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1. Введение
В настоящий момент в физике прослеживается нетривиальная связь между основными теориями
20 века: квантовой теорией и общей теорией относительности. Одним из важнейших результатов
начала 21 века является предположение о связи квантовой конформной теории поля (CFT ) в плоском
пространстве с гравитацией в пространстве анти-де-Ситтера (AdS), обладающей дополнительным
пространственным измерением. Это предположение легло в основу AdS/CFT соответствия [1, 2,
3], которое позволяет вычислять корреляционные функции в теории поля с помощью нахождения
классических гравитационных решений в AdS. Сейчас AdS/CFT соответствие применяют не только
к теориям в критических точках, обладающих конформной симметрией, но и реалистичным моделям
физики частиц и конденсированного состояния вещества.

К примеру, AdS/CFT соответствие позволяет проводить вычисления в теории сильных взаи-
модействий, используя решения в общей теории относительности. Другим важным вопросом, на
который AdS/CFT может пролить свет, является физика черных дыр, в частности вопросы, связан-
ные с информационным парадоксом[4]. В результате этого естественным образом возникает интерес
к теориям, содержащим пространство анти-де-Ситтера в качестве вакуумного решения.

С другой стороны, имеется класс точно решаемых моделей дилатонной гравитации, один из пред-
ставителей которых - модель CGHS (Callan–Giddings–Harvey–Strominger)[5, 6]. Модель CGHS опре-
делена в асимптотически плоском двумерном пространстве. В то же время, несмотря на наличие
точных решений, она достаточно полна, чтобы описывать такие объекты, как гравитационные син-
гулярности, черные дыры и их формирование.

Таким образом, появляется шанс построить интегрируемую модель AdS/CFT соответствия с по-
мощью модели дилатонной гравитации, содержащей в качестве своего вакуумного решения про-
странство анти-де-Ситтера или пространство, асимптотически стремящeеся к нему.

В данной работе рассматривается модель двумерной дилатонной гравитации, основанная на рабо-
те [7]. Получено общее решение в этой модели и вакуумные решения: пространство AdS2 и простран-
ство, асимптотически стремящееся к нему. Таким образом, данная модель представляет интерес в
контексте AdS/CFT соответствия. Нами также описан коллапс узкого волнового пакета в этой мо-
дели.
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2. Модель

2.1. Описание модели

Мы рассматриваем модель гравитации в 1 + 1 измерениях с дилатонным полем φ со следующим
действием:

AD =

∫
d2x
√
−g
[
e−2φ

(
R + 4 (∇φ)2

)
+ Ae−4φ − Ce−2φ

]
. (2.1)

Здесь R – cкаляр Риччи, A и C – константы.
Как и в модели CGHS, мы добавляем безмассовое скалярное поле материи f :

AM = −1

2

∫
d2x
√
−g (∇f)2 . (2.2)

Отметим, что f не взаимодействует с дилатоном.
Заметим, что при выборе констант в действии A = 0, C = −4λ2 мы получаем действие модели CGHS:

ACGHS =

∫
d2x
√
−g
[
e−2φ

(
R + 4 (∇φ)2 + 4λ2

)]
. (2.3)

Варьируя действиe (2.1), (2.2) получаем уравнения поля:

e−2φ
[
R− 4 (∇φ)2 + 2Ae−2φ + 4�φ− C

]
= 0 , (2.4)

e−2φ
[
2∇µ∇νφ+ gµν

(
2 (∇φ)2 − 2�φ+

C

2
− A

2
e−2φ

)]
=
Tµν
2

, (2.5)

�f = 0 , (2.6)

Tµν = ∂µf∂νf −
1

2
gµν (∂f)2 . (2.7)

Здесь Tµν – тензор энергии-импульса.

2.2. Конформная калибровка

Будем использовать координаты светового конуса

x± ≡ t± z , (2.8)

где t и z -временная и пространственная координаты соответственно.
Пользуясь ковариантностью уравнений, выберем конформную калибровку для метрики:

ds2 = −e2ρ(x+,x−)dx+dx− . (2.9)

В компонентах:

gµν =

(
0 − e2ρ

2

− e2ρ

2
0

)
, gµν =

(
0 −2e−2ρ

−2e−2ρ 0

)
. (2.10)
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Заметим, что после фиксации калибровки (2.9) имеется остаточная калибровочная свобода относи-
тельно преобразований вида

x+ 7→ x
′+ = x

′+
(
x+
)
, x− 7→ x

′− = x
′− (x−) . (2.11)

Действительно:

ds2 = −e2ρ dx
+

dx′+
dx−

dx′−
dx
′+dx

′− = −e2ρ
′

dx
′+dx

′−, (2.12)

где введено преобразование конформного фактора:

ρ
′
= ρ+

1

2
ln

(
dx+

dx′+
dx−

dx′−

)
. (2.13)

Перепишем уравнения (2.4), (2.5), (2.6), (2.7):

2∂+∂−ρ+ 4∂+φ∂−φ− 4∂+∂−φ+
e2ρ

4

[
−C + 2Ae−2φ

]
= 0 , (2.14)

e−2φ
[
2∂2+φ− 4∂+ρ∂+φ

]
=

1

2
(∂+f)2 , (2.15)

e−2φ
[
2∂2−φ− 4∂−ρ∂−φ

]
=

1

2
(∂−f)2 , (2.16)

4∂+φ∂−φ− 2∂+∂−φ−
e2ρ

2

[
C

2
− A

2
e−2φ

]
= 0 , (2.17)

∂+∂−f = 0 . (2.18)

Заметим, что при выборе констант в действии равными C = −4λ2, A = 0 уравнения в конформной
калибровке сводятся к соответствующим уравнениям в модели CGHS.

2.3. Общее решение

Получим общее решение уравнений движения. Для этого вычтем из уравнения (2.17) уравнение
(2.14). Получим уравнение Лиувилля:

8∂+∂−(ρ− φ) + Ae2(ρ−φ) = 0 . (2.19)

При A = 0 это уравнение сводится к волновому уравнению ∂+∂−(ρ− φ) = 0 , как в модели CGHS.

Обозначим X = ρ− φ : 8∂+∂−X + Ae2X = 0 . (2.20)

Посмотрим как ведет себя уравнение (2.20) при конформных преобразованиях (2.11):

8∂+∂−X + Ae2X = 0 −→ 8∂
′

+∂
′

−X
′
+ Ae2X

′

= 0 , где X = X
′
+

1

2
ln

(
∂x
′+

∂x+
∂x
′−

∂x−

)
. (2.21)
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Таким образом, уравнение Лиувилля является конформно-инвариантным. Если известно какое-то
частное решение, то общее решение может быть получено из него конформными преобразованиями.

Покажем, что

e2X = e2(ρ−φ) =
8

A (x+ − x−)2
. (2.22)

является частным решением уравнения (2.20):

2X = ln

(
8

A (x+ − x−)2

)
, ∂+2X =

−2

(x+ − x−)
, (2.23)

4∂+∂−2X + Ae2X = − 8

(x+ − x−)2
+

8A

A (x+ − x−)2
= 0 . (2.24)

Получаем общее решение:

e2X = e2(ρ−φ) =
8∂+ω

+(x+)∂−ω
−(x−)

A (ω+(x+)− ω−(x−))2
; (2.25)

Здесь ω+(x+), ω−(x−) - произвольные функции своих аргументов.

Теперь найдем решение системы уравнений (2.14) – (2.17). Перепишем ее в более удобном виде:

− e2X∂+
[
e−2X∂+e

−2φ] =
1

2
(∂+f)2 , (2.26)

− e2X∂−
[
e−2X∂−e

−2φ] =
1

2
(∂−f)2 , (2.27)

∂+∂−f = 0 , (2.28)

∂+∂−e
−2φ − e2X

2

[
C

2
− A

2
e−2φ

]
= 0 , (2.29)

e2X =
8

A (x+ − x−)2
, X ≡ ρ− φ . (2.30)

Введем функцию Λ = Λ(x+, x−) так, что

e−2φ =
8Λ

A (x+ − x−)
. (2.31)

Тогда:

e2X∂+
[
e−2X∂+e

−2φ] =
8∂+∂+Λ

A (x+ − x−)
. (2.32)

Первое уравнение системы запишется как

− 8∂+∂+Λ(x+, x−)

A (x+ − x−)
=

1

2
(∂+f)2 . (2.33)

Аналогично, для второго уравнения:

e2X∂−
[
e−2X∂−e

−2φ] =
8∂−∂−Λ

A (x+ − x−)
. (2.34)
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Второе уравнение переписывается как:

− 8∂−∂−Λ(x+, x−)

A (x+ − x−)
=

1

2
(∂−f)2 . (2.35)

Это позволяет нам проинтегрировать их:
∂+∂+Λ (x+, x−) = − A

16
(x+ − x−) (∂+f)2

∂−∂−Λ (x+, x−) = − A
16

(x+ − x−) (∂−f)2

∂+∂−f = 0

=⇒

=⇒ Λ = − A
16

∫ x+

x0+
dx
′+

∫ x
′+

x0+
(∂+f)2

(
x
′′+ − x−

)
dx
′′+ −

− A

16

∫ x−

x0−
dx
′−
∫ x

′−

x0−
(∂−f)2

(
x+ − x′′−

)
dx
′′− +H

(
x+, x−

)
. (2.36)

Здесь H (x+, x−) является вакуумным решением (это становится очевидным при подстановке f = 0
в решение). Далее будем находить H.
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2.4. Вакуумные решения

Случай f = 0 соответствует вакуумному решению:
∂+∂+H = 0,

∂−∂−H = 0,

∂+∂−e
−2φ − 4

A(x+−x−)2
[
C
2
− A

2
e−2φ

]
= 0 .

Из первых двух уравнений получаем, что

H = D1

(
x+
) (
x− − x0−

)
+D2

(
x+
)
, D

′′

1

(
x+
) (
x− − x0−

)
+D

′′

2

(
x+
)

= 0 . (2.37)

Вспоминаем, что H ≡ Λ|f=0 :

e−2φ =
8H

A (x+ − x−)2
=

8

A (x+ − x−)2
[
D1

(
x+
) (
x− − x0−

)
+D2

(
x+
)]

. (2.38)

и подставляем в третье уравнение системы:

C +D1

(
x+
)
− 4

(
x+ − x0−

)
D
′

1

(
x+
)
− 4D

′

2

(
x+
)

= 0 . (2.39)

Чтобы воспользоваться условием на вторые производные, полученным ранее, продифференцируем
это равенство: (

x+ − x0−
)
D
′′

1

(
x+
)

+D
′′

2

(
x+
)

= 0 . (2.40)

Условия на вторые производные в 2.37 и 2.40 совместны тогда и только тогда, когда

D
′′

1 = D
′′

2 = 0 =⇒

{
D1 (x+) = C1x

+ + C2

D2 (x+) = C3x
+ + C4

, где C1, C2, C3, C4 = const . (2.41)

Тогда уравнение 2.39 превращается в условие на связь коэффициентов C1, C2, C3, C4. Получаем:

C + C2 + 4x0−C1 − 4C3 = 0 =⇒ С2 =
4C3 − 4x0−C1 − C

4
. (2.42)

Подставляя выражения для D1 и D2 с учетом связи констант в 2.37, и переобозначая постоянные,
получаем выражение для вакуумного решения:

H = a+ bx+ + ex− + dx+x−, где b− e =
C

4
. (2.43)

Таким образом, для этого решения:

ds2 = −e2ρdx+dx− =
−8e2φdx+dx−

A (x+ − x−)2
, (2.44)

e−2φ =
8

A

(
a+ bx+ + ex− + dx+x−

x+ − x−

)
, b− e =

C

4
. (2.45)
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В дальнейшем удобно будет использовать другую параметризацию решения:
Пусть b = b+ C

8
, e = b− C

8
. Тогда b− e = C

4
, как и требуется.

Решение записывается в виде:

ds2 =
−8e2φdx+dx−

A (x+ − x−)2
, (2.46)

e−2φ =
C

A

(
1 +

a+ b (x+ + x−) + dx+x−

x+ − x−

)
. (2.47)

Здесь a, b, d – произвольные константы.
Произвольное вакуумное решение получается из (2.46), (2.47) конформными преобразованиями:

ds2 =
−8∂+ω

+(x+)∂−ω
−(x−)

A (ω+(x+)− ω−(x−))2
e2φdx+dx−, (2.48)

e−2φ =
C

A

(
1 +

a+ b (ω+(x+) + ω−(x−)) + dω+(x+)ω−(x−)

ω+(x+)− ω−(x−)

)
. (2.49)

Здесь ω+(x+), ω−(x−) - произвольные функции своих аргументов.
Важным обстоятельством является то, что остаточная калибровочная свобода позволяет делать нам
преобразования SL(2, R). При этих преобразованиях:

x± =
αx
′± + β

γx′± + δ
; αδ − γβ = 1 . (2.50)

dx± =
α
(
γx
′± + δ

)
−
(
αx
′± + β

)
γ

(γx′± + δ)2
=

dx
′±

(γx′± + δ)2
, (2.51)

x+ − x− =
αx
′+ + β

γx′+ + δ
− αx

′− + β

γx′− + δ
=

(αδ − βγ)
(
x
′+ − x′−

)
(γx′+ + δ) (γx′− + δ)

=

(
x
′+ − x′−

)
(γx′+ + δ) (γx′− + δ)

. (2.52)

Тогда
dx+dx−

(x+ − x−)2
=

dx
′+dx

′−

(x′+ − x′−)2
. (2.53)

Аналогичными вычислениями можно показать, что в случае, когда все коэффициенты a, b, d одно-
временно не зануляются, то выражение 2.47 для e−2φ можно с помощью SL(2, R) преобразований
привести к виду

e−2φ =
C

A

(
1 +

1− µx+x−

x+ − x−

)
, (2.54)

где µ – новый параметр.
Если a = b = d = 0, то получаем пространство AdS2 в координатах Пуанкаре:

e−2φ =
C

A
, (2.55)

ds2 =
−8dx+dx−

C (x+ − x−)2
=

8

C

(
−dt2 + dz2

z2

)
. (2.56)
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Согласно (2.53) пространство AdS2 инвариантно относительно SL(2, R) преобразований. Также отме-
тим, что для решения в виде AdS2 дилатон является константой, что крайне необычно для моделей
дилатонной гравитации. Диаграмма Пенроуза для пространства AdS2 изображена на Рис.1. Постро-
ение описано в приложении B.

Рис. 1. Диаграмма Пенроуза для AdS2.

Если a 6= 0, b = d = 0, то получаем пространство с нетривиальным масштабным фактором:

e−2φ =
C

A

(
1 +

a

x+ − x−

)
=
C

A

(
1 +

a

z

)
, (2.57)

ds2 =
−8

C (x+ − x−)2

(
1 +

a

x+ − x−

)−1
dx+dx− =

8

Cz2

(
1 +

a

z

)−1 (
−dt2 + dz2

)
, (2.58)

где использованы переменные (t, z) из (2.8).
При z → 0 имеем e−2φ →∞, то есть z = 0 - физическая сингулярность.
В этом пределе получаем, что ds2 → 8

aC

(
−dt2+dz2

z

)
.

При z →∞ видим, что ds2 → 8
C

(
−dt2+dz2

z2

)
, то есть пространство асимпотически стремится к AdS2.

2.5. Коллапсирующий узкий волновой пакет

Остается непонятным, что из себя представляют остальные вакуумные решения. Для выяснения
этого вопроса рассмотрим следующий процесс: с границы вакуумного решения (например, AdS2)
испускаем волновой пакет. Полученное решение при таком процессе должно описывать образование
черной дыры в соответствующем пространстве.

Общее решение в модели:

ds2 = −e2ρdx+dx− , (2.59)
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e2ρ =
8e2φ

A (x+ − x−)2
, (2.60)

e−2φ = − 1

2 (x+ − x−)

∫ x+

x0+
dx
′+

∫ x
′+

x0+
(∂+f)2

(
x
′′+ − x−

)
dx
′′+ −

− 1

2 (x+ − x−)

∫ x−

x0−
dx
′−
∫ x

′−

x0−
(∂−f)2

(
x+ − x′′−

)
dx
′′− +

C

A

(
1 +

a+ b (x+ + x−) + dx+x−

x+ − x−

)
. (2.61)

Рассмотрим движение узкого волнового пакета по траектории x− = 0, запущенного с границы
(x+ = 0, x− = 0) в вакуумном решении AdS2:

Рис. 2. Диаграмма Пенроуза для волнового пакета в AdS2.

a = b = d = 0 , (∂−f)2 = Mδ
(
x−
)
. (2.62)

e−2φ =
C

A
+

1

2 (x+ − x−)

∫ x−

0

dx
′−
∫ x

′−

0

Mδ(x
′′−)
(
x
′′− − x+

)
dx
′′− = (2.63)

=
C

A
− 1

(x+ − x−)

∫ x−

0

Mx+Θ
(
x−
)
dx
′− =

C

A
− Mx+x−Θ (x−)

(x+ − x−)
. (2.64)

При x− < 0 имеем e−2φ = C
A
, то есть пространство AdS2.

При x− > 0 имеем e−2φ = C
A
− Mx+x−

(x+−x−) . Это решение содержится среди решений (2.46,2.47) при
a = b = 0 , d 6= 0. С физической точки зрения данный процесс описывает образование черной дыры
в результате коллапса волнового пакета. Это говорит нам о том, что решение (2.46, 2.47) при таких
значениях констант описывает черные дыры в пространстве AdS2, а константа d определяет их массу.

Теперь рассмотрим движение волнового пакета в фоновом пространстве (2.57, 2.58):

a 6= 0 , b = d = 0 , (∂−f)2 = Mδ
(
x−
)
. (2.65)

Аналогично, получаем:

e−2φ =
C

A
+
aC
A
−Mx+x−Θ (x−)

x+ − x−
, (2.66)
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ds2 =
−8e2φdx+dx−

A (x+ − x−)2
. (2.67)

Это решение (при x− > 0) содержится среди решений (2.46,2.47) при a 6= 0, b = 0, d 6= 0. Опять же,
это говорит нам о том, что решение (2.46, 2.47) при таких значениях констант описывает черные
дыры в пространстве с нетривиальным масштабным фактором, а константа d определяет их массу.

Действительно, возьмем решение (2.66, 2.67) при x− > 0 и преобразованиями из SL(2, R) приведем
его к виду:

e−2φ =
C

A

(
1 +

1− µx+x−

x+ − x−

)
, ds2 =

−8e2φdx+dx−

A (x+ − x−)2
. (2.68)

Сделаем дополнительную замену координат:

x± = µ−1/2 tanh
(
µ1/2x±

)
. (2.69)

Тогда:

e−2φ =
C

A

[
1 +

1− tanh
(
µ1/2x

′+
)

tanh
(
µ1/2x

′−)
µ−1/2 (tanh (µ1/2x′+)− tanh (µ1/2x′−))

]
=
C

A

[
1 + µ1/2 coth

(
µ1/2

(
x
′+ − x′−

))]
, (2.70)

dx+dx−

(x+ − x−)2
=

µ

sinh2 (µ1/2 (x′+ − x′−))
. (2.71)

Метрика примет вид:

ds2 =
8µ

C
· −dt2 + dz2

sinh2 (µ1/2z) (1 + µ1/2 coth (µ1/2z))
. (2.72)

Обозначим

r = µ1/2 coth
(
µ1/2z

)
=⇒

{
dz2 = dr2

(r2−µ)2

sinh2
(
µ1/2z

)
= µ

r2−µ

(2.73)

Тогда в этих координатах решение записывается как

e−2φ = 1 + r, ds2 =
8

C
· 1

(1 + r)

[
−
(
r2 − µ

)
dt2 +

dr2

r2 − µ

]
, r ∈

(
µ1/2; +∞

)
. (2.74)

Будем называть эти координаты Шварцшильдовыми. В них мы получили статическую метрику с
горизонтом, r = µ1/2 – радиус Шварцшильда.

Найдем температуру Хокинга для черной дыры (2.74): сделаем поворот Вика
τ = it. Метрика примет вид

ds2 =
8

C
· 1

(1 + r)

[
(r2 − µ)dτ 2 +

dr2

r2 − µ

]
. (2.75)

Если имеется метрика вида ds2 = f(r)dτ 2 + dr2

g(r)
, где функции f(r), g(r) имеют нуль первого

порядка в точке rh (т.е. f(rh) = g(rh) = 0, но f ′(rh) 6= 0, g′(rh) 6= 0), то температуру Хокинга можно
посчитать следующим образом [8]:

TH =

√
f ′(rh)g

′(rh)

4π
. (2.76)
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В нашем случае

f =
8

C
· r

2 − µ
1 + r

, (2.77)

g =
C

8
· (r2 − µ)(1 + r) , (2.78)

rh =
√
µ . (2.79)

Имеем
f
′
(
√
µ) =

16
√
µ

C(1 +
√
µ)

, (2.80)

g
′
(
√
µ) =

C
√
µ(1 +

√
µ)

4
. (2.81)

Таким образом

TH =
2
√
µ

4π
=

√
µ

2π
. (2.82)
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3. Заключение
В данной работе получены следующие результаты:

1. Изучена модель дилатонной гравитации, предложенная в работе [7]. Установлена явная связь
этой модели с моделью CGHS.

2. Получены вакуумные решения в данной модели: AdS2 и пространство, асимптотически стре-
мящееся к AdS2.

3. Получено общее классическое решение в модели.

4. Исследовано решение в виде узкого коллапсирующего волнового пакета. С помощью данного
решения проведена идентификация вакуумных решений с черными дырами.

5. Найдена температура Хокинга для соответствующей черной дыры.
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4. Приложение

4.1. Уравнения поля

Приведем вывод уравнений поля (2.4), (2.5), (2.6), (2.7). Имеем

AD =

∫
d2x
√
−g
[
e−2φ

(
R + 4 (∇φ)2 + Ae−2φ − C

)]
, (4.1)

AM = −1

2

∫
d2x
√
−g (∇f)2 . (4.2)

δ
√
−g = −1

2

√
−g (gµνδg

µν) ,

δR = Rµνδg
µν + gµνδRµν ,

δ(∇φ)2 = δ(gµν∇µφ∇νφ) = 4∇µφ∇νφδg
µν + 8∇µφ∇µδφ .

δAD =

∫
d2x
√
−g[−1

2
gµνδg

µνe−2φ(R + 4(∇φ)2 + Ae−2φ − C)− 2δφe−2φ(R + 4(∇φ)2 + Ae−2φ − C)

+ e−2φ(Rµνδg
µν + gµνδRµν + 4∇µφ∇νφδg

µν + 8∇µφ∇µδφ− 2δφAe−2φ)] . (4.3)

Перегруппируем слагаемые:

δAD =

∫
d2x
√
−ge−2φ[(Rµν −

1

2
gµνR)δgµν − 2(R + 4 (∇φ)2 + Ae−2φ − C)δφ−

− 1

2
gµν(4(∇φ)2 − C + Ae−2φ)δgµν + gµνδRµν + 4∇µφ∇νφδg

µν + 8∇µφ∇µδφ− 2δφAe−2φ] . (4.4)

Rµν −
1

2
gµνR = Gµν = 0 .

e−2φgµνδRµν = δgµν(gµν�−∇µ∇ν)e
−2φ +∇λ(· · · ) , где

�e−2φ = ∇µ(∇µe−2φ) = 4e−2φ(∇φ)2 − 2e−2φ�φ ,

∇µ∇νe
−2φ = 4e−2φ∇µφ∇νφ− 2e−2φ∇µ∇νφ .

Также 8e−2φ∇µφ∇νδφ = 8∇µ(e−2φ∇µδφ)− 8e−2φ�φδφ+ 16e−2φ(∇φ)2δφ .
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Собирая все вместе, за исключением поверхностных слагаемых ∇ρ(· · · ), получаем:

δAD =

∫
d2x
√
−ge−2φ[−2

(
R− 4(∇φ)2 − C + 2Ae−2φ + 4�φ

)
δφ+

+

(
2gµν(∇φ)2 − 2gµν�φ+

1

2
gµνC −

A

2
gµνe

−2φ + 2∇µ∇νφ

)
δgµν ] . (4.5)

Теперь возьмем вариацию действия для скалярного поля материи:

AM = −1

2

∫
d2x
√
−g(gµν∇µf∇νf) . (4.6)

δ(∇f)2 = ∇µf∇νfδg
µν + 2gµν∇µf∇νδf = ∇µf∇νfδg

µν + 2∇µ(∇µfδf)− 2�fδf . (4.7)

Не учитывая поверхностный член, получаем:

δAM = −1

2

∫
d2x
√
−g[−1

2
gµν(∇f)2δgµν +∇µf∇νfδg

µν ]− 2�fδf =

= −1

2

∫
d2x
√
−g[(∇µf∇νf −

1

2
gµν(∇f)2)δgµν − 2�fδf ] . (4.8)

Приравнивая вариацию полного действия к нулю

δAD + δAM = 0 . (4.9)

получаем уравнения поля и выражение для тензора энергии-импульса, приведенные в параграфе
(2.1).

Чтобы записать их в конформной калибровке, понадобятся отличные от нуля символы Кристоф-
феля:

Γ+
++ = 2∂+ρ , Γ−−− = 2∂−ρ . (4.10)

Скаляр Риччи:

R = gµνRµν = g+−R+− + g−+R−+ = 8e−2ρ∂+∂−ρ . (4.11)

Итак, в конформной калибровке

∇+∇+φ = ∂2+φ− 2∂+ρ∂+φ , ∇−∇−φ = ∂2−φ− 2∂−ρ∂−φ , ∇+∇−φ = ∂+∂−φ , (4.12)

(∇φ)2 = gµν∇µφ∇νφ = −4e−2ρ∂+φ∂−φ , �φ = gµν∇µ∇νφ = −4e−2ρ∂+∂−φ , (4.13)

T++ = (∂+f)2 , T−− = (∂−f)2 , T+− = 0 . (4.14)

Используя это, уравнения поля переписываются, как в пункте (2.2).
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4.2. Пространство AdS2

Пространство AdS2 определяется как гиперболоид (радиус кривизны l для простоты положим
равным 1)

X2
0 +X2

2 −X2
1 = 1 , (4.15)

вложенный в пространство с метрикой

ds2 = −(dX2
0 + dX2

2 ) + dX2
1 . (4.16)

Можно выбрать следующую параметризацию гиперболоида:

X0 = cosh ρ cos τ ,

X2 = cosh ρ sin τ ,

X1 = sinh ρ .

Метрика примет вид

ds2 = − cosh2 ρdτ 2 + dρ2 , где τ ∈ [0; 2π] , ρ ∈ (−∞; +∞) . (4.17)

Такие координаты называются глобальными. Можно привести метрику (4.17) к еще одному часто
использующемуся виду. Для этого сделаем следующие замены:

r = sinh ρ ,

t = τ .

То есть
X0 =

√
1 + r2 cos t ,

X1 = r ,

X2 =
√

1 + r2 sin t .

Тогда метрика примет вид

ds2 = −(r2 + 1)dt2 +
dr2

r2 + 1
. (4.18)

Также для пространства AdS2 можно ввести координаты Пуанкаре, покрывающие половину ги-
перболоида:

t
′
=

X0

X1 +X2

,

z =
1

X1 +X2

.

В них
ds2 =

1

z2

(
−dt′2 + dz2

)
. (4.19)

Переход от глобальных координат к координатам Пуанкаре задается формулами

r =
1 + t

′2 − z2

2z
,
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sin t =
−1 + t

′2 − z2√
1 + 2t′2 + t′4 + 2z2 − 2t′2z2 + z4

.

Диаграмма Пенроуза для AdS2 строится следующим образом. Возьмем метрику (4.17) и сделаем
замену координат

dθ =
dρ

cosh ρ
. (4.20)

Тогда
dρ2 = dθ2 cosh2 ρ ,

tan θ/2 = tanh ρ/2 =
1− e−ρ

1 + e−ρ
=⇒ eρ = tan(θ/2 + π/4) ,

cosh ρ =
eρ + e−ρ

2
=

1

cos θ
.

Метрика записывается в виде

ds2 =
1

cos2 θ
[−dt2 + dθ2] , где θ ∈ [−π/2;π/2] . (4.21)

θ = ±π
2

соответствует границам пространства AdS2 . (4.22)

По метрике (4.21) строится диаграмма Пенроуза, представленная на рисунке 1 в параграфе (2.4).
Координаты Пуанкаре на этой диаграмме покрывают выделенную треугольную область.

В заключение рассмотрим черную дыру в пространстве AdS2 и построим для нее диаграмму
Пенроуза.

ds2 = −(r
′2 − 2µr

′
+ 1)dt2 +

dr
′2

r′2 − 2µr′ + 1
= −f(r)dt2 +

dr2

f(r)
, где f(r) = r2 −M . (4.23)

Введем координату r∗ так, что dr∗

dr
= 1

f
. Решая явно, находим, что

r∗ =
1

2
√
M

ln
|r −
√
M |

r +
√
M

. (4.24)

Тогда метрика примет вид
ds2 = f(−dt2 + dr∗2) . (4.25)

Запишем метрику в координатах светового конуса

ũ = t− r∗ ,

ṽ = t+ r∗ .

То есть
ds2 = −fdũdṽ , где f = f(ũ, ṽ) . (4.26)

Выражение для f(ũ, ṽ) найдем из следующего соотношения:

r∗ =
1

2
√
M

ln
r −
√
M

r +
√
M

=
ṽ − ũ

2
. (4.27)

Тогда
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f = (r +
√
M)e

√
M(ṽ−ũ) , (4.28)

ds2 = −(r +
√
M)2e

√
M(ṽ−ũ)dũdṽ . (4.29)

Наконец вводим координаты

u = −e−
√
Mũ , (4.30)

v = e−
√
Mṽ . (4.31)

Метрика примет вид

ds2 =
−4

(1 + uv)2
dudv , где −∞ < u < 0 , 0 < v <∞ , (4.32)

uv = −r −
√
M

r +
√
M

. (4.33)

В этих координатах метрика более не сингулярна в точке r =
√
M , т.е. когда uv = 0, а значит мы

можем продолжить ее до −∞ < u < ∞, −∞ < v < ∞. При этом бесконечности по r соответствуют
uv = −1. Чтобы построить диаграмму Пенроуза, введем

u = tan

(
λ− ρ

2

)
, (4.34)

v = tan

(
λ+ ρ

2

)
. (4.35)

Тогда

uv =
tan2 λ/2− tan2 ρ/2

1− tan2 λ/2 tan2 ρ/2
= −r −

√
M

r +
√
M

, (4.36)

ds2 =
1

cos2 ρ
[−dλ2 + dρ2] . (4.37)

Отсюда видим, что на диаграмме Пенроуза бесконечность по r переходит в ρ = ±π/2, горизонт
r = ±

√
M в λ = ±ρ, а сингулярность в λ = ±π/2. Получаем следующую диаграмму:

Рис. 3. Диаграмма Пенроуза для черной дыры в AdS2.
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