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Введение

Постановка задачи

В данной работе мы выясним, как выглядят бозе-звёзды в двух и
трёх пространственных измерениях, как описать и проанализировать
их вращение, а также стабильны ли они.
Бозе-звезду можно описать волновой функцией

+∞∫
−∞

|φ|2dnx = N,

удовлетворяющей системе уравнений Шрёдингера-Пуассона:

i
∂φ

∂t
= − 1

2m∆φ+ Φφ,

∆Φ = 4πGm|φ|2.
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Введение

Особенность

Выразим плотность потока конденсата:

j = i

2m (φ∗∇φ− φ∇φ∗) .

Если представить волновую функцию в виде φ = φ0e
iθ,

j = 1
m
φ2

0∇(θ),

Так что
rotj = 0.
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Невращающиеся бозе-звёзды в 3+1 измерениях

Численное нахождение профилей бозе-звёзд

В безразмерных величинах уравненияШрёдингера-Пуассона для невра-
щающейся звезды принимают вид

∆φ0 = (−1 + 2Φ)φ0,

∆Φ = φ2
0,

Чтобы решение было регулярным в нуле, необходимо, чтобы поля
имели разложения φ0 = c1 + c2r

2 + c5r
4..., Φ = r2(c3 + c4r

2 + c6r
4...).

Начальные условия для трёхмерной звезды

2c2 = −c13 , c3 = c2
1
6 , 2c4 = − c

2
1

30

Включают одну неопределённую константу c1; её подберём так, что-
бы φ0 и Φ имели нужные асимптотики на бесконечности.
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Невращающиеся бозе-звёзды в 3+1 измерениях

Невращающиеся бозе-звёзды в 3+1 измерениях
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Рис. 1: Профиль трёхмерной бозе-звезды
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Вращающиеся бозе-звёзды в 2+1 измерениях

Бозе-звёзды в 2+1 измерениях

Решение уравнений для вращающейся стационарной звезды можно
записать в виде

φ = φ0(r)e−iEteilϕ

Из соображений регулярности в нуле поля имеют следующие разло-
жения:

φ0 = rl(c1 + c2r
2 + c5r

4...),

Φ = r2l+2(c3 + c4r
2 + c6r

4...)
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Вращающиеся бозе-звёзды в 2+1 измерениях

l=0
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Рис. 2: Профиль бозе-звезды при l=0
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Вращающиеся бозе-звёзды в 2+1 измерениях

l=1
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Рис. 3: Профиль бозе-звезды при l=1
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Вращающиеся бозе-звёзды в 2+1 измерениях

l=2

1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

Рис. 4: Профиль бозе-звезды при l=2
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Стабильность бозе-звёзд

Гамильтонова структура

Уравнение Шрёдингера можно записать в гамильтоновом виде:

i
∂φ

∂t
= δH

δφ∗
,

H = 1
2

∫
dnx

[
|∇φ|2 + Φ|φ|2

]
.

Этот формализм можно обобщить, чтобы из условия экстремума га-
мильтониана (17b) получалось уравнение Пуассона. Тогда потребу-
ется добавить в H ещё один член:

H = 1
2

∫
dnx

[
|∇φ|2 + (∇Φ)2 + Φ|φ|2

]
.

Решение стационарного уравненияШрёдингера эквивалентно нахож-
дению эстремума функционала

F = 1
2

∫
dnx

[
|∇φ|2 + (∇Φ)2 + Φ|φ|2 + λ2|φ|2

]
.
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Стабильность бозе-звёзд

Возмущения

Будем исследовать полученные решения на устойчивость, анализи-
руя, минимизируют ли они энергию. Будем работать с возмущением

φ = [φ0(r) + u(r, ϕ, t) + iv(r, ϕ, t)] e−iEteilϕ,

Φ = Φ0 + ∆−1(2φ0u+ u2 + v2).

Получаем

2δ2F =
∫
dnx

[
uL1u+ vL0v − u

l

r2
∂

∂φ
v + v

l

r2
∂

∂φ
u

]
,

L0 = −∆ + λ2 + 2Φ + l2

r2 ,

L1 = −∆ + λ2 + 2Φ + l2

r2 + 4φ0∆−1φ0.
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Стабильность бозе-звёзд

Спектральная задача

Требуется, чтобы вторая вариация была положительна. Будем ана-
лизировать решения на стабильность в секторах 0 и 1, т.е. представим
u и v в виде

u = a0 + a1e
iϕ,

v = b0 + b1e
iϕ.

Получаем систему уравнений на собственные значения B:

L1a0 = Ea0 + Λφ0,

L0b0 = Eb0,

L1x1 + cy2 = Ex1,

L1y1 − cx2 = Ey1,

L0x2 − cy1 = Ex2,

L0y2 + cx1 = Ey2.

Здесь Λ - множитель Лагранжа, определяемый из условия 〈a0|φ0〉 =
0. 12 / 19



Стабильность бозе-звёзд

Численное нахождение спектра

a0 и b0 имеют в нуле разложения вида rl(c1 + c2r
2 + c3r

4...). Введём
функцию f = 2π

r∫
0
a0φ0rdr. Получим три решения данной системы

при различных начальных условиях:

c1a = 1, 0, 0;
c1b = 0, 1, 0;
Λ = 0, 0, 1.

φi = (a0i(s) b0i(s) fi(s)). Искомое решение, для которого a0(∞) =
b0(∞) = f(∞) представимо как линейная комбинация φi.

qE = det
(
φ1 φ2 φ3

)
= det

a01(s) a02(s) a03(s)
b01(s) b02(s) b03(s)
f1(s) f2(s) f3(s)

 = 0.
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Стабильность бозе-звёзд

l=0
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Рис. 5: Зависимость параметра системы от энергии. Энергии, при которых
qE пересекает ноль, и есть искомый спектр.
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Стабильность бозе-звёзд

l=1
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Рис. 6: Зависимость параметров системы от энергии.
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Стабильность бозе-звёзд

l=2
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Рис. 7: Зависимость sE от энергии.
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Заключение

Заключение

Получены профили невращающейся бозе-звезды в 3D и враща-
ющихся звезд в 2D.
Изучена стабильность этих объектов.
Показано, что все невращающиеся бозе-звёзды стабильны.
Двумерные вращающиеся бозе-звезды с l=1 стабильны, а с l=2
- нестабильны.
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Заключение

Спасибо за внимание!
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