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ВВЕДЕНИЕ

Кротовые норы [1–6] и полузамкнутые миры (мешки) [7–10] – это простран-

ственные конфигурации с горловиной, соединяющей либо два пространства Мин-

ковского, либо пространство Минковского с замкнутым пространством, соответ-

ственно. Построение таких конфигураций гипотетически возможно только в тео-

риях, нарушающих изотропное условие энергодоминантности (Null Energy Condi-

tion, NEC) [1–3, 11–13], заключающееся в том, что тензор энергии-импульса 𝑇𝜇𝜈
подчиняется соотношению

𝑇𝜇𝜈𝜂
𝜇𝜂𝜈 > 0 (1)

для любого светоподобного вектора 𝜂𝜇.

Изотропное условие энергодоминантности довольно сложно нарушить так,

чтобы в получившейся теории не возникало ни духовых, ни градиентных неустой-

чивостей. В случае скалярного поля с Лагранжианом, содержащим только первые

производные поля по времени и пространтвенным координатам, было показано,

что нарушение NEC неизбежно влечёт за собой появление таких неустойчивостей

[14]. Этот факт способствует развитию интереса к теориям, содержащим вторые

производные поля в Лагранжиане, но лишённым третьих производных в уравнени-

ях движения, поскольку в таких теориях возможно построение стабильных кон-

фигураций, нарушающих NEC [15–20]. Теория Хорндески (обобщённые Галилео-

ны с модификацией гравитации) – самая общая теория, удовлетворяющая такому

свойству: уравнения движения второго порядка, несмотря на вторые производ-

ные в Лагранжиане [21]. Эта теория впервые была открыта в незамеченной работе

Хорндески в 1974 году [21], переоткрыта в другом контексте уже в 1992 году

Д. Б. Фаирли, Й. Говаерцом и А. Морозовым [22–24] и набрала популярность в

последние годы [15,17–19,25–37].
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Теория Хорндески описывается следующим Лагранжианом [15,21, 28, 38]:

𝑆 =

∫︁
𝑑4𝑥

5∑︁
𝑖=2

ℒ𝑖 (2)

ℒ2 = 𝐾(𝜑,𝑋),

ℒ3 = −𝐺3(𝜑,𝑋)�𝜑,

ℒ4 = 𝐺4(𝜑,𝑋)𝑅 +𝐺4𝑋

[︀
(�𝜑)2 − (∇𝜇∇𝜈𝜑)

2
]︀

ℒ5 = 𝐺5(𝜑,𝑋)𝐺𝜇𝜈∇𝜇∇𝜈𝜑− 1

6
𝐺5𝑋

[︀
(�𝜑)3 − 3�𝜑(∇𝜇∇𝜈𝜑)

2 + 2(∇𝜇∇𝜈𝜑)
3
]︀
,

где 𝑋 = −1
2∇𝜇𝜑∇𝜇𝜑, �𝜑 = ∇𝜇∇𝜇𝜑, 𝑅 – скалярная кривизна, а 𝐺𝜇𝜈 – тензор

Эйнштейна (𝐺𝜇𝜈 = 𝑅𝜇𝜈 − 1
2𝑔𝜇𝜈𝑅), сигнатура метрики (−,+,+,+).

Как было показано ранее, асимтотически плоские статические сферически

симметричные Лоренцевы кротовые норы [39,40] и соответствующие полузамкну-

тые миры [41] нестабильны в теории ℒ3 с минимальной связью с гравитацией, т.е.

при 𝐺4 =𝑀 2
𝑃𝑙/2, 𝐺5 = 0.

Целью данной работы является расширение доказательства нестабильности

асимтотически плоских статических сферически симметричных Лоренцевых кро-

товых нор на общий случай теории Хорндески (2). Доказательство аналогичной (с

точностью до замены радиальной координаты на время) запрещающей теоремы

для космологических решений с отскоком для ℒ3 было приведено в [42] и обоб-

щено на случай взаимодействия Галилеонного поля с дополнительным скалярным

полем [43]. Несколько позже это доказательство было расширено на всю теорию

Хорндески [44] и теорию с несколькими Галилеонами [45].

В главе 1 приведены некоторые результаты, полученные Т. Кобаяши, Х. Мо-

тохаши и Т. Суяма [46,47], а именно, некоторые условия устойчивости для теории

Хорндески. Кроме того, в этой главе формулируется формализм Редже-Уилера

для возмущений метрики и скалярного поля в сферических координатах. Так, в

разделе 1.1 рассмотрен нечётный сектор возмущений, а в разделе 1.2 – чётный.
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В главе 2, с использованием полученных ранее условий устойчивости, до-

казана соответствующая запрещающая теорема для кротовых нор в теории Хорн-

дески.

В работе показано, что в теории Хорндески асимтотически плоские стати-

ческие сферически симметричные Лоренцевы кротовые норы нестабильны либо в

духовом, либо в градиентном секторе.
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1. УСЛОВИЯ УСТОЙЧИВОСТИ

Мы рассматриваем статические сферически симметричные Лоренцевы кро-

товые норы. Самая общая форма метрики, описывающая их:

𝑑𝑠2 = −𝑎2(𝑟)𝑑𝑡2 + 𝑑𝑟2

𝑏2(𝑟)
+ 𝑐2(𝑟)

(︀
𝑑𝜃2 + sin2 𝜃𝑑𝜙2

)︀
. (3)

При удобной фиксации калибровки

𝑎(𝑟) = 𝑏(𝑟) (4)

метрика принимает вид:

𝑑𝑠2 = −𝑎2(𝑟)𝑑𝑡2 + 𝑑𝑟2

𝑎2(𝑟)
+ 𝑐2(𝑟)

(︀
𝑑𝜃2 + sin2 𝜃𝑑𝜙2

)︀
,

где при описании кротовой норы функции 𝑎(𝑟) и 𝑐(𝑟) имеют следующее асимто-

тическое поведение при 𝑟 → ±∞:

𝑎(𝑟) → 1, 𝑐(𝑟) → 𝑟,

причём 𝑐(𝑟) > 0 ограничено снизу, достигая своего минимума в точке 𝑟 = 0,

см. рисунок 1.

c(r)

r0

Рисунок 1 – Поведение 𝑐(𝑟) для кротовой норы

Т. Кобаяши, Х. Мотохаши и Т. Суяма в своей работе [46,47] получили усло-

вия стабильности для возмущений над такой фоновой метрикой, используя разло-
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жение по сферическим гармоникам в рамках формализма Редже-Уилера [48–50],

описанного ниже.

Мы рассматриваем возмущения метрики ℎ𝜇𝜈:

𝑔𝜇𝜈 = 𝑔0𝜇𝜈 + ℎ𝜇𝜈, (5)

где 𝑔0𝜇𝜈 обозначает фоновую метрику. Возмущения ℎ𝜇𝜈 состоят из ℎ𝑡𝑡, ℎ𝑡𝑟 и ℎ𝑟𝑟, яв-

ляющихся скалярами относительно вращений двумерной сферы, ℎ𝑡𝑎 и ℎ𝑟𝑎, пред-

ставляющих собой векторы относительно тех же вращений, и ℎ𝑎𝑏 – тензора ранга(︀
0
2

)︀
относительно вращений сферы 𝑆2. Здесь и далее 𝑎 и 𝑏 принимают значения 𝜃

или 𝜙. Скалярное поле 𝜑 также является скаляром относительно вращений дву-

мерной сферы.

Любой скаляр 𝑠, вектор 𝑉𝑎 и (симметричный) тензор 𝑇𝑎𝑏 ранга
(︀
0
2

)︀
могут

быть разложены по сферическим гармоникам следующим образом:

𝑠(𝑡, 𝑟, 𝜃, 𝜙) =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑠𝑙𝑚(𝑡, 𝑟)𝑌
𝑚
𝑙

(︀
𝜃, 𝜙

)︀
, (6)

𝑉𝑎(𝑡, 𝑟, 𝜃, 𝜙) =
𝛾

∇𝑎Φ1(𝑡, 𝑟, 𝜃, 𝜙) + 𝐸𝑏
𝑎

𝛾

∇𝑏Φ2(𝑡, 𝑟, 𝜃, 𝜙), (7)

𝑇𝑎𝑏(𝑡, 𝑟, 𝜃, 𝜙) =
𝛾

∇𝑎

𝛾

∇𝑏Ψ1 + 𝛾𝑎𝑏Ψ2(𝑡, 𝑟, 𝜃, 𝜙)

+
1

2

(︂
𝐸𝑐

𝑎

𝛾

∇𝑐

𝛾

∇𝑏Ψ3(𝑡, 𝑟, 𝜃, 𝜙) + 𝐸𝑐
𝑏

𝛾

∇𝑐

𝛾

∇𝑎Ψ3(𝑡, 𝑟, 𝜃, 𝜙)

)︂
, (8)

где 𝛾𝑎𝑏 – метрика двумерной сферы;
𝛾

∇𝑎 – ковариантная производная в этой мет-

рике1; 𝐸𝑎𝑏 =
√
det 𝛾 𝜀𝑎𝑏, 𝜀𝑎𝑏 – символ Леви-Чивиты, 𝜀𝜃𝜙 = 1; Φ1, Φ2, Ψ1, Ψ2, Ψ3 –

1 Несмотря на то, что символы Кристоффеля для метрики 𝛾𝑎𝑏 и для угловой части метрики

𝑔𝜇𝜈 совпадают, разница между
𝛾

∇𝑎 и ∇𝑎 существенна, например при действии на угловую часть

четырёхвектора (которая сама по себе является вектором относительно вращений двумерной

сферы):
𝛾

∇𝑎𝑉𝑏 = 𝜕𝑎𝑉𝑏 − Γ𝑐
𝑎𝑏𝑉𝑐,

∇𝑎𝑉𝑏 = 𝜕𝑎𝑉𝑏 − Γ𝜇
𝑎𝑏𝑉𝜇 = 𝜕𝑎𝑉𝑏 − Γ𝑡

𝑎𝑏𝑉𝑡 − Γ𝑟
𝑎𝑏𝑉𝑟 − Γ𝑐

𝑎𝑏𝑉𝑐 =
𝛾

∇𝑎𝑉𝑏 − Γ𝑡
𝑎𝑏𝑉𝑡 − Γ𝑟

𝑎𝑏𝑉𝑟.

7



некоторые скалярные функции; 𝑌 𝑚
𝑙

(︀
𝜃, 𝜙

)︀
– сферические функции. Всё вышеска-

занное позволяет нам переписать любой скаляр, вектор и тензор ранга
(︀
0
2

)︀
через

сферические гармоники, применяя разложение (6) к функциям Φ1, Φ2, Ψ1, Ψ2,

Ψ3. Далее мы будем называть члены, не содержащие 𝐸𝑎𝑏, «чётными», а остальные

– «нечётными». Чётные моды умножаются на фактор (−1)𝑙 при преобразовании

чётности
(︀
𝜃, 𝜙

)︀
→

(︀
𝜋−𝜃, 𝜋+𝜙

)︀
, в то время как нечётные домножаются на фактор

(−1)𝑙+1, что (при 𝑙 = 0) обусловило их названия.

1.1 Нечётный сектор

Слагаемые, содержащие 𝐸𝑎𝑏, для каждого возмущения записываются как

𝛿𝜑 = 0, ℎ𝑡𝑡 = 0, ℎ𝑡𝑟 = 0, ℎ𝑟𝑟 = 0, (9)

ℎ𝑡𝑎 =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

ℎ0,𝑙𝑚(𝑡, 𝑟)𝐸𝑎𝑏𝜕
𝑏𝑌 𝑚

𝑙

(︀
𝜃, 𝜙

)︀
, (10)

ℎ𝑟𝑎 =
∞∑︁
𝑙=1

𝑙∑︁
𝑚=−𝑙

ℎ1,𝑙𝑚(𝑡, 𝑟)𝐸𝑎𝑏𝜕
𝑏𝑌 𝑚

𝑙

(︀
𝜃, 𝜙

)︀
, (11)

ℎ𝑎𝑏 =
1

2

∞∑︁
𝑙=2

𝑙∑︁
𝑚=−𝑙

ℎ2,𝑙𝑚(𝑡, 𝑟)
[︁
𝐸𝑐

𝑎

𝛾

∇𝑐

𝛾

∇𝑏𝑌
𝑚
𝑙

(︀
𝜃, 𝜙

)︀
+ 𝐸𝑐

𝑏

𝛾

∇𝑐

𝛾

∇𝑎𝑌
𝑚
𝑙

(︀
𝜃, 𝜙

)︀]︁
. (12)

Не все эти переменные физичны, поскольку мы можем задействовать Лоренц-

инвариантность интервала и, дав 4-вектору координат приращение 𝑥𝜇 → 𝑥𝜇 + 𝜉𝜇,

занулить некоторые из них. Здесь 𝜉𝜇 – инфинитезимальное преобразование, кото-

рое в нечётном секторе записывается как

𝜉𝑡 = 0, 𝜉𝑟 = 0, 𝜉𝑎 =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

Λ𝑙𝑚(𝑡, 𝑟)𝐸𝑎𝑏𝜕
𝑏𝑌 𝑚

𝑙

(︀
𝜃, 𝜙

)︀
, (13)

где Λ𝑙𝑚(𝑡, 𝑟) – произвольные функции времени и 𝑟. Возмущения метрики изменя-

ются при таком калибровочном преобразовании следующим образом:

ℎ𝜇𝜈 → ℎ𝜇𝜈 +∇𝜇𝜉𝜈 +∇𝜈𝜉𝜇, (14)
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где ∇𝜇 – ковариантная производная в метрике 𝑔𝜇𝜈 . Для нечётного сектора нахо-

дим

ℎ0,𝑙𝑚 → ℎ0,𝑙𝑚 + Λ̇𝑙𝑚(𝑡, 𝑟), (15)

ℎ1,𝑙𝑚 → ℎ1,𝑙𝑚 + Λ′
𝑙𝑚(𝑡, 𝑟) + 2

𝑐′

𝑐
Λ𝑙𝑚(𝑡, 𝑟), (16)

ℎ2,𝑙𝑚 → ℎ2,𝑙𝑚 + 2Λ𝑙𝑚(𝑡, 𝑟), (17)

где точка обозначает дифференцирование по времени 𝑡, а штрих – по радиусу 𝑟

в сферических координатах. Поскольку выражение для калибровочного преоб-

разования ℎ2,𝑙𝑚 не содержит производных, мы можем полностью зафиксировать

калибровку, положив ℎ2,𝑙𝑚 = 0 при 𝑙 ≥ 2. Такая фиксация калибровки носит

имя Редже-Уилера [48]. Для 𝑙 = 1 ℎ𝑎𝑏 обращается в ноль тождественно, поэтому

мы вынуждены использовать другое калибровочное условие. Более подробно этот

подход описан в [46], а для доказательства запрещающей теоремы нам необходи-

мо только одно условие устойчивости, которое, в частности, можно вывести при

𝑙 ≥ 2.

Поскольку мы рассматриваем фиксированные значения 𝑙 и 𝑚, а соответ-

ствующие моды возмущений не перемешиваются между собой, далее мы будем

опускать индексы 𝑙 и 𝑚 во всех формулах. Дополнительное преимущество под-

хода Редже-Уилера заключается в том, что уравнения движения не зависят от𝑚,

поэтому мы можем без потери общности положить 𝑚 = 0 [46, 48, 51]. В таком

случае сферические функции переходят в полиномы Лежандра:

𝑌 𝑚
𝑙 (𝜃, 𝜙) =

√︃
(2𝑙 + 1)

4𝜋

(𝑙 −𝑚)!

(𝑙 +𝑚)!
𝑃𝑚
𝑙

(︀
cos 𝜃

)︀
𝑒𝑖𝑚𝜙 −−→

𝑚=0

√︂
(2𝑙 + 1)

4𝜋
𝑃𝑙

(︀
cos 𝜃

)︀
. (18)

Действие, разложенное до второго порядка по возмущениям, принимает вид

𝑆(2) =

∫︁
𝑑𝑡𝑑𝑟ℒ(2), (19)
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где мы проинтегрировали по углам 𝜃 и 𝜙. ℒ(2) здесь определяется формулой

ℒ(2) = 𝑎1ℎ
2
0 + 𝑎2ℎ

2
1 + 𝑎3

(︂
ℎ̇21 + ℎ′0

2 − 2ℎ̇1ℎ
′
0 + 4

𝑐′

𝑐
ℎ̇1ℎ0

)︂
. (20)

Коэффициенты в Лагранжиане (20) представлены следующими выражениями:

𝑎1 =
𝑙(𝑙 + 1)

2𝑐2

[︂
𝑑

𝑑𝑟

(︁
𝑐𝑐′ℋ

)︁
+

(𝑙 − 1)(𝑙 + 2)

2𝑎2
ℱ
]︂
, (21)

𝑎2 = −𝑙(𝑙 + 1)

2
𝑎2

[︂
(𝑙 − 1)(𝑙 + 2)

2𝑐2
𝒢
]︂
, (22)

𝑎3 =
𝑙(𝑙 + 1)

4
ℋ, (23)

в которых применены уравнения поля для фонового решения и

ℱ = 2

(︂
𝐺4 +

𝑎2

2
𝜑′𝑋 ′𝐺5𝑋 −𝑋𝐺5𝜑

)︂
, (24)

𝒢 = 2
[︁
𝐺4 − 2𝑋𝐺4𝑋 +𝑋

(︀
𝑎𝑎′𝑐′𝜑′𝐺5𝑋 +𝐺5𝜑

)︀]︁
, (25)

ℋ = 2

[︂
𝐺4 − 2𝑋𝐺4𝑋 +𝑋

(︂
𝑎2
𝑐′

𝑐
𝜑′𝐺5𝑋 +𝐺5𝜑

)︂]︂
. (26)

Следуя [52], перепишем Лагранжиан (20) в следующем виде:

ℒ(2) =

[︂
𝑎1 − 2

(𝑐𝑐′𝑎3)
′

𝑐2

]︂
ℎ20 + 𝑎2ℎ

2
1 + 𝑎3

(︂
ℎ̇1 − ℎ′0 + 2

𝑐′

𝑐
ℎ0

)︂2

, (27)

или, вводя новое вспомогательное поле 𝑞:

ℒ(2) =

[︂
𝑎1 − 2

(𝑐𝑐′𝑎3)
′

𝑐2

]︂
ℎ20 + 𝑎2ℎ

2
1 + 𝑎3

[︂
2𝑞

(︂
ℎ̇1 − ℎ′0 + 2

𝑐′

𝑐
ℎ0

)︂
− 𝑞2

]︂
. (28)

Интегрируя по частям и перенося тем самым все производные на 𝑞, сдела-

ем ℎ0 и ℎ1 вспомогательными полями. Варьируя по ℎ0 и по ℎ1, мы приходим к

алгебраическим выражениям, из которых ℎ0 и ℎ1 находятся в виде

ℎ0 = −
(︀
𝑐2𝑎3𝑞

)︀′
𝑐2𝑎1 − 2

(︀
𝑐𝑐′𝑎3

)︀′ , ℎ1 =
𝑎3
𝑎2
𝑞. (29)

Теперь, подставляя ℎ0 и ℎ1 в действие, найдём Лагранжиан, зависящий толь-

ко от одной переменной 𝑞:

ℒ(2) =
𝑙(𝑙 + 1)

4(𝑙 − 1)(𝑙 + 2)

[︀
𝒜𝑞2 − ℬ𝑞′2 − 𝑙(𝑙 + 1)𝒞𝑞2 − 𝑉 (𝑟)𝑞2

]︀
, (30)
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где

𝒜 =
𝑐2

𝑎2
ℋ2

𝒢
, ℬ = 𝑎2𝑐2

ℋ2

ℱ
, 𝒞 = 𝑎2ℋ, (31)

а 𝑉 (𝑟) – эффективный потенциал, явный вид которого не существенен для до-

казательства запрещающей теоремы. Член в Лагранжиане (30), содержащий 𝒞,

соответствует распространению волн по углам, поскольку содержит множитель

𝑙(𝑙 + 1), т.е., возвращаясь от разложения по сферическим гармоникам к диффе-

ренциальным операторам, двумерный Лапласиан.

Таким образом, рассмотрение нечётного сектора даёт нам следующие усло-

вия устойчивости:

ℱ > 0, чтобы избежать градиентных нестабильностей по 𝑟, (32)

𝒢 > 0, чтобы избежать духовых неустойчивостей, (33)

ℋ > 0, чтобы избежать градиентных нестабильностей в угловом секторе. (34)

Как мы увидим в главе 2, условие (32) – единственное из трёх, существенное

для доказательства запрещающей теоремы.

1.2 Чётный сектор

Слагаемые, не содержащие 𝐸𝑎𝑏, т.е. чётный сектор возмущений [48]:

𝛿𝜑 =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝛿𝜑𝑙𝑚(𝑡, 𝑟)𝑌
𝑚
𝑙

(︀
𝜃, 𝜙

)︀
, ℎ𝑡𝑡 = 𝑎2

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝐻0,𝑙𝑚(𝑡, 𝑟)𝑌
𝑚
𝑙

(︀
𝜃, 𝜙

)︀
,

(35)

ℎ𝑡𝑟 =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝐻1,𝑙𝑚(𝑡, 𝑟)𝑌
𝑚
𝑙

(︀
𝜃, 𝜙

)︀
, ℎ𝑟𝑟 =

1

𝑎2

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝐻2,𝑙𝑚(𝑡, 𝑟)𝑌
𝑚
𝑙

(︀
𝜃, 𝜙

)︀
,

(36)

ℎ𝑡𝑎 =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝛽𝑙𝑚𝜕𝑎𝑌
𝑚
𝑙

(︀
𝜃, 𝜙

)︀
, ℎ𝑟𝑎 =

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝛼𝑙𝑚𝜕𝑎𝑌
𝑚
𝑙

(︀
𝜃, 𝜙

)︀
, (37)
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ℎ𝑎𝑏 = 𝑐2
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

[︁
𝐾𝑙𝑚(𝑡, 𝑟)𝛾𝑎𝑏𝑌

𝑚
𝑙

(︀
𝜃, 𝜙

)︀
+𝐺𝑙𝑚(𝑡, 𝑟)

𝛾

∇𝑎

𝛾

∇𝑏𝑌
𝑚
𝑙

(︀
𝜃, 𝜙

)︀]︁
. (38)

Здесь следует отметить, что в чётном секторе возмущение присутствует также и

у скалярного поля 𝜑. Как и в нечётном секторе, некоторые из вышеперечисленных

возмущений нефизичны и могут быть откалиброваны соответствующим преобра-

зованием 𝑥𝜇 → 𝑥𝜇 + 𝜉𝜇. Ниже приведены три калибровочные функции [48]:

𝜉0 =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑇𝑙𝑚(𝑡, 𝑟)𝑌
𝑚
𝑙

(︀
𝜃, 𝜙

)︀
, 𝜉𝑟 =

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑅𝑙𝑚(𝑡, 𝑟)𝑌
𝑚
𝑙

(︀
𝜃, 𝜙

)︀
,

𝜉𝑎 =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

Θ𝑙𝑚(𝑡, 𝑟)𝜕𝑎𝑌
𝑚
𝑙

(︀
𝜃, 𝜙

)︀
, (39)

где 𝑇𝑙𝑚(𝑡, 𝑟), 𝑅𝑙𝑚(𝑡, 𝑟) и Θ𝑙𝑚(𝑡, 𝑟) – произвольные функции 𝑡 и 𝑟. Используя (14),

мы вновь находим, как преобразуются под действием калибровки возмущения:

𝐻0,𝑙𝑚(𝑡, 𝑟) → 𝐻0,𝑙𝑚(𝑡, 𝑟) +
2

𝑎2
𝑇̇𝑙𝑚(𝑡, 𝑟)− 2

𝑎′

𝑎
𝑏2𝑅𝑙𝑚(𝑡, 𝑟) (40)

𝐻1,𝑙𝑚(𝑡, 𝑟) → 𝐻1,𝑙𝑚(𝑡, 𝑟) + 𝑅̇(𝑡, 𝑟) + 𝑇 ′(𝑡, 𝑟)− 2
𝑎′

𝑎
𝑇 (𝑡, 𝑟) (41)

𝐻2,𝑙𝑚(𝑡, 𝑟) → 𝐻2,𝑙𝑚(𝑡, 𝑟) + 2𝑏2𝑅′
𝑙𝑚(𝑡, 𝑟)− 2𝑏𝑏′𝑅𝑙𝑚(𝑡, 𝑟) (42)

𝛽𝑙𝑚(𝑡, 𝑟) → 𝛽𝑙𝑚(𝑡, 𝑟) + 𝑇𝑙𝑚(𝑡, 𝑟) + Θ̇𝑙𝑚(𝑡, 𝑟) (43)

𝛼𝑙𝑚(𝑡, 𝑟) → 𝛼𝑙𝑚(𝑡, 𝑟) +𝑅𝑙𝑚(𝑡, 𝑟) + Θ′
𝑙𝑚(𝑡, 𝑟)− 2

𝑐′

𝑐
Θ𝑙𝑚(𝑡, 𝑟) (44)

𝐾𝑙𝑚(𝑡, 𝑟) → 𝐾𝑙𝑚(𝑡, 𝑟) + 2𝑏2
𝑐′

𝑐
𝑅𝑙𝑚(𝑡, 𝑟) (45)

𝐺𝑙𝑚(𝑡, 𝑟) → 𝐺𝑙𝑚(𝑡, 𝑟) +
2

𝑐2
Θ𝑙𝑚(𝑡, 𝑟) (46)

Из соображений общности мы не использовали в этих выражениях калибровку

метрики (4). Далее мы снова будем опускать индексы 𝑙 и 𝑚, поскольку соответ-

ствующие моды возмущений не смешиваются.

Теперь мы можем полностью зафиксировать калибровку, положив𝛽(𝑡, 𝑟)=0,

𝐾(𝑡, 𝑟) = 0 и𝐺(𝑡, 𝑟) = 0, и, подставив возмущения метрики и поля в действие (2),

получить квадратичный Лагранжиан, зависящий от 𝛿𝜑,𝐻0,𝐻1,𝐻2 и 𝛼.
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Этот подход применим, как и в нечётном секторе, только при 𝑙 ≥ 2, по-

скольку при 𝑙 = 1 возмущение метрики ℎ𝑎𝑏 зависит не от𝐾 и𝐺 по отдельности, а

от кобинации 𝐾 −𝐺, что оставляет нам дополнительную степень свободы, кото-

рую можно использовать, например, для того чтобы положить 𝛿𝜑 = 0. При 𝑙 = 0

𝛼, 𝛽 и 𝐺 обращаются в ноль тождественно, что делает калибровочное преобра-

зование 𝜉𝑎 бесполезным. 𝜉𝑟 можно зафиксировать, положив 𝐾 = 0, а 𝜉𝑡 можно

использовать, чтобы занулить𝐻0 или𝐻1. Полностью эти случаи разобраны в [47],

а для нашего рассмотрения достаточно случая 𝑙 ≥ 2.

В этом случае 𝐻0 и 𝐻1 превращаются во вспомогательные поля и могут

быть сразу исключены из Лагранжиана, оставляя его зависящим только от 𝛿𝜑, 𝐻2

и 𝛼. Кроме этого, остаётся связь, зависящая от 𝛿𝜑, 𝛿𝜑′, 𝛿𝜑′′,𝐻2,𝐻 ′
2, 𝛼 и 𝛼′.

Мы переопределяем поле, используя новую переменную 𝜓, следующим об-

разом:

𝐻0 = − 2

2𝑐𝑐′ℋ + Ξ𝜑′

(︂
1

𝑎2
𝜓 − 𝑐′Ξ 𝛿𝜑′ − 𝑙(𝑙 + 1)𝑐′ℋ𝛼

)︂
, (47)

гдеℋ – выражение, определённое в (26),

Ξ = 2𝑐2
[︁
−𝑋𝐺3𝑋 + 2𝑎2

𝑐′

𝑐
𝜑′ {𝐺4𝑋 + 2𝑋𝐺4𝑋𝑋 − (𝑋𝐺5𝜑)𝑋}

+𝐺4𝜑 + 2𝑋𝐺4𝜑𝑋 − 1

𝑐2
𝑋𝐺5𝑋 + 𝑎2

𝑐′2

𝑐2
(3𝑋𝐺5𝑋 + 2𝑋2𝐺5𝑋𝑋)

]︁
. (48)

Такая замена переменных позволяет нам исключить из связи одновременно вторые

производные 𝛿𝜑 и первые производные 𝛼, делая эту связь алгебраическим урав-

нением на 𝛼. Наконец, исключая 𝛼, мы приходим к Лагранжиану, зависящему от

двух переменных (𝜓 и 𝛿𝜑):

ℒ =
1

2
𝒦𝑖𝑗 𝑣̇

𝑖𝑣̇𝑗 − 1

2
𝒢𝑖𝑗𝑣

𝑖′𝑣𝑗
′ − 1

2
𝒬𝑖𝑗𝑣

𝑖𝑣𝑗
′ − 1

2
ℳ𝑖𝑗𝑣

𝑖𝑣𝑗 , (49)

где 𝑣1 ≡ 𝜓, 𝑣2 ≡ 𝛿𝜑, а 𝑖 и 𝑗 пробегают значения от 1 до 2. Выражения для матриц1

𝒢𝑖𝑗 ,𝒬𝑖𝑗 иℳ𝑖𝑗 слишком громоздки и, кроме того, не существенны для доказатель-

ства теоремы, поэтому не приведены в данной работе.𝒦𝑖𝑗 , с другой стороны, даёт
1Не следует путать 𝒢𝑖𝑗 как матрицу коэффициентов в Лагранжиане (49) и 𝒢 из (25).
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нам два условия отсутствия духовых неустойчивостей, которые играют опреде-

ляющую роль в нашем доказательстве. Духи отсутствуют, когда

𝒦11 > 0, det𝒦 > 0. (50)

Мы будем использовать в нашем доказательстве только второе условие:

det𝒦 =
4(𝑙 − 1)(𝑙 + 2)

(︀
2𝑐𝑐′ℋ + Ξ𝜑′

)︀2ℱ(︀
2𝒫1 −ℱ

)︀
𝑙(𝑙 + 1)𝑎4ℋ2𝜑′2

(︀
2𝑐𝑐′ℋ + Ξ𝜑′

)︀2 > 0, (51)

где 𝑙 ≥ 2 и

𝒫1 =
(2𝑐𝑐′ℋ + Ξ𝜑′)

2𝑐2ℋ2
· 𝑑
𝑑𝑟

[︃
𝑐4ℋ4(︀

2𝑐𝑐′ℋ + Ξ𝜑′
)︀2
]︃
, (52)

или, учитывая условие (32), просто

2𝒫1 −ℱ > 0. (53)
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2. ЗАПРЕЩАЮЩАЯ ТЕОРЕМА

Условия устойчивости, используемые нами в доказательстве, даются фор-

мулами (32) и (53). Введём переменную

𝑄 =
2𝑐𝑐′ℋ + Ξ𝜑′

𝑐2ℋ2
,

и перепишем (53) в следующей форме:

2𝒫1 −ℱ = − 2
𝑄′

𝑄2
−ℱ > 0,

или
𝑄′

𝑄2
< − 1

2
ℱ . (54)

Проинтегрировав это выражение от 𝑟 до 𝑟′ > 𝑟, мы получаем (ср. [40]):

𝑄−1(𝑟)−𝑄−1(𝑟′) < −1

2

𝑟′∫︁
𝑟

ℱ 𝑑𝑟. (55)

Пусть 𝑄−1(𝑟) < 0 при каком-то значении 𝑟. Тогда перепишем (55) следующим

образом:

𝑄−1(𝑟′) > 𝑄−1(𝑟) +
1

2

𝑟′∫︁
𝑟

ℱ 𝑑𝑟, (56)

и заметим, что если определённый интеграл в правой части неравенства (56) рас-

ходится при 𝑟′ → +∞, то 𝑄−1(𝑟′) в какой-то момент должно стать положитель-

ным, т.е. 𝑄−1(𝑟*) = 0 в какой-то точке 𝑟*, следовательно, 𝑄 сингулярно в этой

точке, точнее, на двумерной сфере радиуса 𝑟*.

Аналогично, пусть 𝑄−1(𝑟′) > 0 при каком-либо значении 𝑟′, тогда запи-

шем (55) как

𝑄−1(𝑟) < 𝑄−1(𝑟′)− 1

2

𝑟′∫︁
𝑟

ℱ 𝑑𝑟, (57)
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и увидим, что если интеграл расходится при 𝑟 → −∞, то𝑄−1(𝑟) должно в какой-

то момент стать отрицательным, что приведёт к сингулярному 𝑄 на двумерной

сфере радиуса 𝑟*, где 𝑟* задаётся условием 𝑄−1(𝑟*) = 0.

Будем предполагать, что вдали от кротовой норы восстанавливается общая

теория относительности:⎧⎨⎩𝐺4 →𝑀 2
𝑃𝑙/2

𝐺5 → 0
при 𝑟 → ±∞. (58)

Выражение (24) тогда приводит к ℱ(𝑟) → 𝑀 2
𝑃𝑙 при 𝑟 → ±∞, т.е. интеграл в

формуле (55) расходится как при 𝑟′ → +∞, так и при 𝑟 → −∞, что завершает

доказательство теоремы.
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ВЫВОДЫ

В данной работе была рассмотрена теория Хорндески, описывающаяся Лаг-

ранжианом (2) в применении к построению стабильных статических сферически

симметричных Лоренцевых кротовых нор.

Для получения условий устойчивости конфигурации возмущения над фо-

новым решением были разложены по сферическим гармоникам и разбиты на «чёт-

ные» и «нечётные» моды. Был проведён анализ отдельно чётного и нечётного сек-

торов возмущений для 𝑙 ≥ 2 методом Редже-Уилера: для каждого из них были

откалиброваны сдвигом 𝑥𝜇 → 𝑥𝜇+ 𝜉𝜇 нефизические степени свободы, произведе-

на подстановка связей в Лагранжиан возмущений, после чего в нечётном секторе

остался Лагранжиан с одной степенью свободы, а в чётном – с двумя.

В работе был воспроизведён результат Т. Кобаяши, Х. Мотохаши и Т. Суя-

ма [46, 47] для условий устойчивости как в чётном, так и в нечётном секторе для

мод с 𝑙 ≥ 2. На основании полученных условий устойчивости была сформулиро-

вана и доказана запрещающая теорема, утверждающая невозможность построения

стабильных статических сферически симметричных Лоренцевых кротовых нор в

теории Хорндески при условии восстановления общей теории относительности

вдали от кротовой норы в обоих соединяемых ею пространствах.
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ЗАКЛЮЧЕНИЕ

Запрещающая теорема, представленная в настоящей работе показывает, что

статические сферически симметричные Лоренцевы кротовые норы не могут быть

построены в теории Хорндески. Доказанная теорема – достаточно общая и, поми-

мо Лагранжиана теории Хорндески (2), опирается только на расходимость инте-

грала
𝑟′∫︁
𝑟

ℱ 𝑑𝑟,

как при 𝑟 → −∞, так и при 𝑟 → +∞, требование достаточно естественное,

если мы хотим восстановить пространство-времяМинковского вдали от кротовой

норы в обоих мирах, которые она соединяет.

Чтобы связать наши обозначения со статьёй [40], где аналогичная теорема

доказывается для ℒ3 и минимальной связи с гравитацией, заметим, что в теории

кубичного Галилеона (ℒ3 с минимальной связью), т.е. в теории с 𝐺4 = 𝑀 2
𝑃𝑙/2,

𝐺5 = 0, мы имеем

𝑄 =
𝒬
𝑀 2

𝑃𝑙

, ℱ =𝑀 2
𝑃𝑙,

где 𝒬 – переменная, введённая В. Рубаковым в [40]. Таким образом, неравен-

ство (55) полностью согласуется с соответствующим выражением в [40].

Несмотря на всю общность доказанной запрещающей теоремы, остаётся воз-

можность для построения стабильной кротовой норы в расширенной теории Хорн-

дески (beyond Horndeski theory), как это было сделано для случая космологиче-

ского решения с отскоком [53–56].
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