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Введение

В данной работе исследуется задача о туннельном переходе между со-
стояниями в случае, если в системе присутствует сохраняющийся заряд Q,
соответствующий симметрии U(1). Интерес представляют классически ста-
бильные начальное и конечное состояния, то есть реализующие локальные
минимумы энергии. Главной особенностью рассматриваемого класса задач
является то, что экстремум энергии достигается в секторе с заданным зна-
чением сохраняющегося заряда Q. Такой заряд присутствует, например,
при изучении распада нетопологических солитонов, реализующих локаль-
ный минимум энергии при заданном Q.

Основной задачей работы является квазиклассический расчет вероят-
ности распада Q-шаров. В теориях с Q-шарами начиная с определенного
значения заряда есть две классически устойчивые конфигурации: локали-
зованный солитон, называемый Q-шаром, и ансамбль свободных частиц.
При малых значениях заряда энергия локализированной системы может
оказаться выше суммарной энергии свободных частиц. В этом случае Q-
шар будет распадаться в свободные частицы.

Сохраняющиеся заряды возникают и в задачах иного рода. Например, в
квантовой механике двух измерений задача о движении частицы в аксиально-
симметричном потенциале с угловым моментом l как раз имеет сохраня-
ющуюся величину l, которая также соответствует симметрии U(1). При
некоторых значениях l могут существовать два локальных минимума энер-
гии. Решение этой задачи мы используем как проверку работоспособности
метода.

В работе предложен метод описания распада Q-шара в главном квази-
классическом приближении. Задача о распаде сведена к численному реше-
нию классических уравнений. Метод применен к задаче квантовой механи-
ки, получен ответ, который совпадает с общеизвестным.
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1. Квазиклассический метод

Чтобы определить вероятность перехода в квантовой системе, нужно
вычислить амплитуду перехода между двумя состояниями и возвести её по
модулю в квадрат. Проблема заключается в определении состояния, реали-
зующего экстремум энергии с заданным сохраняющимся зарядом Q. Далее
будем называть локализованные состояния, реализующие локальный ми-
нимум при заданном Q “Q-шарами”, а абсолютный минимум – истинными
вакуумами.

Мы рассматриваем гамильтонианы H, обладающие симметрией U(1).
Заряд Q соответствует этой симметрии, а оператор Q̂ коммутирует с H.

Рассмотрим произвольное состояние |ψi〉. Введем оператор проекции P̂Q
на подпространство состояний с фиксированным значением заряда Q.

Подействуем оператором e−HT с большим действительным T на полу-
ченное состояние. Предел T → ∞ вырезает состояние с минимумом энер-
гии из всех состояний с заданным значением Q. Так как операторы Q̂ и Ĥ
коммутируют, их собственные вектора совпадают. Тогда состояние P̂Q |ψi〉
раскладывается по базису состояний с определенной энергией Ek и зарядом
Q.

e−HT P̂Q |ψi〉 =
∑
k

e−EkT |Ek, Q〉 〈Ek, Q|P̂Qψi〉 −−−→
T→∞

e−E0T |E0, Q〉 〈E0, Q|ψi〉 .

(1)
В главной ассимптотике выделяется слагаемое с наименьшей энергией E0,
если 〈E0, Q|ψi〉 6= 0. Таким образом, чтобы выделить состояние, находя-
щееся в ложном вакууме, нужно, чтобы начальная волновая функция не
была ортогональна состоянию Q-шара. Это несколько ограничивает выбор
начального состояния |ψi〉.

Теперь перейдем к описанию перехода. Выберем некоторое конечное
состояние |ψf〉, которое локализовано в секторе истинного вакуума. Рас-
смотрим выражение

P1 =
∣∣∣〈ψf | e−iHte−HT P̂Q |ψi〉∣∣∣2 . (2)
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Просуммируем его по начальным состояниям |ψi〉. Представление (1) поз-
воляет упростить выражение (2):∑

ψi

P1 −−−→
T→∞

∑
ψi

〈ψf | e−iHt |E0, l〉 · e−E0T · 〈E0, Q|ψi〉 〈ψi|E0, Q〉 ·

·e−E0T · 〈E0, Q| e−iHt |ψf〉 = e−2E0T ·
∣∣∣〈ψf | e−iHt |E0, Q〉

∣∣∣2 , (3)

Если просуммировать последнее выражение по конечным состояниям |ψf〉,
отличным от начальных (не локализованных вблизи Q-шара) и домножить
на фактор e2E0T , то в пределе больших T мы получим выражение для
вероятности выхода частицы из ложного вакуума за время t, то есть

P =
∑
ψf

∣∣∣〈ψf | e−iHt |E0, Q〉
∣∣∣2

Используя (2) и (3), запишем итоговую формулу, которой мы будем поль-
зоваться в дальнейшем:

P = e2E0T ·
∑
ψf ,ψi

∣∣∣〈ψf | e−iHte−HT P̂Q |ψi〉∣∣∣2 . (4)

Основным инструментом вычисления этой величины будет представление
амплитуды перехода через через континуальный интеграл.

Пусть мы хотим вычислить амплитуду перехода полевой системы в n-
мерном пространстве из состояния, являющегося собственной функцией
оператора поля с конфигурацией ϕb(~x) в другое состояние с конфигурацией
ϕa(~x) за данное время t. Тогда имеет место выражение

〈ϕa| e−iHt |ϕb〉 =

∫
Dϕ(t, ~x)eiSab, (5)

где Sab обозначает классическое действие на траектории ϕ(t, ~x). Интегри-
рование ведется по траекториям, для которых начальная конфигурация
поля это ϕb(~x), а конечная – это ϕa(~x).

Вычисления будут проводиться в главном квазиклассическом прибли-
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жении. Это позволяет применять седловой метод для взятия континуаль-
ных интегралов. Он состоит в том, что ищется седловая точка, в кото-
рой функция принимает максимальное значение, а затем все выражение
аппроксимируется гауссоподобной кривой с вершиной в точке максиму-
ма. Применяя этот метод, мы не будем выписывать предэкспоненциальные
множители, так что значение интеграла сведется к значению функции в
точке максимума.

Для этого также будем пользоваться разложением состояния по соб-
ственным функциям оператора напряженности поля (либо оператора ко-
ординаты в механике). Далее вычисления будут проводиться в главном
квазиклассическом приближении, то есть интегралы будут браться седло-
вым методом.

Итак, мы получили выражение для расчета вероятности перехода, кото-
рое можно вычислить с помощью применения континуальных интегралов
и их расчета седловым методом. Заметим, что вероятность не зависит от
выбора начальных и конечных состояний, которыми мы пользовались в
начале, что подчеркивает универсальность формулы.
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2. Расчет вероятности распада Q-шаров

2.1. Модель

Рассматривается модель комплексного скалярного поля в (1+1)-мерном
пространстве с лагранжианом

L = ∂µϕ · ∂µϕ̄− V (ϕϕ̄), 1 (6)

где потенциал V , зависящий от переменной ρ2 ≡ ϕϕ̄, выбирается в виде

V (ρ) = M 2v2 + Θ(v − ρ) · (M 2ρ2 −M 2v2), Θ(x) =

1, x > 0,

0, x ≤ 0.
(7)

Такой потенциал допускает существование устойчивых локализованных
полевых конфигураций – солитонов [1]. Упомянем, что теории с потен-
циалами, которые удовлетворяют условию[

V (ρ)

ρ2

]
ρ→∞

= 0

называют теориями с плоскими направлениями. В работе [2] из формул
(21)–(24) легко получить, что энергия солитонов в (1+1)-мерном простран-
стве при потенциале (7) асимптотически зависит от заряда по закону E ∼
Q1/2. Действительно,

Q = v2M 2 π

2ω2
+O(ω−2),

E = v2M 2 π

2ω
+ 2v2M 2 π

2ω
+O(ω−1) ∼

√
Q.

Также в [2] показано, что классически стабильными солитоны становят-
ся еще при значениях энергии, большей, чем энергия свободных частиц с
тем же зарядом. Мы интересуемся именно такими зарядами, при которых

1Введение ϕ̄ обусловлено применением евклидовой эволюции ниже, в которой равен-
ство ϕ∗ = ϕ̄ не выполняется.
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распад классически стабильного солитона энергетически выгоден.

2.2. Вероятность перехода и седловые условия

Пользуясь методом главы 1, выведем выражение для вероятности рас-
пада Q-шара.

Собственное состояние оператора поля ϕ̂ будем обозначать как |ϕ, ϕ̄〉.
Введем некоторое начальное состояние |ψi〉 = |ϕ0, ϕ̄0〉, локализованное вбли-
зи состояния Q-шара, то есть, его матричный элемент с состоянием Q-шара
отличен от нуля. Оператор проекции P̂Q на заряд Q имеет вид

P̂Q =

∫
dα eiα(Q̂−Q). (8)

Оператор Q̂ является генератором зарядовой симметрии U(1), поэтому
eiαQ̂ |ϕ, ϕ̄〉 = |ϕeiα, ϕ̄e−iα〉. Таким образом

P̂Q |ϕ, ϕ̄〉 =

∫
dα e−iαQ |ϕeiα, ϕ̄e−iα〉 . (9)

Введем конечное состояние |ψf〉 = |ϕc, ϕ̄c〉. Будем считать, что оно локали-
зовано вблизи истинного вакуума. Запишем амплитуду перехода

A = 〈ψf | e−iHte−HT P̂Q |ψi〉 . (10)

Подставим единичные операторы в виде ансамбля состояний типа |a〉 ≡
|ϕa, ϕ̄a〉

A =

∫
a,b

〈c| e−iHt |a〉 〈a| e−HT |b〉 〈b| P̂Q |ψi〉 . (11)

Здесь и далее мы опускаем меру интегрирования и пишем величины, по
которым ведется интегрирования под знак интеграла. Далее переходим к
континуальным интегралам. Множитель 〈c| eiHt |a〉 можно представить в
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виде континуального интеграла

〈c| e−iHt |a〉 =

∫
Dϕ(t)Dϕ̄(t) · eiSca[ϕ(t),ϕ̄(t)] =

∫
ϕ(t),ϕ̄(t)

eiSca[ϕ(t),ϕ̄(t)] , (12)

где Sca обозначает классическое действие на траектории [ϕ(t), ϕ̄(t)], кото-
рая интерполирует между точками (ϕa, ϕ̄a) и (ϕc, ϕ̄c). Далее не будем явно
писать Dϕ(t)Dϕ̄(t).

Множитель 〈a| e−HT |b〉 также сводится к континуальному интегралу,
здесь время на действии эволюционирует от точки iT до 0. С учетом (9),
(10) и (12), выражение для амплитуды примет вид:

A =

∫
a,b,α,ϕ(t),ϕ̄(t)

eiScaeiSabe−iαQ · δ(ϕb − ϕ0e
−iα, ϕ̄b − ϕ̄0e

iα). (13)

Седловым условием на траекторию ϕ(t), ϕ̄(t) являются уравнения движе-
ния. С учетом формы потенциала (7), их можно записать так:∂µ∂µϕ+ (∂V/∂ρ2) · ϕ = 0,

∂µ∂
µϕ̄+ (∂V/∂ρ2) · ϕ̄ = 0.

(14)

Интегрирование (13) по (ϕb, ϕ̄b) дает условие

ϕb = ϕ0e
−iα, ϕ̄b = ϕ̄0e

iα. (15)

Далее заметим следующие соотношения, вытекающие из лагранжиана (6):δSab/δϕa(x) = πa(x) = ∂0ϕ̄a(x),

δSab/δϕ̄a(x) = π̄a(x) = ∂0ϕa(x).
(16)

Седловое интегрирование выражения (13) по (ϕa, ϕ̄a) с учетом (16) приво-
дит к условию непрерывности импульсов π, π̄ в точке a. Так как в осталь-
ных точках удовлетворяются уравнения движения (14), то импульсы непре-
рывны на всей траектории.
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В выражении для амплитуды остается ещё интеграл по параметру α:

A =

∫
α

eiScaeiSabe−iαQ. (17)

Седловое условие для него:

0 =
∂(Sab − αQ)

∂α
=

∫
dx

[
∂Sab
∂ϕb

∂ϕb
∂α

+
∂Sab
∂ϕ̄b

∂ϕ̄b
∂α

]
−Q,=⇒

=⇒
∫
dx [πϕ− π̄ϕ̄] = −iQ. (18)

Итак, с учетом условий (14), (15) и (18), амплитуда определяется действием
на траектории с заданными начальной точкой (ϕb, ϕ̄b) и конечной (ϕc, ϕ̄c).
Траектория задана на контуре времени, состоящем из отрезков [iT, 0] и
[0, t]. Формула для амплитуды имеет вид:

A = eiScbe−iαQ. (19)

Переходим к вычислению вероятности. Следуя (4), записываем формулу
для вероятности распада

P = e2E0T ·
∫

ϕc,ϕ̄c,ϕ0,ϕ̄0

A∗A = e2E0T ·
∫

ϕc,ϕ̄c,ϕ0,ϕ̄0

e−iαQ+iα∗Q · eiScb−iS∗
cb. (20)

Получим седловые условия на интеграл по ϕc, ϕ̄c:
∂(Scb − S∗cb)

∂ϕc
= π̄c − π∗c = 0,

∂(Scb − S∗cb)
∂ϕ̄c

= πc − π̄∗c = 0.
(21)

Как мы видим, второе соотношение является комплексно-сопряжённым
первому.

На этапе действительной траектории в точке c поле является физиче-
ским, поэтому ϕ̄c = ϕ∗c . Полученные соотношения (16), (21) с учетом вида
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уравнений движения (14) приводят к результату, что ϕ̄ = ϕ∗ на всем от-
резке действительной эволюции.

Теперь рассмотрим седловые уравнения на интеграл по ϕ0, ϕ̄0:

∂(Scb − S∗cb)
∂ϕ0

=
∂Scb
∂ϕb

∂ϕb
∂ϕ0
− ∂S∗cb
∂ϕ̄∗b

∂ϕ̄∗b
∂ϕ0

= −πb · e−iα + π̄∗b · e−iα
∗

= 0,

∂(Scb − S∗cb)
∂ϕ̄0

=
∂Scb
∂ϕ̄b

∂ϕ̄b
∂ϕ̄0
− ∂S∗cb
∂ϕ∗b

∂ϕ∗b
∂ϕ̄0

= −π̄b · eiα + π∗b · eiα
∗

= 0,

(22)

Здесь также одно из уравнений переходит в другое при комплексном со-
пряжении. Введем величину η ≡ −i(α∗ − α) = −2 Im(α) и переведем соот-
ношения (15) и (22) в более удобный вид:

ϕb = ϕ̄∗be
−η,

ϕ̄b = ϕ∗be
η,

πb = π̄∗be
η,

π̄b = π∗be
−η.

(23)

Итак, процедура седлового интегрирования величины (20) завершена. Ве-
роятность распада определяется формулой

P = e−F , −F = 2E0T − ηQ− 2 ImScb, (24)

с учетом выполнения условий (14), (18), (23).
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3. Применение метода к простой квантомеханической
задаче

Задача этого раздела проиллюстрировать применение предлагаемого
нами квазиклассического метода на простой задаче квантовой механики.
Мы проведем вычисления и получим результат, который сравнивается с
известным ответом, полученным в [3] другими методами.

3.1. Модель

Квантовый переход между классически устойчивыми состояниями с
равным значением сохраняющейся величины имеет место в задаче о движе-
нии частицы в (2+1)-мерном пространстве-времени в О(2)-симметричном
потенциале. Роль заряда Q здесь играет орбитальный момент l. Простран-
ственные измерения будем обозначать как x и y.

Выберем потенциал в виде

V (r2) =

α2ρ2, ρ2 < r2
0;

β2(ρ2 − r2
0) + α2r2

0, ρ2 > r2
0

Здесь ρ = x2+y2 – величина радиус вектора, r0 – некоторое действительное
число, указывающее на место излома потенциала, α и β – действительные
коэффициенты, причем, α > β.

Потенциал можно переписать, используя функцию Хевисайда

V (ρ2) = α2ρ2+Θ(ρ2−r2
0)·
(
β2ρ2 − α2ρ2 + (α2 − β2)r2

0

)
, Θ(x) =

1, x > 0,

0, x ≤ 0.

Мы выбираем такой вид потенциала, чтобы реализовать два локальных
минимума энергии при фиксированном значении орбитального момента l.
Они возникают при сведении двумерной задачи к одномерной – по пере-
менной ρ.
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Гамильтониан системы в координатах x и y выглядит так:

H =
ẋ2

2
+
ẏ2

2
+ V (x2 + y2).

Замена переменных x = ρ cos γ, y = ρ sin γ, а также учет сохраняющегося
орбитального момента ρ2γ̇ = l приводит гамильтониан в вид

H =
ρ̇2

2
+

l2

2ρ2
+ V (ρ). (25)

Таким образом, задача сводится к одномерной с эффективным потенциа-
лом

Veff(ρ
2) = V (ρ2) +

l2

2ρ2
.

Пример1 этого потенциала представлен на рисунке 1. Условие на существо-
вание двух минимумов при r = r1 и r = r2 эффективного потенциала имеет
вид:

r1 =

(
l2

2α2

)1/4

< r0 <

(
l2

2β2

)1/4

= r2.

Рисунок 1 - Пример Veff(r).

l, орбитальный момент

E, энергия

alp
ha

beta

Рисунок 2 - Связь локальных миниму-
мов E и значения L.

На рисунке 2 видно, при каких параметрах возникают “Q-шары” и ис-
тинные вакуумы – локальные минимумы энергии. Мы будем далее рассмат-
ривать ситуацию, при которой минимум в правой точке r2 находится выше

1Здесь выбраны такие парамеры: {l, α, β, r0} = {30, 10, 6, 1.64}.

13



минимума в r1, что делает его Q-шаров. Состояния Q-шара и истинного
вакуума классически устойчивы, однако в квантовой механике возможен
переход из одного в другое. Вычисление вероятности в главном квазиклас-
сическом приближении приводится в [1]. Изложим вкратце этот вывод и
получим результат.

В полярных координатах уравнение Шредингера имеет вид

1

2

[
−1

r

∂

∂r

(
r
∂ψ

∂r

)
− 1

r2

∂2ψ

∂θ2

]
+ V (r)ψ = Eψ.

Сделаем подстановку ψ(r, θ) = χ(r)
r e

ilθ. Уравнение примет вид

d2χ

dr2
+

[
2(E − V )− l(l + 1)

r2

]
χ = 0.

Это уравнение по форме совпадает с уравнением Шредингера для одно-
мерного движения в поле с потенциальной энергией

Veff(r) = V (r) +
l(l + 1)

2r2
≈ V (r) +

l2

2r2
, (26)

где используется квазиклассический предел l� 1.
Если функция ψ(r) локализована вблизи правого минимума потенциа-

ла Ueff , то вероятность перехода частицы в левый минимум характеризует
экспоненциальное подавление, выражающееся через потенциал Ueff по сле-
дующей формуле

P = exp

−2

r2∫
r3

dρ
√

2[Veff(ρ)− Veff(r2)]

 , (27)

где r3 определяется из соотношения Veff(r3) = Veff(r2).
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3.2. Применение квазиклассического метода

В главе 1 было получено выражение (4) для вероятности перехода ча-
стицы из истинного вакуума в ложный. В данном разделе мы применим
это выражение для вычисления вероятности перехода в задаче, описанной
в разделе 3.1.

Вместо собственных состояний оператора поля здесь используем соб-
ственные состояния оператора координаты. Матричный элемент перехода
из состояния с определенными координатами (xb, yb) в состояние с опреде-
ленными координатами (xa, ya) через время t дается выражением

〈xb, yb| e−iHt |xa, ya〉 =

∫
[Dx(t)Dy(t)]eiSab, (28)

где Sab обозначает классическое действие на траектории [x(t), y(t)]. Ин-
тегрирование ведется по траекториям, для которых начальное положение
частицы – это (xb, yb), а конечное – это (xa, ya).

Помимо x и y мы будем часто оперировать комплексными переменными
z = x+ iy и z̄ = x− iy. Введение двух независимых комплексных перемен-
ных сопряжено с тем фактом, что условия на седловые точки интегралов
могут приводить к комплексным значениям x и y, что приведет к полной
независимости z и z̄ и нарушению равенства z∗ = z̄. Заметим, что это ра-
венство как раз является критерием действительности точки. Далее также
будем пользоваться величиной ρ2 = x2 + y2 = zz̄.

Такая замена производится с целью установления аналогии между дан-
ной задачей квантовой механики и уже рассмотренной задачей из теории
поля.

Будем задавать набор произвольных начальных состояний ψi как на-
бор состояний, собственных для оператора координаты. Для них условие
близости к ложному вакууму которое было упомянуто в описании метода,
будет иметь вид ρ2 > r2

0.
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Введем оператор проекции на состояние с моментом l

P̂l =

∫
dα · eiα(L̂−l), где L̂ = −i

(
x
∂

∂y
− y ∂

∂x

)
является оператором углового момента. Так как мы работаем в главном
квазиклассическом приближении, то здесь и далее будем игнорировать
предэкспоненциальные множители.

Подействуем им на начальное состояние ψi(z, z̄) = δ(z − z0, z̄ − z̄0).
Собственное состояние оператора координаты здесь понимается в смыс-
ле 〈za, z̄a|zb, z̄b〉 = δza−zb,z̄a−z̄b

1, для произвольных a, b. Оператор углового
момента является генератором угловых вращений, так что оператор eiαL̂

действует как eiαL̂ψi(z, z̄) = ψi(ze
iα, z̄e−iα). Тогда

P̂l |ψi〉 =

∫
dα·eiα(L̂−l)δ(z̄− z̄0, z−z0) =

∫
dα·e−iαlδ(zeiα−z0, z̄e

−iα− z̄0) =

=

∫
dα · e−iαlδ(z − z0e

−iα, z̄ − z̄0e
iα). (29)

Введем амплитуду перехода

A = 〈ψf | e−iHte−HT P̂l |ψi〉 . (30)

Конечное состояние также возьмем в виде собственной функции операто-
ра координаты ψf = δ(z − zc, z̄ − z̄c). Далее, чтобы помнить об этом, мы
будет вместо |ψf〉 писать |c〉. Вставим единичные операторы в определение
амплитуды

A =

∫
a,b

〈c| e−iHt |a〉 〈a| e−HT |b〉 〈b| P̂l |ψi〉 . (31)

Здесь и далее для сокращения обозначений мы не пишем меру интегриро-
вания dzadz̄adzbdz̄b.

Дальнейший анализ матричных элементов и вычисление седловых ин-
1Здесь δa,b это символ Кронекера.
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тегралов полностью повторяет рассуждения раздела 2.2.
В результате аналогичных выкладок, получим для амплитуды инте-

грал:

A =

∫
a,b,α,z(t),z̄(t)

eiScaeiSabe−iαl · δ(z − zb, z̄ − z̄b) · δ(z − z0e
−iα, z̄ − z̄beiα). (32)

Напоминаем, что мы опускаем меру интегрирования, чтобы не нагромож-
дать запись и пишем переменные, по которым ведется интегрирование под
интегралом.

Интегральное выражение для вероятности совпадает по виду с (20):

P = e2E0T ·
∫

zc,z̄c,ϕ0,z̄0

A∗A = e2E0T ·
∫

zc,z̄c,ϕ0,z̄0

e−iαl+iα
∗l · eiScb−iS∗

cb. (33)

3.3. Вероятность и условия на седловую траекторию

В главном квазиклассическом приближении результат седлового инте-
грирования равен значению подынтегрального выражения в седловой точ-
ке. После седлового интегрирования амплитуды по [a, b, α, z(t), z̄(t)], полу-
чим:

A = eiScb−iαl, (34)

при выполнении всех седловых условий.
Интеграл по b дает условие:zb = z0e

−iα,

z̄b = z̄0e
iα.

(35)

По α:

pbzb − p̄bz̄b = −il. (36)

Седловое интегрирование по z(t), z̄(t) приводит к условию δS = 0, то есть
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траектория в действии Scb удовлетворяет уравнениям движения:z̈ =
(
∂V/∂ρ2

)
z,

¨̄z =
(
∂V/∂ρ2

)
z̄.

(37)

Из интеграла по a имеем условие непрерывности импульсов p, p̄ в точке a,
то есть, и на всей траектории.

Далее вычисляем вероятность по формуле (33). Для седлового интегра-
ла по c имеем 

∂(Scb − S∗cb)
∂zc

= p̄c − p∗c = 0,

∂(Scb − S∗cb)
∂z̄c

= p̄∗c − pc = 0.
(38)

В терминах x и y соотношения примут видẋc = ẋ∗c,

ẏc = ẏ∗c .
(39)

Для точки (zc, z̄c) выполнено x ∈ R, y ∈ R по построению, производная
функций x(t) и y(t) действительны, согласно (39). Значит, как как уравне-
ния движения являются уравнениями второго порядка, и коэффициенты
в уравнениях движения действительны, на этапе эволюции в действитель-
ном времени из точки a в точку c траектория строго действительна, и в
каждой ее точке выполняется z̄ = z∗.

Теперь рассмотрим условия на седловую точку интеграла по [dz0dz̄0]:

∂(Scb − S∗cb)
∂z0

=
∂Scb
∂zb

∂zb
∂z0
− ∂S∗cb
∂z̄∗b

∂z̄∗b
∂z0

= −pb · e−iα + p̄∗b · e−iα
∗

= 0,

∂(Scb − S∗cb)
∂z̄0

=
∂Scb
∂z̄b

∂z̄b
∂z̄0
− ∂S∗cb
∂z∗b

∂z∗b
∂z̄0

= −p̄b · eiα + p∗b · eiα
∗

= 0,

(40)

где были использованы начальные условия (35).
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Для дальнейшего введем действительную величину η ≡ −i(α∗ − α) =

−2 Im(α) и выпишем с учетом соотношений (35) и (40) полученные урав-
нения для точки b в форме, не включающей в себя точку z0:

zb = z̄∗be
−η,

z̄b = z∗be
η,

pb = p̄∗be
η,

p̄b = p∗be
−η.

(41)

Итак, мы получили общее выражение для вероятности:

P = e−F , −F = 2E0T + 2l Im(α)− 2 ImScb, (42)

где действие вычислено на траектории, удовлетворяющей уравнениям дви-
жения и граничным условиям на которых определена амплитуда (34) и
дополнительно (41), (40).

Как мы видим, результат полностью аналогичен, лишь седловое условие
(36) на параметр α выглядит проще, чем (18).

3.4. Сравнение результата с известным ответом

Введем ρ и γ с помощью соотношений:

z = ρeiγ, z̄ = ρe−iγ. (43)

Здесь ρ и γ предполагаются комплексными. Запишем действие в коорди-
натах ρ и γ.

S =

∫
dt

[
ρ̇2

2
+
ρ2γ̇2

2
− V (ρ)

]
.
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Уравнение движения для ρ и сохраняющийся угловой момент, который
является интегралом уравнения движения на γ, записываются как

ρ̈ = ρ2γ̇ − ∂V

∂ρ
=

l

ρ2
− ∂V

∂ρ
,

pz − p̄z̄ =
˙̄z

2
z − ż

2
z̄ = ρ(ρ̇− iργ̇)− ρ(ρ̇+ iργ̇) = −il =⇒ ρ2γ̇ = l. (44)

Перейдем к евклидовому времени при помощи замены τ ≡ it. На этапе
евклидовой эволюции τ ∈ (−T, 0). На этом отрезке уравнения движения
на ρ в евклидовом времени τ записываются как

ρττ = − l

ρ2
+
∂V

∂ρ
. (45)

Подстановка (43) в (41) дает

(ρ2
b) = zbz̄b = z∗b z̄

∗
b = (ρ2

b)
∗,

˙(ρ2
b) = żbz̄b + zb ˙̄zb = 2(pbzb + p̄bz̄b) = 2(p̄∗b z̄

∗
b + p∗bz

∗
b ) = ˙(ρ2

b)
∗
. (46)

Таким образом, величина ρ2 и её производная по времени действительна в
начальной точке b. На временном отрезке от 0 до t они также действитель-
на, потому что на нем выполняется соотношение z̄ = z∗. Уравнения дви-
жения (45) имеют действительные коэффициенты, а на концах траектории
ρ действительно. Поэтому ρ ∈ R на всей траектории, интерполирующей
между b и a. Отсюда следует, что производная ρ̇ является чисто мнимой.
Однако уравнение (52) и условие действительности последующей траек-
тории (0 → t) утверждают обратное. Это приводит к новым граничным
условиям:

ρ̇(iT ) = ρ̇(0) = 0. (47)

Замена (43) в условиях (41) приводит к

γb − γ∗b = iη = −2i Imα. (48)
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Это значит, что мнимая часть γb определяет седловое значение α. В точке
t = 0 мнимая часть γ должная обращаться в ноль, чтобы соблюсти усло-
вие z̄ = z∗ на действительном отрезке траектории. Сохранение углового
момента из (44) означает, что при эволюции по мнимой оси производная
по евклидовому времени γτ чисто мнимая. Итак, на отрезке евклидовой
эволюции из iT в 0 только мнимая часть γ меняется, а действительная яв-
ляется постоянной величиной и не фиксируется условиями, что отражает
симметрию задачи. Воспользуемся этим произволом и положим Re γ = 0.

Выпишем итоговые граничные условия на переменные ρ и γ для евкли-
дового отрезка эволюции.

ρ(t) ∈ R,

ρ̇(iT ) = ρ̇(0) = 0,

ρ2γ̇(iT ) = l,

γ(iT ) = iη/2,

γ(0) = 0,

γ(t) ∈ iR.

(49)

Обратимся к формуле (42) для вероятности. Для расчета нам нужно полу-
чить величину −2 ImScb. Заметим здесь, что на отрезке эволюции в дей-
ствительном времени, действие Sca чисто действительно и не вносит вкла-
да в величину вероятности. В свою очередь, действие на этапе евклидовой
траектории чисто мнимое, потому что лагранжиан действителен, а время
течет по мнимой оси. Тогда − ImScb = iSab. Поэтому далее будем интере-
соваться только мнимым этапом.

Пользуясь (49) и (48), выразим в экспоненте переменную α через инте-
грал по времени:

2l Imα = −ηl = 2il
[
γ(iT )− γ(0)

]
= −2il

0∫
iT

γ̇ dt = −2i

0∫
iT

l2

ρ2
dt.
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Экспонента подавления F в (42) примет вид (t = −iτ ):

−F = 2E0T+2 Imα−Im 2Sab = 2E0T+2i

0∫
iT

l2

ρ2
dt+2i

0∫
iT

dt

[
ρ̇2

2
+
ρ2γ̇2

2
− V (ρ)

]
=

= −2

0∫
−T

dτ

[
ρ2
τ

2
+

l2

2ρ2
+ V (ρ)

]
+ 2E0T ≡ −2Seff + 2E0T,

где были использованы уравнения движения (44). В последнем равенстве
мы ввели эффективное действие для переменной ρ.

Чтобы привести результат к виду (27), заметим, что в системе имеется
еще один интеграл движения, который мы еще не затрагивали — энергия.

−E =
ρ̇2

2
+
ρ2γ̇2

2
+ V (ρ) = −ρ

2
τ

2
+

l2

2ρ2
+ V (ρ).

Интересно заметить, что энергия E является интегралом движения для
Seff , причем если ввести перевернутый эффективный потенциал

Veff ≡ −l2/2ρ2 − V (ρ),

то поиск величины Seff сводится к элементарной механической задаче. То-
гда

dρ = −dτ
√

2(E − Veff),

Seff = −
r1∫
r2

dρ√
2(E − Veff)

(E − 2Veff) =

r2∫
r1

dρ
√

2(E − Veff)−
0∫

−T

dτ · E.

Начало и конец траектории являются точками остановки, то есть в них вы-
полняется E = Veff(ρ). Теперь вычислим предел T →∞. Тогда ρ(τ = −T )

стремится к экстремуму Veff , чтобы обеспечить скатывание с начального
состояния за неограниченное время T . Начальная точка должна находить-
ся вблизи Q-шара, то есть ρb → r2 в пределе T → ∞, где r2 – локальный
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минимум потенциала Ueff по обозначениям раздела (3.1).
Имеем:

2ET = 2Veff(r2) · T = −2E0T.

Подставляя все в (42), получаем ответ:

P ∼ e2E0Te−2Seff = exp

−2

r2∫
r1

dr
√

2[Veff(r2)− Veff(r)]

 . (50)

Итак, вычисление вероятности по формуле (33) при помощи сведения мат-
ричных элементов к континуальному интегралу, с точностью до предэкс-
поненциальных множителей воспроизводит известный результат (27) из
квантовой механики – вероятность проникновения частицы через потен-
циальный барьер в квазиклассическом приближении.
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4. Расчет в теории поля

Вернемся к задаче главы 2. Здесь мы ставим себе целью поставить чис-
ленную задачу для описания процесса распада.

Введем параметризацию

ϕ = ρeiβ, ϕ̄ = ρe−iβ. (51)

Величины ρ и β предполагаются комплексными.
Вклад в величину вероятности вносит только мнимая часть действия,

значит нас будет интересовать только эволюция на отрезке [iT, 0], посколь-
ку эволюция в минковском времени дает действительный вклад в действие.
На отрезке мнимой эволюции введем евклидовое время τ ≡ it ∈ [−T, 0].

Условия (23) в терминах ρ и β переписываются в виде:

(ρ2
b) = ϕbϕ̄b = ϕ∗bϕ̄

∗
b = (ρ2

b)
∗,

˙(ρ2
b) = ϕ̇bϕ̄b + ϕb ˙̄ϕb = (πbϕb + π̄bϕ̄b) = (π̄∗b ϕ̄

∗
b + π∗bϕ

∗
b) = ˙(ρ2

b)
∗
, (52)

βb − β∗b = iη = −2i Imα.

На отрезке действительной траектории, действие на которой не влияет на
величину экспоненты подавления, ρ и β чисто действительны. Пользуясь
произволом выбора фазы, положим β(0) = 0. Принимая во внимание по-
следние условия, мы делаем естественное предположение, что ρ действи-
тельно, а β чисто мнимо на отрезке евклидовой траектории τ ∈ (−T, 0).
Сделаем замену

γ = iβ.

Уравнения движения (14) примут вид:∂λ∂λρ+ (∂λγ)2ρ− ∂V
∂ρ2ρ = 0,

∂λ(∂λγ · ρ2) = 0,
(53)

где по λ ведется суммирование с евклидовой метрикой (по переменным
τ, x).
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Условие (18) примет вид ∫
(∂τγ)ρ2dx =

Q

2
. (54)

Итак, чтобы получить значение экспоненты подавления, необходимо ре-
шить уравнения движения (53) на двумерном пространстве (τ ,x), учитывая
граничные условия 

ρ̇(0, x) = ρ̇(−T, 0) = 0,

γ(0, x) = 0,

γ(−T, x) = −η/2.

(55)

Здесь T → ∞. Для численного поиска решения можно воспользоваться
известным решением для Q-шара. Будем обозначать его как g(x). Тогда
lim
τ→∞

ρ(τ, x)→ g(x).

τ

xRQ-RQ

ρ = v

Рисунок 3 - Линия раздела ρ(τ, x) = v.

Удобно продолжить решение на область τ > 0. Тогда ρ(−τ, 0) = ρ(τ, x),
γ(−τ, x) = −γ(τ, x). Предполагаемый вид решения для ρ(τ, x) изображен
на рисунке 3. Кривая ρ = v представляет собой линию раздела для двух
областей. Первое уравнение системы (53) в области внутри кривой будет
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иметь вид:
∂λ∂λρ+ (∂λγ)2ρ = 0,

а вне:
∂λ∂λρ+ (∂λγ)2ρ−M 2ρ = 0.

26



Заключение

В работе получены следующие результаты.
— Разработан квазиклассический метод описания распада Q-шара.
— Метод применен к задаче квантовой механики. Получено соответ-

ствие со стандартным ответом.
— В теории комплексного скалярного поля задача сведена к численному

решению классический уравнений движения.
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