8

H2

m2

)
, (2.13)

где ρφ считался так, что φ̄ = a−3/2e−imtψ̄ и ψ̄ = const.
Для дальнейшего упрощения необходимо воспользоваться пределом быстрых осциляций: H/m � 1
и воспользоваться фактом

9

8

H2

m2

(
1 +

2

3

Ḣ

H2

)
= −3πG

m2
p̄T = −3πG

m2
ω̄ρ̄T = −9

8

H2

m2
×


1/3,RD
0, MD
−1, ΛD

(2.14)

Поэтому поправки вызванные Ḣ всегда пропорциональны H2/m2 и ими можно пренебрегать.
Итого:

1

2a2
52 ψ − 1

2
ψ̈ + iψ̇ =

1

a
Ψ0ψ , (2.15)

52 Ψ0 =
1

2
|ψ̇|2 + Im(ψ̇ψ∗) +

| 5 ψ|2

2a2
+ |ψ|2 − |ψ̄|2 . (2.16)

И финальное упрощение: ψ = O(ε2), 52ψ = O(ε4), ψ̇ = O(ε4) и ψ̈ = O(ε6) [2], ε - малый параметр,
после этого выжившие члены дают

iψ̇ = − 1

2a2
52 ψ +

1

a
Ψ0ψ , (2.17)

52 Ψ0 = |ψ|2 − |ψ̄|2 . (2.18)
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3. Линейные возмущения

3.1. Преобразование полей

Главным результатом предыдущей части была система уравнений (здесь было введено новое время
dt = dtph/a

2)

{
iψ̇ = −1

2
4ψ + aΨ0ψ

4Ψ0 = |ψ|2 − |ψ̄|2
. (3.1)

Удобно сделать подстановку ψ =
√
ρeiθ.

Подставляя это в уравнения, получим для производных:

iψ̇ = i∂t(
√
ρ)eiθ +

√
ρ∂tθe

iθ , (3.2)

4(fg) = (4f)g + f4g + 2(∂if, ∂ig) , (3.3)

i∂t(
√
ρ)eiθ +

√
ρ∂tθe

iθ =
1

2
(4√ρ)eiθ − 1

2

√
ρ4eiθ − (∂i

√
ρ, ∂ie

iθ) + aU
√
ρeiθ . (3.4)

Для выражений такого типа верны соотношения:

4
√
f =

4f
2
√
f
− (∂if)2

4f 3/2
, (3.5)

4eiθ = −eiθ
(
(∂iθ)

2 − i4θ
)
. (3.6)

Отсюда получаем окончательное выражение:

i∂t(
√
ρ)eiθ +

√
ρ∂tθe

iθ = −1

2

4ρ
2ρ3/2

eiθ +
1

2

(∂iρ)2

4ρ3/2
eiθ +

1

2

√
ρeiθ

(
(∂iθ)

2 − i4θ
)
− i∂iρ

2
√
ρ
∂iθe

iθ . (3.7)

Получим систему уравнений (3.1) в виде:
∂tρ = −ρ4θ − ∂iρ∂iθ = −∂i (ρ∂iθ)
∂tθ = 4ρ

4ρ
− (∂iρ)2

8ρ2
− 1

2
(∂iθ)

2 − aU
4Ψ0 = ρ− ρ̄

. (3.8)

Видно, что первое уравнение – уравнение непрерывности, второе и третье – аналог второго закона
Ньютона.
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3.2. Удобный вид уравнений

Уравнение (3.1) записано в безразмерных переменных. Вернемся к обычным:
√

4πGψ ↔ ψ, dt ↔
mdtph/a

2, dx↔ mdx. 
∂tρ = − 1

ma2
∂i (ρ∂iθ)

∂tθ = 4ρ
4ma2ρ

− (∂iρ)2

8ma2ρ2
− 1

2ma2
(∂iθ)

2 −mU
a

4Ψ0 = 4πm2G (ρ− ρ̄)

. (3.9)

Представим ρ = ρ̄+ δ 
∂tδ = − 1

ma2
∂i ((ρ̄+ δ)∂iθ)

∂tθ = 4δ
4ma2(ρ̄+δ)

− (∂iδ)
2

8ma2(ρ̄+δ)2
− 1

2ma2
(∂iθ)

2 −mU
a

4Ψ0 = 4πm2Gδ

. (3.10)

Перейдем к конформному времени dτ = dt
a
:


∂τδ + ρ̄

ma
∂i∂iθ = − 1

ma
∂i (δ∂iθ)

∂τθ = 4δ
4ma(ρ̄+δ)

− (∂iδ)
2

8ma(ρ̄+δ)2
− 1

2ma
(∂iθ)

2 −mU
4Ψ0 = 4πm2Gδ

. (3.11)

Возьмем от второго уравнения 4 и воспользуемся третьим:{
∂τδ + ρ̄

ma
∂i∂iθ = − 1

ma
∂i (δ∂iθ)

∂τ4θ = 4 4δ
4ma(ρ̄+δ)

−4 (∂iδ)
2

8ma(ρ̄+δ)2
− 1

2ma
4(∂iθ)

2 − 4πm3Gδ
. (3.12)

Введем замену ∂iθ = ui (∇θ = ~u):{
∂tδ + ρ̄

ma
∂iui = − 1

ma
∂i (δui)

∂t∂iui + 4πm3Gδ = 4 4δ
4ma(ρ̄+δ)

−4 (∂iδ)
2

8ma(ρ̄+δ)2
− 1

2ma
4(ui)

2
. (3.13)

Еще одна замена θ̃ = ∇~u = 4θ:{
∂τδ + ρ̄

ma
θ̃ = − 1

ma
∂i (δui)

∂τ θ̃ + 4m3πGδ = 4 4δ
4ma(ρ̄+δ)

−4 (∂iδ)
2

8ma(ρ̄+δ)2
− 1

2ma
4(ui)

2
. (3.14)

И еще одна ρ̄
ma
θ̃ = θ0:

∂τ θ̃ =
ma′θ0

ρ̄
+
ma∂τθ0

ρ̄
, (3.15)

{
∂τδ + θ0 = − 1

ma
∂i (δui)

∂τθ0 + a′

a
θ0 + 4πm2Gδρ̄

a
= ρ̄

a2m2

(
4 4δ

4(ρ̄+δ)
−4 (∂iδ)

2

8(ρ̄+δ)2
− 1

2
4(ui)

2
) . (3.16)

Ввести H = a′

a
= aH, где H- постоянная Хаббла. Так же учтем уравнение Фридмана H2 = 8π

3
Gρc(t),

откуда 3H2Ωm
2

= 4πGρ̄. Тогда{
∂τδ + θ0 = − 1

ma
∂i (δui)

∂τθ0 + Hθ0 + 3H2m2Ωmδ
2a3

= ρ̄
m2a2

(
4 4δ

4(ρ̄+δ)
−4 (∂iδ)

2

8(ρ̄+δ)2
− 1

2
4(ui)

2
) , (3.17)
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или, если переопределить Ω{
∂τδ + θ0 = − 1

ma
∂i (δui)

∂τθ0 + Hθ0 + 3H2m2Ω̄mδ
2

= ρ̄
m2a2

(
4 4δ

4(ρ̄+δ)
−4 (∂iδ)

2

8(ρ̄+δ)2
− 1

2
4(ui)

2
) . (3.18)

Следует отметить, что первое уравнение полностью совпадает с уравнением непрерывности в слу-
чае стандартной темной материи из WIMP [3],[5],[6]. Левая часть второго уравнения также имеет
стандартный вид. Отличия находятся в правой части второго уравнения (в неоднородности), там,
очевидно, присутствует член пропорциональный k4.

3.3. Приближение малых возмущений

Далее нам нужны только квадратичные неоднородности, поэтому будем оставлять члены O(δ2) и
ниже.

1

ρ̄+ δ
=

1

ρ̄

1

1 + δ
ρ̄

=
1

ρ̄

(
1− δ

ρ̄

)
+ O(δ2) , (3.19)

1

(ρ̄+ δ)2
=

1

ρ̄2

1

(1 + δ
ρ̄
)2

=
1

ρ̄2

(
1− 2δ

ρ̄

)
+ O(δ2) . (3.20)

Получим систему уравнений:{
∂τδ + θ0 = − 1

am
∂i (δui)

∂τθ0 + Hθ0 + 3H2Ω̄mm2δ
2

= ρ̄
m2a2

(
44δ

4
1
ρ̄

(
1− δ

ρ̄

)
−4 (∂iδ)

2

8
1
ρ̄2

(
1− 2δ

ρ̄

)
− 1

2
4(ui)

2
) . (3.21)

Попробуем выяснить, насколько эта модель отличается от модели идеальной жидкости, для этого
сделаем преобразование Фурье.

3.4. Преобразование Фурье

Будем делать преобразование Фурье над неоднородностью (3.21).
Здесь использовано определение свертки функций:

F(f ◦ g) = F(f) ∗ F(g) =

∫
d3k1d

3k2δD(k1 + k2 − k)f̂(k1)ĝ(k2) (3.22)

Непосредственно преобразование Фурье:

1.
4(ui)

2 FT−−→ −k2F(u2
i ) = −k2F(ui) ∗ F(ui) =

=
m2a2

ρ̄2
k2

∫
d3k1

∫
d3k2δD(k1 + k2 − k)

~k1
~k2

|k1|2|k2|2
θ̂(k1)θ̂(k2) , (3.23)
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2.
4
(
4δ
4ρ̄
− 4δ

4ρ̄2
δ

)
FT−−→ k4δ

4ρ̄
+ k2F

(
4δ
4ρ̄2

δ

)
=
k4δ

4ρ̄
+ k2 F(4δ)

4ρ̄2
∗ δ̂ =

=
k4δ

4ρ̄
−
∫
d3k1d

3k2δD(k1 + k2 − k)
k2k2

1

4ρ̄2
ˆδ(k1) ˆδ(k2) , (3.24)

3.

4
[

(∂iδ)
2

8ρ̄2

]
FT−−→ − k2

8ρ̄2
F(∂iδ) ∗ F(∂iδ) = − k2

8ρ̄2

∫
d3k1d

3k2δD(k1 + k2 − k)~k1
~k2

ˆδ(k1) ˆδ(k2) . (3.25)

В итоге получаем:

∂τδ + θ0 = −1
ρ̄

∫
d3k1d

3k2δD(k1 + k2 − k) ( ~k1+ ~k2) ~k1
|k1|2 δ̂(k1)θ̂0(k2)

∂τθ0 + Hθ0 + 3H2Ω̄mδ
2

= ρ̄
m2a2

(
k4δ
4ρ̄
−
∫
d3k1d

3k2δD(k1 + k2 − k)
k2k21
4ρ̄2

ˆδ(k1) ˆδ(k2)+

+ k2

8ρ̄2

∫
d3k1d

3k2δD(k1 + k2 − k)~k1
~k2

ˆδ(k1) ˆδ(k2)−

−m2a2

ρ̄2
k2
∫
d3k1

∫
d3k2δD(k1 + k2 − k)

~k1 ~k2
2|k1|2|k2|2 θ̂(k1)θ̂(k2)

) . (3.26)

3.5. Матричный вид уравнений

Удобно записать последнюю систему уравнений в матричном виде, определив двухкомпонентный
вектор

Ψα =

(
δ̂

−θ̂

)
, (3.27)

где a = 1, 2.
Используя Ψα можно переписать (3.26) в виде (здесь предполагается интегрирование по повторяю-
щимся k)

∂τΨα + ΩαβΨβ = γbcα (k, k1, k2)Ψb(k1)Ψc(k2) , (3.28)

а матрица Ω равна

Ωαβ(k, τ) =

(
0 −1

−3
2
ΩmH

2 + k4

4m2a4
H

)
=

(
0 −1

−3
2
ΩmH

2 H

)
+

(
0 0
k4

4m2a4
0

)
. (3.29)

Вершины взаимодействия имеют вид

γ12
1 (k1, k2) = α(k1, k2)δD(k1 + k2 − k) =

1

ρ̄

(~k1 + ~k2)~k1

2|k1|2
δD(k1 + k2 − k) , (3.30)

γ11
2 (k1, k2) = β(k1, k2)δD(k1 + k2 − k) =

(k1 + k2)2k2
1

ρ̄m2a2

(
1−

~k1
~k2

k2
1

)
δD(k1 + k2 − k) , (3.31)

γ22
2 (k1, k2) =

1

ρ̄

k2 ~k1
~k2

2|k1|2|k2|2
δD(k1 + k2 − k) , (3.32)
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а остальные вершины равны нулю.
Рассмотрим линейное уравнение

∂τΨα + ΩαβΨβ = 0 . (3.33)

Его решение может быть легко записано в терминах функции Грина и начальных условий Ψ(k, τ0),
как:

Ψ(k, τ) = e
∫ τ
τ0
dτ̄Ω(k,τ̄)

Ψ(k, τ0) ≡ g(τ, τ0)Ψ(k, τ0) . (3.34)

Тогда решение общего уравнения с неоднородностью может быть записано в виде:

Ψα(k, τ) = gαβ(k, τ)Ψβ(k, τ0) +

∫ τ

τ0

dτ ′gαβ(τ − τ ′)γβρσ(k, k1, k2)Ψρ(k1, τ
′)Ψσ(k2, τ

′) . (3.35)

Эту формулу будем далее применять для построения теории возмущений.
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4. Диаграммная техника

4.1. Диаграммное представление решения

Данное решение допускает представление в виде древесных диаграмм [6]. Всего присутствует три
строительных блока: начальное поле Ψ(k, τ0), линейный пропагатор gαβ(k, τ) и вершина γβασ(k, k1, k2).
Линии – времениориентированы (направление времени указывается стрелочкой) и имеют различные
индексы на концах, например a и b. Каждая линия символизирует линейную эволюцию, описывае-
мую пропагатором gαβ(k, τf − τi).

Рис. 1. Диаграмное представление линейного пропагатора

Каждое нелинейное взаимодействие между модами описывается вершиной, которая из-за квад-
ратичных неоднородностей в уравнении движения обязательно является точкой схождения двух
входящих линий, с импульсами k1 и k2, и одной исходящей с k = k1 + k2. Каждая вершина представ-
ляется матрицей γβασ(k, k1, k2).

Рис. 2. Диаграмное представление полей во втором порядке

Рис. 3. Диаграмное представление полей в третьем порядке

Если пользоваться правилами, изложенными выше, можно записать интегралы, соответствую-
щие поправкам второго и третьего порядка Ψ(2) и Ψ(3) (см. рис.2 и рис.3):

Ψ(2)
a =

∫
d3k1

∫
d3k2

∫ τ

τ0

dsgab(τ − s)γbcd(k, k1, k2)gce(s− τ0)Ψe(k1, τ0)gdf (s− τ0)Ψf (k2, τ0) , (4.1)

Ψ(3)
a = 2

∫
d3k1

∫
d3k2

∫ τ

τ0

dsgab(τ − s)γbcd(k, k1, k2)gce(s− τ0)Ψe(k1, τ0)Ψ
(2)
d (k2, s) . (4.2)
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Рис. 4. Диаграмное представление полей в четвертом порядке

На рис.4 представлены примеры диаграмм 4-го порядка.

4.2. Спектр мощности

Интеграл (3.35) может быть интерпретирован как уравнение на Ψa(k, τ) в присутствии внешнего
источника, который изменяет начальные условия Ψa(k, τ0), с заданной статистикой. Будем считать,
что начальные условия — гауссовы. Статистические свойства начального поля Ψa(k, τ0) полностью
определяются их двухточечным коррелятором

〈Ψa(k1, τ0)Ψb(k2, τ0)〉 ≡ δ(3)(k1 + k2)P 0
ab(k1) (4.3)

Здесь P 0
ab(k1) — начальный спектр мощности флуктуаций плотности. В соответствии с теоремой

Вика, все корреляторы нечетных порядков зануляются, для четных же есть (2n − 1)!! членов соот-
ветсвующих 2n полям.

Спектр мощности при любом τ определяется следующим образом:

〈Ψa(k1, τ)Ψb(k2, τ)〉 ≡ δ(3)(k1 + k2)Pab(k1, τ). (4.4)

Главный вклад, соответствующий простейшей диаграмме на рис.5, называется линейным спектром
мощности

P lin
ab (τ) ≡ gac(k, τ, τ0)gbd(k, τ, τ0)P 0

ab(k). (4.5)

Рис. 5. Диаграмное представление P lin
ab

Все однопетлевые диаграммы изображены на рис.7.

Так же можно сформулировать правила, для построения таких диаграмм:

1. Каждой линии сопоставить пропагатор gαβ(k, τf − τi).
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Рис. 6. Диаграмное представление P lin
ab

2. Проинтегрировать по внутренним временам.

3. Обозначить индексы на диаграммах с учетом закона сохранения импульса в вершинах.

4. Каждой вершине приписать матрицу γβασ(k, k1, k2).

5. Каждому спариванию ⊗ сопоставить P 0
ab(k).

6. Проинтегрировать по внутренним импульсам.

4.3. Спектр мощности в одной петле

4.3.1. Первая диаграмма

Рассмотрим более подробно первую диаграмму (рис. 7)

Рис. 7. Диаграмма одноплетлевой поправки к пропагатору

Будем рассматривать случай, когда импульс q, циркулирующий внутри петли, много меньше, чем
k. Выражение для этой диаграммы имеет вид:

Gb
a =

∫
d3q

∫
dτ ′2dτ

′
1g
g
a(τ − τ ′2)γhfg (k,−q, k + q)gih(τ

′
2 − τ0)Pij(q)g

j
d(τ
′
1 − τ0)×

×gef (τ ′2 − τ ′1)γdce (k + q, q, k)gbc(τ
′
1 − τ1) . (4.6)

Запишем выражения для вершин в явном виде

γ12
1 (k,−q, k + q) = −(~k~q)

2q2
, (4.7)

γ11
1 (k,−q, k + q) =

k2q2

4ρ̄m2a2

(
1− −~q(

~k + ~q)

2q2

)
≈ k2q2

4ρ̄m2a2

(
1 +

(~q~k)

2q2

)
, (4.8)

γ22
2 (k,−q, k + q) =

k2(−~q · (~k + ~q))

2q2(~k + ~q)2
= −(~k~q)

2q2
. (4.9)
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Если объединить эти результаты, то

γhfg (k,−q, k + q) = −(~k~q)

2q2
δfg δ

h
2 +

k2q2

4ρ̄m2a2

(
1 +

(~q~k)

2q2

)
δ1
hδ

1
fδ

2
g . (4.10)

Для второй вершины

γ21
1 (k + q, q, k) =

(~k~q)

2q2
, (4.11)

γ11
1 (k + q, q, k) =

(~k + ~q)2q2

4ρ̄m2a2

(
1− (~q~k)

2q2

)
≈ k2q2

4ρ̄m2a2

(
1− (~q~k)

2q2

)
, (4.12)

γ22
2 (k + q, q, k) =

(~k~q)2(~q~k)

2q2k2
=

(~k~q)

2q2
, (4.13)

γdce (k + q, q, k) =
(~k~q)

2q2
δceδ

d
2 +

k2q2

4ρ̄m2a2

(
1− (~q~k)

2q2

)
δ1
dδ

1
cδ

2
e . (4.14)

Правила подсчета интегралов сводятся к:

1. Просуммировать все внутренние индексы;

2. Проинтегрировать по внутренним временам;

3. Проинтегрировать по углу между q и k.

Подставим эти выражения в (4.6)

Gb
a =

∫
d3q

∫
dτ ′2dτ

′
1g
g
a(τ − τ ′2)

[
−(~k~q)

2q2
δfg δ

h
2 +

k2q2

4ρ̄m2a2

(
1 +

(~q~k)

2q2

)
δ1
hδ

1
fδ

2
g

]
×

×gih(τ ′2 − τ0)Pij(q)g
j
d(τ
′
1 − τ0)gef (τ

′
2 − τ ′1)

[
(~k~q)

2q2
δceδ

d
2 +

k2q2

4ρ̄m2a2

(
1− (~q~k)

2q2

)
δ1
dδ

1
cδ

2
e

]
gbc(τ

′
1 − τ1) . (4.15)

Продемонстрируем вычисление интегралов на примере первого члена, пользуясь упрощенными пра-
вилами.
Первый шаг основыван на свойствах функции Грина:

gga(τ − τ ′2)δfg g
e
f (τ
′
2 − τ ′1)δceg

b
c(τ
′
1 − τ1) = (4.16)

= gfa (τ − τ ′2)gfc (τ ′2 − τ ′1)gbc(τ
′
1 − τ1) = (4.17)

= gba(τ − τ1) . (4.18)

Интегрирование по углу между q и k производится явно∫
d3q

(qk)2

q4
=

4π

3

∫
dqq2k

2

q2
(4.19)
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Определим

σ2
d =

π

3

∫
dqP lin

22 (q) (4.20)

тогда этот вклад равен −k2σ2
d

Остальные в сумме дадут

4Ga
b =

∫
d3q

∫
dτ ′2g

2
a(τ − τ ′2)gb1(τ ′2 − τ1)P12(q)

[
(~q~k)k2

8ρ̄m2a2

(
1− (~q~k)

2q2

)
− (~k~q)k2

8ρ̄m2a2

(
1 +

(~q~k)

2q2

)]
=

=

∫
d3q

∫
dτ ′2g

2
a(τ − τ ′2)gb1(τ ′2 − τ1)P12(q)(−1)

(~q~k)2k2

8ρ̄m2a2q2
. (4.21)

После интегрирования по углам и введения обозначения ζ4
d = π

6m2

∫
dq
∫
dτ ′2g

2
a(τ − τ ′2)gb1(τ ′2 − τ1)P12(q)

этот вклад даст −k4ζ4
d .

Полный ответ для диаграммы запишется в виде

P 1−loop,]1
ab (k) = P lin

ab (k)
[
1− k2σ2

d

]
− k4

(
ζ4
dP

lin(k)
)
ab
. (4.22)

4.3.2. Вторая диаграмма

Перейдем к расчету второй диаграммы, изображенной на рис.8

Рис. 8. Диаграмма одноплетлевой поправки к пропагатору

Выражение для этой диаграммы, в соответствии с правилами:

Gb
a =

∫
d3q

∫
dτ ′2dτ

′
1g
g
a(τ − τ ′2)γhfg (k, k − q, q)gih(τ ′2 − τ0)Pij(k − q)gjd(τ

′
1 − τ0)×

×gkf (τ ′2 − τ0)Pkm(q)gme (τ ′1 − τ0)γdce (−k, q − k,−q)gbc(τ ′1 − τ) . (4.23)

Для вершин, так же как для предыдущей диаграммы, можно записать выражения

γ21
1 (k, k − q, q) =

~k(~k − ~q)
2(~k − ~q)2

≈ 1

2
, (4.24)

γ11
1 (k, k − q, q) =

k2(~k − ~q)2

4ρ̄m2a2

(
1 +

(~q~k)

2k2

)
≈ k4

4ρ̄m2a2

(
1 +

(~q~k)

2k2

)
, (4.25)

14



γ22
2 (k, k − q, q) =

k2(~k~q)

2q2k2
=

(~k~q)

2q2
. (4.26)

Если объединить эти результаты, то

γhfg (k,−q, k + q) =
1

2
δf1 δ

g
1δ
h
2 +

k4

4ρ̄m2a2

(
1 +

(~q~k)

2k2

)
δ1
hδ

1
fδ

2
g +

(~k~q)

2q2
δh2 δ

f
2 δ

g
2 ≈

≈ k4

4ρ̄m2a2

(
1 +

(~q~k)

2k2

)
δ1
hδ

1
fδ

2
g +

(~k~q)

2q2
δh2 δ

f
2 δ

g
2 . (4.27)

Аналогично для второй вершины

γ21
1 (k, k − q, q) ≈ 1

2
, (4.28)

γ11
1 (k, k − q, q) =

k2(~q − ~k)2

4ρ̄m2a2

(
1 +

(~q − ~k)(−~q)
2k2

)
≈ k4

4ρ̄m2a2

(
1 +

(~q~k)

2k2

)
, (4.29)

γ22
2 (k, k − q, q) =

(~k~q)

2q2
. (4.30)

Если объединить эти результаты, то

γdce (−k, q − k,−q) =
1

2
δc1δ

e
1δ
d
2 +

k4

4ρ̄m2a2

(
1 +

(~q~k)

2k2

)
δ1
dδ

1
cδ

2
e +

(~k~q)

2q2
δc2δ

d
2δ
e
2 ≈

≈ k4

4ρ̄m2a2

(
1 +

(~q~k)

2k2

)
δ1
dδ

1
cδ

2
e +

(~k~q)

2q2
δc2δ

d
2δ
e
2 (4.31)

В стандартном случае первый член отсутствует, а второй совпадает с нашими поэтому его легко
посчитать (он просто совпадет со стандартным): P lin

ab k
2σ2

d, где σ2
d определена в (4.20).

Для первого члена получим: P lin
12 (k)k4τ 4

d ,
где τ 4

d = π
9m2

∫
dq
∫
dτ ′2
(
g2
a(τ − τ ′2)gb2(τ ′2 − τ)P12(q) + g2

a(τ − τ ′2)gb1(τ ′2 − τ)P22(q)
)
.

Итак, как и в стандартной теории космологических возмущений члены, пропорциональные k2 сокра-
щаются [6], но в нашем случае возник член, пропорциональный k4.

4.3.3. Обсуждение

Итоговый ответ можно записать в следующем виде:

P 1−loop
ab (k) = P lin

ab − k4
(
ζ4
dP

lin(k)
)
ab

+ k4
(
P lin

12 (k)τ 4
d

)
ab
, (4.32)

где ζ4
d = π

6m2

∫
dq
∫
dτ ′2g

2
a(τ − τ ′2)gb1(τ ′2 − τ1)P12(q),

τ 4
d = π

9m2

∫
dq
∫
dτ ′2
(
g2
a(τ − τ ′2)gb2(τ ′2 − τ)P12(q) + g2

a(τ − τ ′2)gb1(τ ′2 − τ)P22(q)
)
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В отличие от случая WIMP сохраняются нетривиальные члены пропорциональные k4. Не смотря
на то, что они очень малы (присутствует фактор 1/m2), они могут оказывать влияние на физику.
Так например, в статье [7],приводятся доводы в пользу того, что такие члены могут приводить к
появлению ненулевого кручения у поля скоростей темной материи.
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5. Заключение
• Рассмотрено формирование структур в модели, где роль темной материи играет нерелятивист-

ское скалярное поле, например, аксионное.

• Развита теория возмущений, получены диаграммы, пропагаторы, вершины для вычисления
спектра мощности в однопетлевом приближении.

• Вычислен спектр мощности в однопетлевом приближении.

• Исследованы отличия этого спектра от стандартного случая WIMP.
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