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ВВЕДЕНИЕ

Космологические модели с галилеонным полем представляют большой ин-

терес, поскольку дают возможность работать с теорией, обладающей целым рядом

свойств, необычных для классических скалярных полей. В частности, галилеонное

поле может, не создавая ни духовых, ни градиентных неустойчивостей, нарушать

изотропное условие энергодоменантности.

За счёт таких необычных свойств есть теоретическая возможность создания

в рамках общей теории относительности полевых конфигураций, реализующих

стабильные статические сферически симметричные проходимые кротовые норы.

Построение проходимой кротовой норы, ведущей из одного просранства

Минковского в другое (асимптотически плоское решение по обе стороны ворон-

ки), представляет большой интерес (см. [1–4]), поскольку существование такой

воронки из нашей Вселенной в неё же нарушало бы принцип причинности, при-

нятый в общей теории относительности: вид светового конуса при рассмотрении

теорий, содержащих кротовую нору изменяется до неузнаваемости, а существо-

вание аналогичной воронки во второе плоское пространство Минковского откры-

вает уникальную возможность для построения теорий многих Вселенных.

В данной работе рассматривается возможность существования кротовой но-

ры на примере галилеонных теорий с лагранжианом

ℒ = 𝐹 (𝜋,𝑋) +𝐾(𝜋,𝑋)�𝜋, (1)

где 𝜋 скалярное поле, 𝐹 и 𝐾 – произвольные функции и введены следующие обо-

значения:

𝑋 = ∇𝜇𝜋∇𝜇𝜋, (2)

�𝜋 = ∇𝜇∇𝜇𝜋. (3)
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Как было показано ранее (см. [5]), даже в галилеонных теориях невозможно

существование статической кротовой норы, ведущей из открытого мира в откры-

тый: решения оказываются нестабильными. Поэтому в данной работе рассматри-

вается оставшаяся возможность: космологические модели типа «полузамкнутый

мир» (кротовая нора, соединяющая замкнутую Вселенную с пространством Мин-

ковского).

Такие модели представляют не меньший интерес: несмотря на то, что они,

в отличие от решений первого типа, не могут приводить к нарушению причинно-

сти, они способны практически изолировать область пространства внутри «пузы-

ря», оставив лишь узкую воронку для взаимодействия с остальным миром, делая

внутреннюю область практически недоступной для изучения методами наблюда-

тельной астрономии. Кроме того, при значительных размерах «пузыря» он также

может быть рассмотрен как параллельная Вселенная, но уже ограниченная в про-

странстве.

Основной целью данной работы является изучение на примере галилеонного

поля (1) конфигураций метрики, приводящих к решению типа «полузамкнутый

мир», и интерпретация асимптотик полученного решения с позиции удалённого

наблюдателя.

В главе 1 данной работы даётся общее представление о галилеонных теори-

ях (1.1) и об их специфических свойствах (1.2), раскрывается понятие «кротовая

нора» (1.3) и выписывается метрика, в терминах которой будет проводиться всё

дальшейшее исследование (1.4).

Глава 2 посвящена детальному рассмотрению уравнений Эйнштейна и ре-

шению некоторой их комбинации. В разделе 2.1 демонстрируется нахождение ре-

шения в квадратурах с точностью до двух произвольных констант. Раздел 2.2 по-

свящён нахождению этих констант и, наконец, в разделе 2.3 обсуждается вопрос
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разрешимости оставшихся уравнений Эйнштейна для выбранной галилеонной тео-

рии.

В главе 3 рассматриваются следствия из полученного в предыдущей гла-

ве решения в квадратурах. В частности обсуждается вопрос о том, как должна

выглядеть полученная конфигурация пространства-времени с точки зрения уда-

лённого наблюдателя.

В ходе работы формулируется и доказывается общее утверждение об от-

рицательной эффективной (наблюдаемой) массе кротовой норы для достаточно

большого класса теорий, представителем которого является, в частности, и тео-

рия с лагранжианом (1).

Таким образом, несмотря на тот факт, что в теориях, обладающих указан-

ным свойством, нестабильность кротовых нор явно не доказана, сформулирован-

ная в работе теорема является веским аргументом в пользу отсутствия подобных

решений.
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1. ГАЛИЛЕОНЫ И КРОТОВЫЕ НОРЫ

1.1 Происхождение термина «галилеон»

Впервые термин «галилеон» ( англ. «galileon») был введён в работе [5], где

рассматривались теории, обладающие двумя интересными особенностями:

∙ инвариантность уравнений движения относительно замены 𝜕𝜇𝜋 → 𝜕𝜇𝜋+ 𝑏𝜇,

где 𝑏𝜇 – постоянный вектор;

∙ уравнения движения, не содержащие производных выше второго порядка,

несмотря на производную второго порядка в лагранжиане.

Первое из этих двух свойств, ввиду его сходства с преобразованиями Гали-

лея, и послужило поводом назвать рассматриваемые поля «галилеонами».

В работе [5] было показано, что в четырёхмерном пространстве-времени

существуют только пять нетривиальных (не сводящихся к полной производной)

лагранжианов, удовлетворяющих указанным свойствам, а именно:

ℒ1 = 𝜋, (4)

ℒ2 = 𝜕𝜇𝜋𝜕
𝜇𝜋, (5)

ℒ3 = [Π](𝜕𝜇𝜋𝜕
𝜇𝜋), (6)

ℒ4 = [Π]2(𝜕𝜇𝜋𝜕
𝜇𝜋)− 2[Π](𝜕𝜇𝜋)Π

𝜇
𝜈(𝜕

𝜈𝜋)

− [Π2](𝜕𝜇𝜋𝜕
𝜇𝜋) + 2(𝜕𝜇𝜋)Π

𝜇
𝜈Π

𝜈
𝜆(𝜕

𝜆𝜋), (7)

ℒ5 = [Π]3(𝜕𝜇𝜋𝜕
𝜇𝜋)− 3[Π]2(𝜕𝜇𝜋)Π

𝜇
𝜈(𝜕

𝜈𝜋)− 3[Π][Π2](𝜕𝜇𝜋𝜕
𝜇𝜋)

+ 6[Π](𝜕𝜇𝜋)Π
𝜇
𝜈Π

𝜈
𝜆(𝜕

𝜆𝜋) + 2[Π3](𝜕𝜇𝜋𝜕
𝜇𝜋)

+ 3[Π]2(𝜕𝜇𝜋)Π
𝜇
𝜈(𝜕

𝜈𝜋)− 6(𝜕𝜇𝜋)Π
𝜇
𝜈Π

𝜈
𝜆Π

𝜆
𝜌(𝜕

𝜌𝜋), (8)
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Позже (см. например [6–9]) понятие галилеона было расширено на теории,

не обладающие «галилеевой» симметрией, однако сохраняющие второе свойство:

уравнения движения, содержащие производные порядка не выше второго при на-

личии вторых производных в лагранжиане.

В данной работе мы ограничимся рассмотрением лагранжиана, линейного

по вторым производным. Можно показать (см. [10] ), что самый общий вид такого

лагранжиана есть (1).

1.2 Галилеоны и изотропное условие энергодоминантности

Лагранжиан (1) интересен в первую очередь тем, что с его помощью мож-

но построить устойчивую (лишённую как духовых, так и градиентных нестабиль-

ностей) конфигурацию, нарушающую изотропное условие энергодоминантности

(англ. the Null Energy Condition, NEC):

𝑇𝜇𝜈𝑛
𝜇𝑛𝜈 > 0 для любого светоподобного 𝑛𝜇 (т.е. 𝑛𝜇𝑛

𝜇 = 0 ). (9)

В общей теории относительности именно изотропное условие энергодоме-

нантности запрещает существование как статических, так и динамических крото-

вых нор [1, 2, 10–12].

1.3 Кротовые норы

Кротовая нора представляет из себя воронку, соединяющую две области

пространства-времени. В предположении, что кротовая нора является частью на-

блюдаемой Вселенной необходимо рассматривать лишь асимптотически плоский

случай: когда с одной стороны от воронки находится пространство-время Мин-

ковского.
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Элементарных воронок, удовлетворяющих этому свойству, по топологиче-

ским соображениям существует только два типа (см. Рисунок 1): по другую сто-

рону от горловины может находится открытый или замкнутый мир.

Как было показано в работах [13, 14], кротовые норы, ведущие из одного

асимптотически плоского мира в другой (Рисунок 1a), неустойчивы, поэтому в

данной работе будут рассматриваться воронки, ведущие из асимптотически плос-

кого мира в конечную (хоть и, возможно, большую) область пространства (Рису-

нок 1b).

Рисунок 1 – Два типа асимптотически плоских кротовых нор: a) – воронка,

b) – полузамкнутый мир.

1.4 Метрика

Для описания сферически симметричных статических воронок лучше всего

подходит метрика

𝑑𝑠2 = 𝑎2(𝑟)𝑑𝑡2 − 𝑏2(𝑟)𝑑𝑟2 − 𝑐2(𝑟)𝛾𝛼𝛽𝑑𝑥
𝛼𝑑𝑥𝛽, (10)
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которая после подстановки калибровки

𝑏 =
1

𝑎
(11)

принимает вид

𝑑𝑠2=𝑎2𝑑𝑡2 − 1

𝑎2
𝑑𝑟2 − 𝑐2𝛾𝛼𝛽𝑑𝑥

𝛼𝑑𝑥𝛽, (12)

где 𝛾𝛼𝛽𝑑𝑥
𝛼𝑑𝑥𝛽 – метрика 𝑑-мерной сферы1, а 𝑎, 𝑏 и 𝑐 – произвольные функции,

имеющие в предположении о наличии воронки типа «полузамкнутый мир» следу-

ющие асимптотики:

∙ при 𝑟 → 0 : 𝑎 → 1, 𝑐 → 𝑟;

∙ при 𝑟 → ∞ : 𝑎 → 1, 𝑐 → 𝑟 − 𝑟0 – см. Рисунок 2.

Рисунок 2 – Примерный вид функции 𝑐(𝑟), обеспечивающий наличие воронки.

1во всей работе предполагается 𝑑 = 2, т.е. 4-мерное пространство-время
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2. РЕШЕНИЕ УРАВНЕНИЙ ЭЙНШТЕЙНА

Для дальнейшего изучения свойств искомого решения для функций 𝑎(𝑟) и

𝑐(𝑟) нам понадобятся уравнения Эйнштейна:

𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈 = 𝜅𝑇𝜇𝜈 , 𝜅 = 8𝜋𝐺, (13)

где тензор Эйнштейна 𝐺𝜇𝜈 в случае метрики (12) принимает вид:

𝐺0
0 = −2𝑎2

[︃
𝑎′𝑐′

𝑎𝑐
+

1

2

(︃(︂
𝑐′

𝑐

)︂2

− 1

𝑎2𝑐2

)︃]︃
− 2𝑎2

𝑐′′

𝑐
, (14)

𝐺𝑟
𝑟 = −2𝑎2

[︃
𝑎′𝑐′

𝑎𝑐
+

1

2

(︃(︂
𝑐′

𝑐

)︂2

− 1

𝑎2𝑐2

)︃]︃
, (15)

𝐺𝛼
𝛽 = 𝛿𝛼𝛽𝐺

Ω, (16)

𝐺Ω = −𝑎2

[︃
𝑎′′

𝑎
+

(︂
𝑎′

𝑎

)︂2

+

(︂
𝑐′′

𝑐
+ 2

𝑎′𝑐′

𝑎𝑐

)︂]︃
. (17)

В рамках теории (1) тензор энергии-импульса 𝑇𝜇𝜈 запишется в виде:

𝑇 0
0 = −𝐹 − 𝜋′2𝐾𝜋 + 2𝜋′2𝜋′′𝐾𝑋 , (18)

𝑇 𝑟
𝑟 = −𝐹 + 𝜋′2𝐾𝜋 + 2𝜋′3

(︂
𝑎′

𝑎
+ 2

𝑐′

𝑐

)︂
𝐾𝑋 − 2𝜋′2𝐹𝑋 , (19)

𝑇 𝛼
𝛽 = 𝛿𝛼𝛽𝑇

Ω, (20)

𝑇Ω = −𝐹 − 𝜋′2𝐾𝜋 + 2𝜋′2𝜋′′𝐾𝑋 = 𝑇 0
0 . (21)

Как видно из уравнений (14) и (15), выражения для 𝐺0
0 и 𝐺𝑟

𝑟 отличаются

одним слагаемым, поэтому вместо уравнений отдельно на 𝐺0
0 и 𝐺𝑟

𝑟 разумно рас-

смотреть какое-то одно из них (более простое), а также уравнение на их разность.

Кроме того, из уравнения (21) следует соотношение на 𝐺0
0 и 𝐺Ω:

𝐺0
0 = 𝐺Ω. (22)
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Большинство дальнейших рассуждений основывается в первую очередь на

свойстве

𝑇 0
0 = 𝑇Ω, (23)

которое распространяется на значительно более широкий класс теорий, чем рас-

смотренные в данной работе.

С учётом вышеуказанных замечаний, система уравнений Эйнштейна прини-

мает следующий вид: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐺0

0 = 𝐺Ω

𝐺0
0 −𝐺𝑟

𝑟 = 𝜅
(︀
𝑇 0
0 − 𝑇 𝑟

𝑟

)︀
𝐺0

0 = 𝜅𝑇 0
0

(24)

2.1 Решение первого уравнения в квадратурах

Рассмотрим отдельно первое уравнение системы (24). Ещё раз подчеркнём,

что оно не зависит от тензора энергии-импульса и выполняется во всех теориях,

где верно равенство (23).

Подставив в него явный вид 𝐺0
0 и 𝐺Ω из выражений (14) и (17) и приведя

подобные получаем:

𝑎′′

𝑎
+

(︂
𝑎′

𝑎

)︂2

− 𝑐′′

𝑐
−
(︂
𝑐′

𝑐

)︂2

+
1

𝑎2𝑐2
= 0. (25)

Произведя замену переменных

𝑎2 = 𝛾, 𝑐2 = 𝑢, (26)

перепишем уравнение в следующем виде:

𝛾′′𝑢− 𝑢′′𝛾 + 2 = 0. (27)
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Ещё дважды заменив переменные:

𝛼 =
𝛾

𝑢
(28)

⇓

𝑢2𝛼′′ + 2𝑢𝑢′𝛼′ + 2 = 0, (29)

⇓

𝛽 = 𝛼′ (30)

⇓

𝑢2𝛽′ + 2𝑢𝑢′𝛽 + 2 = 0, (31)

приходим к уравнению (31), общее решение однородной части которого ищется

методом разделения переменных и равно

𝛽0 =
𝐶

𝑢2
. (32)

Частное же решение неоднородного уравнения ищется методом вариации

постоянной, что приводит нас к окончательному выражению для 𝛽(𝑟):

𝛽(𝑟) =
𝐶 − 2𝑟

𝑢2(𝑟)
. (33)

Теперь мы можем записать выражение для 𝛼 в квадратурах, а, следователь-

но, и для 𝛾(𝑟):

𝛾(𝑟) = 𝑢(𝑟)

⎡⎣ ∞∫︁
𝑟

2𝑟 − 𝐶

𝑢2(𝑟)
𝑑𝑟 +𝐷

⎤⎦ (34)

2.2 Определение констант

Решение (34) является решением дифференциального уравнения второго

порядка (27) и, поэтому, содержит две произвольные константы 𝐶 и 𝐷. Найдём

их из условий регулярности функции 𝑎(𝑟), а значит и 𝛾(𝑟) при 𝑟 → 0 и 𝑟 → ∞:
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∙ при 𝑟 → 0 ( 𝛾 → 1, 𝑢 → 𝑟2 ):

𝛾 → 1− 𝐶

3

1

𝑟
+𝐷𝑟2 + 𝑜

(︀
𝑟2
)︀

. (35)

Видим, что при 𝐶 ̸= 0 имеется расходимость 𝐶
3
1
𝑟 , следовательно

𝐶 = 0; (36)

∙ при 𝑟 → ∞ ( 𝛾 → 1, 𝑢 → (𝑟 − 𝑟0)
2 ):

𝛾 → 1 +
2𝑟0 − 𝐶

3

1

𝑟 − 𝑟0
+𝐷(𝑟 − 𝑟0)

2 + 𝑜

(︂
1

𝑟 − 𝑟0

)︂
⇒ 𝐷 = 0. (37)

На этот раз расходимость вида 𝐷(𝑟− 𝑟0)
2 присутствует при 𝐷 ̸= 0, откуда

𝐷 = 0. (38)

Итак, используя (36) и (38), получаем окончательное выражения для 𝛾(𝑟):

𝛾(𝑟) = 𝑢(𝑟)

∞∫︁
𝑟

2𝑟

𝑢2(𝑟)
𝑑𝑟. (39)

Последнее уравнение, в частности, означает, что мы можем задать произ-

вольную функцию 𝑐(𝑟) и при помощи выражения (39) получить выражение для

𝑎(𝑟), причём, поскольку интегрирование ведётся в положительном направлении

и на всём интервале интегрирования подынтегральное выражение положительно,

выражение для 𝛾(𝑟) всегда положительно и несингулярно для любой наперёд за-

данной положительной несингулярной функции 𝑐(𝑟).

2.3 Оставшиеся уравнения

Выпишем теперь оставшиеся уравнения системы (24), вернувшись к лагран-

жиану (1), поскольку в них проявляется сильная зависимость непосредственно от

13



рассматриваемой теории:

∙ 𝐺0
0 −𝐺𝑟

𝑟 = 𝜅
(︀
𝑇 0
0 − 𝑇 𝑟

𝑟

)︀
:

𝜋′2
[︂
𝐹𝑋 −𝐾𝜋 + 𝑎2

(︂
𝜋′′ − 2

𝑐′

𝑐

)︂
𝐾𝑋

]︂
= −1

𝜅
𝑎2
𝑐′′

𝑐
. (40)

∙ 𝐺0
0 = 𝜅𝑇 0

0 :

𝐹

𝑎2
+ 𝜋′2𝐾𝜋 − 2𝑎(𝑎′𝜋′ + 𝑎𝜋′′)𝜋′2𝐾𝑋 =

2

𝜅

[︂
𝑎′𝑐′

𝑎𝑐
+

𝑐′′

𝑐
+

1

2

(︂
𝑐′2

𝑐2
− 1

𝑎2𝑐2

)︂]︂
. (41)

Если мы теперь для простоты выберем калибровку 𝜋 = 𝑟, эти уравнения

перепишутся в виде

𝐹𝑋 = 𝐾𝜋 + 2𝑎2
𝑐′

𝑐
𝐾𝑋 − 1

𝜅
𝑎2
𝑐′′

𝑐
, (42)

𝐹

𝑎2
= −𝐾𝜋 + 2𝑎𝑎′𝐾𝑋 +

2

𝜅

[︂
𝑎′𝑐′

𝑎𝑐
+

𝑐′′

𝑐
+

1

2

(︂
𝑐′2

𝑐2
− 1

𝑎2𝑐2

)︂]︂
, (43)

из чего можно сделать вывод, что в предположении известной функции 𝐾 они

представляют из себя выражения для функции 𝐹 и её первой производной по 𝑋 ,

то есть являются разрешимыми для широкого класса функций 𝐹 .
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3. РАДИУС ШВАРЦШИЛЬДА

3.1 Метрика Шварцшильда

Для упрощения дальнейшего анализа физического смысла полученных нами

результатов полезно записать асимтотическое поведение решения (39) в терминах

метрики Шварцшильда:

𝑔 =

⎡⎢⎢⎢⎢⎢⎢⎣

(︀
1− 𝑟𝑠

𝑟

)︀
0 0 0

0 −
(︀
1− 𝑟𝑠

𝑟

)︀−1
0 0

0 0 −𝑟2 0

0 0 0 −𝑟2 sin2 𝜃

⎤⎥⎥⎥⎥⎥⎥⎦ (44)

Сама метрика Шварцшильда представляет из себя единственное точное ва-

куумное сферически симметричное решение уравнений Эйнштейна, не содержа-

щих космологическую постоянную, то есть уравнений

𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈 = 0. (45)

Используя введённую ранее терминологию, мы можем записать метрику

Шварцшильда как частный случай метрики (12) при

𝛾(𝑟) = 𝑎2(𝑟) = 1− 𝑟𝑠
𝑟

, (46)

где 𝑟𝑠 – радиус Шварцшильда:

𝑟𝑠 = 2𝐺𝑀 =
𝜅𝑀

4𝜋
, (47)

а 𝑀 – масса, создающее искривление пространства-времени.

Здесь необходимо сделать два замечания. Во-первых, масса 𝑀 – это види-

мая наблюдателем масса. В нормальной ситуации она совпадает с гравитационной
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массой объекта, находящегося в центре системы. Мы же имеем дело с необыч-

ной конфигурацией пространства-времени, поэтому имеем право говорить лишь

об эквивалентной массе, видимой стороннему наблюдателю, не привязывая её к

массе физических объектов, находящихся по другую сторону воронки.

Во-вторых следует обратить отдельное внимание на предполагаемый вид

функции 𝑐(𝑟): при 𝑟 → ∞ функция 𝑐(𝑟) → 𝑟 − 𝑟0, где 𝑟0 – положительный пара-

метр теории. Удалённый наблюдатель вообще говоря не должен быть осведомлён

о существовании «пузыря», поэтому для него логичным выбором координат для

описания системы будет не 𝑟, а эффективный радиус 𝑟𝑒𝑓𝑓 = 𝑟 − 𝑟0.

3.2 Радиус Шварцшильда

В разделе 2.2 мы уже выписывали асимтотику 𝛾 на бесконечности для про-

извольных констант 𝐶 и 𝐷 (см. (37)). Подставляя условия (36) и (38), получаем

при 𝑟 → ∞ :

𝑎2 → 1 +
2𝑟0
3

1

𝑟 − 𝑟0
+ 𝑜

(︂
1

𝑟 − 𝑟0

)︂
. (48)

Сравнивая асимптотику (48) с выраженимем (46) для метрики Шварцшиль-

да, получаем следующие значения параметров теории:

𝑟𝑒𝑓𝑓 = 𝑟 − 𝑟0, (49)

𝑟𝑠 = −2

3
𝑟0, (50)

𝑀𝑒𝑓𝑓 = −8𝜋

3𝜅
𝑟0, (51)

Из выражений (49) – (51) видно, что мы получили предсказанный нами ре-

зультат (49) для 𝑟𝑒𝑓𝑓 . Выражение (51) для массы представляет особый интерес,

поскольку стоящее в правой части выражение меньше нуля.
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Таким образом, мы получили нетривиальный вывод: в самом общем случае

( в доказательстве этого утверждения мы использовали лишь асимптотику 𝑐(𝑟) на

бесконечности и свойство (23) ) сторонний наблюдатель увидит объект отрица-

тельной массы.

Наличие вышеуказанного факта хотя и не является прямым доказатель-

ством принципиального отсутсвия кротовых нор типа «полузамкнутый мир», но

является довольно веским доводом, в пользу их отсутсвия в непатологических

теориях, обладающих свойством (23), к которым, в частности, относятся и гали-

леонные теории с лагранжианом (1).
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ЗАКЛЮЧЕНИЕ

В соответствии с [5], в галилеонных теориях невозможно существование

статической кротовой норы, ведущей из открытого плоского мира Минковского в

открытый плоски мир Минковского (ни в тот же самый, ни в смежный): решения

оказываются нестабильными. Поэтому в данной работе рассмотрена единствен-

ная (в предположении связи кротовой норы с наблюдаемой Вселенной) оставшая-

ся возможность: кротовая нора, соединяющая замкнутую Вселенную с простран-

ством Минковского (т.е. космологические модели типа «полузамкнутый мир»).

В работе рассмотрены космологические модели обладающие симметрией

(23): совпадают временнáя и угловая компоненты тензора энергии-импульса. Из

требования вышеуказанной симметрии выведено общее уравнение, связывающее

коэффиценты метрики.

Детальное рассмотрение асимптотик этого уравнения в предположении ре-

шения типа «полузамкнутый мир» позволяет сделать вывод об отрицательности

радиуса Шварцшильда, видимого стороннему наблюдателю, что означает отрица-

тельную эффективную массу.

Несмотря на то, что общая теория относительности не запрещает существо-

вание объектов, обладающих отрицательной массой (более того, на эту тему про-

водились достаточно обширные исследования, см. например [15]), предположение

такого рода приводит к непривычным эфектам и является веским, хоть и нестро-

гим, аргументом в пользу несостоятельности рассматриваемой теории.
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