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Введение

Природа массивного объекта в центре нашей галактики (Стрелец А*) до сих пор не ясна до

конца. Многие ученые считают, что там находится черная дыра, ввиду его массивности и

относительно малых размеров. Масса объекта известна довольно точно, и составляет при-

мерно M = (3.7± 1.5)× 106M�. Точно определить радиус на данный момент не удаётся, но

существуют такие ограничения: R > Rs - обусловлено предположением, что теория грави-

тации Эйнштейна верна для космических масштабов, R . 1500Rs - следует из наблюдений

за орбитой ближайшей звезды - будь радиус больше указанного значения, то часть массы

Стральца А* находилась бы за пределами орбиты, и тогда эта орбита не совпадала бы с

наблюдаемой кеплеровской.

Существует несколько причин полагать, что рассматриваемый объект является не чёрной

дырой. Во-первых, ввиду того что масса известна довольно точно, и радиус чёрной дыры

легко рассчитать, можно оценить светимость материи, аккретирующей на её поверхность -

однако она на 3 порядка меньше наблюдаемой, что привело к названию «голодающая чёрная

дыра» (black hole on starvation). Также недавние попытки увидеть «тень» чёрной дыры (что

в случае успеха доказало бы, что ничто другое в центре галактики находиться не может)

показали, что, возможно масса сосредоточна в радиусе, даже меньшем Шварцшильдова -

очередная неясность, не позволяющая сделать окончательное утверждение.

Чтобы с уверенностью говорить о том, что это черная дыра, нужно показать, что на этом

месте не может находиться ни один другой вид материи, сколько бы экзотическим он не

был. Есть два основных варианта, которые в теории могли бы заменить чёрную дыру –

это фермионная звезда, состоящая из вырожденных нейтрино или других фермионов, и

бозонная звезда. Целью данной работы является проверка того, можно ли в рамках этих

моделей получить значения массы и радиуса, соответствующие текущим наблюдениям, и

попробовать объяснить другие наблюдаемые "странности".
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Фермионные звезды

Одним из первых расммотренных кандидатов на место объекта в центре нашей галактике,

являются крупные скопления (звезды) из фермионов.

В 1993 году Viollier и Trautmann рассмотрели материю из нерелятивистских нейтрино, на-

ходящихся в гидростатическом равновесии со своим гравитационным полем:
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Ими была получена зависимость радиуса такой звезды от её массы и массы составляющей

частицы:
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Величина 17.2 keV здесь используется, поскольку в то время вёлся поиск кандидатов в тём-

ную материю, и нейтрино с такой массой могли бы подойти. Не совсем корректными были

ограничения на массу нейтрино, которые они поставили - они использовали данные о сверх-

массивном объекте в другой галактикой, с массой порядка 109M� - но нельзя делать предпо-

ложение, что все центральные объекты галактик это фермионные звезды - возможно, лишь

часть является таковой, а часть и есть черные дыры.

Используя ограничения на радиус RS < R < 1500RS, получаем ограничения на массу ней-

трино:

57.8 keV < mν < 898 keV
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Таким образом данную модель исключить нельзя, однако пока нет никаких результатов,

указывающих на существование нейтрино или другой тёмной материи в таком диапозоне

масс. Широко распространено мнение, что центральный объект нашей галактики, это не

фермионная звезда.

Бозонные звезды

Другой вариант материи, который мы рассмотрим - бозонные звезды. Они являются решени-

ем полевых уравнений Эйнштейна, связанных с комплексным скалярным полем. Скалярное

поле обладает U(1) симметрией, что обеспечивает сохраняющуюся величину - количество

частиц. Лагранжева плотность выглядит следующим образом:

L = − R

16π
+ gµν∂µφ

∗∂νφ+ V
(
|φ|2

)
Потенциал обычно берётся в виде

V = m2|φ|2 + λ|φ|4

Выбор потенциала и отличает бозонные звёзды от нетопологических солитонных, которые

будут рассмотрены ниже. Масса звезды зависит от массы составного бозона, значения кон-

станты самодействия и поля в центре - φ(0). Используя ограничения на радиус, масса иско-

мого бозона получается в районе 10−27 - 10−24 GeV (значение константы самодействия слабо

влияет на этот результат, а если пытаться добиться большей массы бозона путём измене-

ния центрального поля, то звезда получится слишком некомпактной, т.е. её размеры будут

противоречить наблюдениям).
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Q-шары

Q-шары (солитонные звезды) отличаются от бозонных выбором потенциала. Помимо усло-

вия U(1) симметрии, которое обеспечивает сохранение числа частиц, они ещё обладают тем

свойством, что при отсутсвии гравитации, они образуют нетопологические солитонные ре-

шения - т.е. в их потенциале есть слагаемые, отвечающие за притяжение. Самый простой

вид такого потенциала:

V = m2φ∗φ

(
1− 2φ∗φ

σ2
0

)2

В данной работе рассматриваются Q-шары Коулмана - тонкостенное приближение, когда

поле внутри радиуса R имеет константное значение ∼ σ0, затем идёт переходная область

шириной ∼ m−1, а за ней находится вакуум. Как и для обычных Q-шаров, зависимость поля

от времени берётся в виде анзаца φ ∼ eiωt.

Из 3-х рассмотренных моделей, данная оказывается наиболее интересной для исследова-

ния. Во-первых, Q-шары получаются весьма компактными, с радиусом, отличающимся от

Шваршцшильдова, на величину порядка 1. Масса звезды растёт монотонно с чилом частиц,

и критический предел компактности достигается при R = 2.869GM , после которого звезда

коллапсирует. Во-вторых, получаемая зависимость массы звезды от массы частицы уже со-

держит в себе 4-ю степень массы Планка (в отличие от предыдущей модели): M = 0.03038
πG2mσ2

0

(формула получена для критического случая). При применении к исследуемуму объекту,

получаем оценку массы частицы ∼ 100 GeV (это если взять σ0 ∼ m). Подобная масса уже

выглядит более реалистичной как кандидат на тёмную материю, а меняя значение σ0 и

рассматривая конфигурации меньшей компактности, нежели критическая, можно получить

конкретную массу частицы, если вдруг таковая будет обнаружена.
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Дальнейшие планы и заключение

Все три рассмотренные модели могут соответствовать действительности при правильном

подборе их параметров, однако наиболее реалистичной кажется модель с Q-шарами. С ней

и планируется дальнейшее развитие работы.

Следует отметить 2 пункта, которые весьма интересно проверить, в связи с указанными во

введении противоречивыми данными наблюдений Стрельца А*.

1) Попробуем объяснить причину маленького наблюдаемого центра нашей галактики в рам-

ках нашей теории. Сам по себе Q-шар очень слабо взаимодействует с материей, и он не имеет

поверхности - т.е. аккреция на неё не будет наблюдаться, и как следствие, наша звезда не

должна излучать. Однако, предлагается рассмотреть механизм падения обычной материи

внутрь этой звезды - что, если в его центре образуется скопление материи, которое, хоть и

размеров меньше, нежели Шварцшильдов радиус для всей системы, но именно оно отсвечи-

вает в результате аккреции на его поверхность?

2) Ещё попробуем объяснить тот факт, что центральные объекты галактик в основном де-

лятся на 2 типа - активные, и неактивные. Как уже упоминалось выше, излучение от наше-

го центра на 3 порядка ниже рассчитываемого, из-за чего её назвали "голодающей"черной

дырой. Если предположить, что действует механизм из 1-го пункта, то зададимся затем во-

просом - до какой степени масса внутри Q-шара может расти? Что, если в результате её

скопления уже образуется полноценная чёрная дыра, которая поглотит исходную звезду из-

нутри? Таким образом, будет понятно разделение на 2 типа - активные галактики, это те, в

которых в их центрах уже успели образоваться ЧД, а в неактивных - нет.

Наконец добавим, что путём наблюдений можно отличить бозонную звезду от ЧД только

увидев её «тень». Этого пока не удалось достичь, и поэтому утверждение о том что Стрелец

А* - это ЧД, пока является лишь самым распространённым вариантом, однако это пока не

доказано.
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