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Мотивация

Теория скалярного поля с плоскими направлениями:

g2L = ∂µϕ
∗∂µϕ− V (ϕϕ∗), V (ϕϕ∗) =

{
M2ϕ2, 0 6 |ϕ| < v;

M2v2, |ϕ| > v.

Энергия Q-шара и свободных частиц:

~Q

E, энергия

Q, заряд

свободные частицы
Q-шар

~Q

1/2
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Мотивация

Q-шар классически устойчив при малых зарядах, но энергетически
выгоден распад. Как в главном квазиклассическом приближении
описать распад Q-шара?

Проблема: необходим метод для расчета распада ложного вакуума
с учетом сохранения заряда.
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Метод

Определим состояние Q-шара:

рассматриваем произвольное состояние системы |ψi〉;

проектором P̂Q вырезаем состояние зарядом Q;

оператором e−HT выделяем минимум энергии при T →∞.

|E0, Q〉 = N ·
∑
i

e−HT P̂Q |ψi〉 (1)

N = eE0T – нормировка, E0 – значение минимума энергии.

Примечание: начальное состояние должно находиться вблизи ложного
вакуума.
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Метод

Рассмотрим произвольное конечное состояние, локализованное
вблизи истинного вакуума |ψf 〉. Амплитуда перехода в конечное
состояние:

A = 〈ψf | e−iHt |E0, Q〉 .
Квадрат амплитуды и сумма (интеграл) по начальным и конечным

состояниям дает вероятность перехода.

P = e2E0T ·
∑
ψf ,ψi

∣∣∣〈ψf | e−iHte−HT P̂Q |ψi〉∣∣∣2 . (2)

Вероятность вычисляем в главном квазиклассическом приближении
при помощи континуального интеграла:

〈ϕc, ϕ̄c| e−iHt |ϕa, ϕ̄a〉 =

∫
[Dϕ(x)]eiSca .

〈ϕa, ϕ̄a| e−HT |ϕb, ϕ̄b〉 =

∫
[Dϕ(x)]eiSab .
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Метод

Проектор на состояние с зарядом Q:

P̂Q |ϕ, ϕ̄〉 =

∫
dα e−iαQ |ϕeiα, ϕ̄e−iα〉 . (3)

Выражение для амплитуды через континульный интеграл:

A =

∫
a,b,α,ϕ(t),ϕ̄(t)

eiScaeiSabe−iαQ · δ(ϕb − ϕ0e
−iα, ϕ̄b − ϕ̄0e

iα). (4)

Формула для полной вероятности перехода:

P = e2E0T ·
∫

ϕc,ϕ̄c,ϕ0,ϕ̄0

A∗A = e2E0T ·
∫

ϕc,ϕ̄c,ϕ0,ϕ̄0

e−iαQ+iα∗Q · eiScb−iS∗
cb . (5)
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Метод

Интегралы берутся седловым образом. Получатся седловые
уравнения на ϕ и ϕ̄. Вместе с уравнениями движения, получим
систему уравнений на поиск траектории. (π ≡ ∂0ϕ, π̄ ≡ ∂0ϕ̄)

(η ≡ −2 Imα)∂µ∂µϕ = ∂V
∂ρ2
· ϕ,

∂µ∂
µϕ̄ = ∂V

∂ρ2
· ϕ̄.{

ϕ̄b = ϕ∗be
η,

π̄b = π∗be
−η.∫

dx [πϕ− π̄ϕ̄] = −iQ.

iT

t0

point B

point A point C

Контур временной эволюции для ϕ.

P = eF , F = 2E0T −Qη − 2SE . (6)
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Тест метода

О(2)-симметричная задача квантовой механики.

Подбором потенциала можно обеспечить реализацию двух локальных
минимумов энергии для заданного орбитального момента l.

Например, склеить две параболы c коэффициентами α и β.

r

U

al
ph
a

beta

0 r0
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Тест метода

Задача сводится к одномерной, если учесть орбитальный момент в
эффективном потенциале Ueff = U + l2

2r2
.

r

U

al
ph
a

beta

0 r0

eff
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l, орбитальный момент

E, энергия

alp
ha

beta
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Известное решение

Решение известно и дается формулой:

P = exp

−2

r2∫
r3

dρ
√

2[Ueff (ρ)− Ueff (r2)]

 .

Требуется получить тот же ответ, используя новый метод.

r

U

0 r0

eff
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Тест метода

Применим наш метод. "Зарядом" здесь является орбитальный
момент. Проектор имеет вид:

P̂l =

∫
dα eiαL̂−iαl, L̂ = x

∂

∂y
− y ∂

∂x
.

После введения переменных{
z = x+ iy,

z̄ = x− iy.
(7)

ход решения становится аналогичным задаче из теории поля.

Начальные состояния выбираем в виде |ψi〉 = δ(z − z0, z̄ − z̄0).

P̂l |ψi〉 =

∫
dα · e−iαlδ(z − z0e

−iα, z̄ − z̄0e
iα).
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Результат

В результате получим выражение, зависящее от евклидового
действия SE траектории

P = eF , F = 2E0T + 2l Im(α)− 2SE ,

Траектория интерполирует между временем −T и 0 (по τ).
Параметризация: z = ρeiβ, z̄ = ρe−iβ . Седловые условия на параметры
траектории:

ρ(τ) ∈ R,

ρ̇(−T ) = ρ̇(0) = 0,

β(−T ) = (α∗ − α)/2,

β(0) = 0,

β(τ) ∈ iR,
β̇ρ2 = l.

Можно получить явное
решение для β:

β =

0∫
−T

dτ(−i) l
ρ2
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Результат

Учитывая все условия и уравнения движения, получим

F = 2E0T + 2l Im(α)− 2SE = −2Seff , (8)

Seff ≡
0∫

−T

dt

[
ρ̇2

2
+

l2

2ρ2
+ U(ρ)

]
= 2

r2∫
r3

dρ
√

2[Ueff (ρ)− Ueff (r2)].

P = e−2Seff
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Применение метода к теории поля

Вернемся к теории поля.

P = eF , F = 2E0T + 2Q Im(α)− 2SE .

Введем параметризацию ϕ = ρeγ , ϕ̄ = ρe−γ .
Уравнения движения переписываются в виде:∂µ∂µϕ = ∂V

∂ρ2
ϕ,

∂µ∂
µϕ̄ = ∂V

∂ρ2
ϕ̄.

=⇒
∂λ∂λρ+ (∂λγ)2ρ− ∂V

∂ρ2
ρ = 0,

∂λ(∂λγ · ρ2) = 0.
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Одномерный Q-шар

Седловые условия на траекторию (T →∞):∂λ∂λρ+ (∂λγ)2ρ− ∂V
∂ρ2

ρ = 0,

∂λ(∂λγ · ρ2) = 0.



ρ(−T, x) = ρqball(x),

∂τρ(−T, x) = ∂τρ(0, x) = 0,

γ(0, x) = 0,

γ(−T, x) = −η/2 = Imα,∫
(∂τγ)ρ2dx = Q/2, (∀τ)

ρ(τ) ∈ R,

γ(τ) ∈ R.
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Одномерный Q-шар

Предполагаемый вид линии раздела.

τ

xRQ-RQ

ρ = v

Попеску Андрей Доринович (443 гр.) Москва, 2016 17 / 18



Выводы

Получены следующие результаты:

1 Разработан квазиклассический метод вычисления распада
Q-шара.

2 Метод применен к задаче квантовой механики. Получено
соответствие со стандартным ответом.

3 В теории комплексного скалярного поля задача сведена к
численному решению классических уравнений движения.
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