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1 Введение

Исследования движения звёзд во Вселенной показывают, что на них влия-

ет невидимая тёмная материя, гравитационное поле которой во много раз пре-

восходит поле видимой. Поэтому изучение тёмной материи вызывает огром-

ный интерес. Так, одним из кандидатов на частицу подобной материи явля-

ется сверхлёгкий аксион; его масса должна составлять порядка 2.6 ∗ 10−5eV .

[1]

Спин аксионов 0, так что они бозоны [2] и могут образовывать бозе-конденсат,

который собирается в бозе-звёзды, тугие гравитационно-связанные объекты.

[3] Описание поведения бозе-конденсата можно найти в третьей главе [4].

В данной работе мы собираемся выяснить, как будут выглядеть бозе-звёзды в

двух и трёх пространственных измерениях, как описать и проанализировать

их вращение, а также стабильны ли они.

2 Постановка задачи

Если описывать бозе-конденсат волновой функцией φ, можно нормиро-

вать её на число частиц:
+∞∫
−∞
|φ|2dnx = N , а значит, |φ|2 приобретает простой

физический смысл; это плотность частиц в данной точке пространства, n.

Волновая функция удовлетворяет уравнению Шрёдингера:

i
∂φ

∂t
= − 1

2m∆φ+ Φφ, (1)

Где использована система единиц с ~ = 1. ∆Φ = 4πGρ(xn) - гравитационный

потенциал конденсата. Мы предполагаем, что звезда стационарна. Тогда ре-

шение можно записать в виде:

φ = φ0(r, θ)e−iEteilϕ, (2)

φ0 действительно. Для двухмерной бозе-звезды всё совершенно аналогично,

с той лишь разницей, что φ0 зависит только от r.
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Выразим плотность потока конденсата:

j = i

2m (φ∇φ∗ − φ∗∇φ) . (3)

Подставляя в выражение потока φ = φ0e
iQ, получаем

j = 1
m
φ2

0∇(Q), (4)

Так что для скорости сверхтекучего движения, v = j/φ2
0

rotv = 0. (5)

Мы пришли к важной особенности сверхтекучей жидкости: потенциальности

её течения. Она нарушается лишь при возникновении квантовых вихревых

нитей: в тех точках, где фаза волновой функции плохо определена, т.е. где φ

обращается в ноль. Поэтому в решениях для вращающегося бозе-конденсата

мы ожидаем увидеть вихрь: точку в звезде, где плотность частиц нулевая.

Наша задача - найти профиль бозе-звезды при различных значениях l, а

также исследовать полученные решения на стабильность.

3 Невращающиеся бозе-звёзды в 3+1 измерениях

Найдём профиль невращающейся бозе-звезды в трёх пространственных

измерениях. Для этого необходимо привести уравнения к иному виду. Под-

ставляя (2) в (1), получаем стационарное уравнение Шрёдингера для невра-

щающейся бозе-звезды:

∆
2mφ0 = (−E + Φ)φ0, (6a)

∆Φ = 4πGmφ2
0. (6b)

Нужно, однако, как-то избавиться от констант. Для этого мы вводим новые

переменные: Φ′ = N0Φ, φ′0 = N1φ0, и делаем координатное преобразование
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r′ = r
mv0

; N0, N1 и v0 - постоянные. Выбирая N0 = 1
2E , N1 = πG/E2 и v0 =

1/(2m3E), получаем

∆φ0 = (−1 + 2Φ)φ0, (7a)

∆Φ = φ2
0, (7b)

Штрихи опущены из эстетических соображений. Чтобы решение (2) было

регулярным в нуле, необходимо, чтобы поля имели разложения φ0 = c1 +

c2r
2 + c5r

4..., Φ = r2(c3 + c4r
2 + c6r

4...).

Далее вводим обозначения

y0 = φ0, (8a)

y1 = 1
r

∂φ0

∂r
, (8b)

y2 = Φ1 = Φ
r2 , (8c)

y3 = 1
r

∂Φ1

∂r
. (8d)

Из уравнений (4) получаем систему, которую будем решать численно:

y′0 = ry1, (9a)

ry′1 =
(
−1 + 2y2r

2) y0 − 3y1, (9b)

y′2 = ry3, (9c)

r3y′3 = y2
0 − 6y2 − 7r2y3, (9d)

Начальные условия

y1(0) = 2c2 = −c13 , (10a)

y2(0) = c3 = c2
1
6 , (10b)

y3(0) = 2c4 = − c
2
1

30 (10c)

Включают одну неопределённую константу c1. Решать задачу будем метода-

ми перестрелки и Булирша-Штёра [5]: c1 подберём так, чтобы φ0 и Φ имели
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нужные асимптотики на бесконечности, а N =
+∞∫
−∞
|φ|2dnx существовал.

На графике представлен профиль бозе-звезды. Он совпадает с результатом

[3] с точностью до перешкалировки, так что методу, используемому в данной

работе, можно доверять.

5 10 15

0.005

0.010

0.015

Рис. 1: Профиль трёхмерной бозе-звезды

4 Вращающиеся бозе-звёзды в 2+1 измерениях

В двумерном пространстве можно решить (1) теми же методами, сделав

такие же замены. Мы добавим лишь

φ0 = rlφ1, (11)

И получим для l=0:

1
r

∂φ1

∂r
+ ∂2φ1

∂r2 =
(
−1 + 2Φ1r

2)φ1, (12a)

4Φ1 + 5r∂Φ1

∂r
+ r2∂

2Φ1

∂r2 = φ2
1. (12b)

Для l=1:

3
r

∂φ1

∂r
+ ∂2φ1

∂r2 ,=
(
−1 + 2Φ1r

4)φ1, (13a)

16Φ1 + 9r∂Φ1

∂r
+ r2∂

2Φ1

∂r2 = φ2
1. (13b)
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l=2:

5
r

∂φ1

∂r
+ ∂2φ1

∂r2 ,=
(
−1 + 2Φ1r

6)φ1, (14a)

36Φ1 + 13r∂Φ1

∂r
+ r2∂

2Φ1

∂r2 = φ2
1. (14b)

У изолированной бозе-звезды φ0 стремится к нулю при больших r. Выясним,

какие начальные условия нужно выбрать. Подставим φ1 = c1 + c2r
2, Φ1 =

c3 + c4r
2 в уравнения (12-14). Получаем, для l=0:

2c2 = −c12 , (15a)

c3 = c2
1
4 , (15b)

2c4 = c2
1

16 . (15c)

Для l = 1:

2c2 = −c1

4 , (16a)

c3 = c2
1

16 , (16b)

2c4 = c2
1

72 . (16c)

Для l = 2:

2c2 = −c16 , (17a)

c3 = c2
1

36 , (17b)

2c4 = c2
1

192 . (17c)

Делаем аналогичные замены переменных

y0 = φ1, (18a)

y1 = 1
r

∂φ1

∂r
, (18b)

y2 = Φ1 = Φ
r2 , (18c)

y3 = 1
r

∂Φ1

∂r
. (18d)
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Получаем

y′0 = ry1, (19a)

ry′1 = (−1 + 2y2r
2l+2)y0 − 2(l + 1)y1, (19b)

y′2 = ry3, (19c)

r3y′3 = y2
0 − 4(l + 1)2y2 − (4l + 6)r2y3 (19d)

Начальные условия для yi следуют из уравнений (15-18). В них входит неопре-

делённая константа c1, которую мы используем как параметр перестрелки.

Получены решения для l = 0, 1, 2:
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Рис. 2: Профиль бозе-звезды при l=0
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Рис. 3: Профиль бозе-звезды при l=1
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Рис. 4: Профиль бозе-звезды при l=2

5 Стабильность бозе-звёзд

Уравнение (1) можно записать в гамильтоновом виде подобно тому, как

это сделали Захаров и Кузнецов в [6]:

i
∂φ

∂t
= δH

δφ∗
, (20a)

H = 1
2
∫
dnx

[
|∇φ|2 + 2Φ|φ|2

]
. (20b)

Этот формализм можно обобщить, чтобы из условия экстремума гамильто-

ниана (17b) получалось уравнение Пуассона. Тогда потребуется добавить в

H ещё один член:

H = 1
2
∫
dnx

[
|∇φ|2 + (∇Φ)2 + 2Φ|φ|2

]
. (21)

Отсюда следует, что решение стационарного уравнения Шрёдингера эквива-

лентно нахождению эстремума функционала

F = 1
2
∫
dnx

[
|∇φ|2 + (∇Φ)2 + 2Φ|φ|2 + λ2|φ|2

]
. (22)

Последнее слагаемое добавлено из следующих соображений. Нам требует-

ся минимизировать H, сохраняя число частиц N =
+∞∫
−∞
|φ|2dnx неизменным,

поэтому мы вводим множитель Лагранжа λ2. Находя вариацию (20) по φ∗,
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получаем уравнение λ2 = −E.

Будем исследовать полученные решения на устойчивость, анализируя, ми-

нимизируют ли они энергию. Для определённости рассмотрим случай 2D-

пространства. Найдём вторую вариацию (22) и потребуем, чтобы она была

положительна. Будем работать с возмущением

φ = [φ0(r) + u(r, ϕ, t) + iv(r, ϕ, t)] e−iEteilϕ, (23a)

Φ = Φ0 + f, (23b)

f = ∆−1(2φ0u+ u2 + v2). (23c)

Получаем

2δ2F =
∫
dnx

[
uL1u+ vL0v − 2u l

r2
∂

∂φ
v + 2v l

r2
∂

∂φ
u

]
, (24a)

L0 = −∆ + λ2 + 2Φ + l2

r2 , (24b)

L1 = −∆ + λ2 + 2Φ + l2

r2 + 4φ0∆−1φ0. (24c)

Пусть c = 2l/r2. При l = 0 вклады от u и v независимы, и бозе-звезда ста-

бильна, если удовлетворяет критерию Вахитова-Колоколова [6] ∂N
∂E < 0.

При l > 0 имеем

2δ2F =
∫
dnx

(
u v

) L1 −c ∂
∂ϕ

c ∂
∂ϕ L0


u
v

 =
(
u v

)
B

u
v

 . (25)

Задача, таким образом, сводится к отысканию собственных значений опе-

ратора B. Если все они положительны, звезда стабильна. Будем работать в

секторах 0,1,-1. u и v представим в виде:

u = a−1e
−iϕ + a0 + a1e

iϕ, (26a)

v = b−1e
−iϕ + b0 + b1e

iϕ. (26b)

Спектры остаются в изолированных секторах, так как L1 и L0 не содержат

явной зависимости от ϕ. Получаем следующую спектральную задачу. Кри-
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терием стабильности является положительность собственных значений B.

L1a0 = Ea0 + Λφ0, (27a)

L0b0 = Eb0, (27b)

L1a1 − icb1 = Ea1, (27c)

L1a−1 + icb−1 = Ea−1, (27d)

L0b1 + ica1 = Eb1, (27e)

L0b−1 − ica−1 = Eb−1. (27f)

Здесь Λ - множитель Лагранжа, определяемый из условия 〈a0|φ0〉 = 0. Такое

требование обусловлено тем, что мы не рассматриваем произвольные возму-

щения: только такие, которые сохраняют число частиц.

a0 и b0 можно считать вещественными. Сделав замену a1 = x1 + iy1, b1 =

x2 + iy2, приходим к уравнениям

L1x1 + cy2 = Ex1, (28a)

L1y1 − cx2 = Ey1, (28b)

L0x2 − cy1 = Ex2, (28c)

L0y2 + cx1 = Ey2. (28d)

Легко убедиться, что похожая подстановка для a−1 и b−1 приводит к тем

же результатам. Таким образом, при анализе невращающейся бозе-звезды

следует работать с уравнениями (27ab), а при рассмотрении вращающейся
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обратиться к системе

L0a0 = Ea0 + Λφ0, (29a)

L1b0 = Eb0, (29b)

L1x1 + cy2 = Ex1, (29c)

L1y1 − cx2 = Ey1, (29d)

L0x2 − cy1 = Ex2, (29e)

L0y2 + cx1 = Ey2. (29f)

Данную систему можно решить численно, причём (29ab) и (29cdef) решают-

ся независимо. От решений остаётся потребовать, чтобы на бесконечности

возмущения обращались в ноль, также как 〈a0|φ0〉. Значения энергии, при

которых это выполняется, и есть искомый спектр. Наличие хотя бы одного

отрицательного значения указывает на нестабильность.

Рассмотрим подробнее нахождение спектра (29ab). Как и φ0, a0 и b0 имеют

в нуле разложения вида rl(c1 + c2r
2 + c3r

4...). Получается три произвольных

параметра: значение Λ, а также c1 для a0 и b0. Есть, кроме того, три требо-

вания: a0(∞) = 0, b0(∞) = 0, f = 2π
+∞∫
0
a0φ0rdr = 0. Получим три решения

данной системы при различных начальных условиях:

c1a = 1, 0, 0; (30a)

c1b = 0, 1, 0; (30b)

Λ = 0, 0, 1. (30c)

Обозначим решения для случаев 1,2,3 в виде

φi =


a0i(s)

b0i(s)

fi(s)

 , (31)

где s - некоторое достаточно большое значение r. Искомое решение, которое

удовлетворяет всем трём граничным условиям на бесконечности, есть линей-

11



ная комбинация полученных:

a0(s)

b0(s)

f(s)

 = k1φ1 + k2φ2 + k3φ3 = 0. (32)

Система разрешима тогда и только тогда, когда

qE = det
(
φ1 φ2 φ3

)
= det


a01(s) a02(s) a03(s)

b01(s) b02(s) b03(s)

f1(s) f2(s) f3(s)

 = 0. (33)

Таким образом, варьируя E и получая три решения для каждого значения,

мы сможем увидеть, в каких точках qE пересекает ноль. Эти точки и будут

искомым спектром. Наличие хотя бы одного отрицательного значения E, при

котором qE обращается в ноль, указывает на нестабильность бозе-звезды.

Введём аналогично детерминант 4x4 sE для системы (28cdef).

Обратимся к анализу решения, полученного для l = 0:

-1 1 2 3 4 5

-0.04

-0.02

0.02

0.04

Рис. 5: Зависимость параметра системы от энергии при l=0. Энергии, при

которых qE обращается в ноль - искомый спектр

Отрицательных мод в результате не было обнаружено, так что при l = 0

бозе-звезда стабильна.
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l=1:
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Рис. 6: Зависимость параметров системы от энергии при l=1. Отрицательных

значений нет.

l=2:
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Рис. 7: Зависимость sE от энергии при l=2.

Среди вращающихся бозе-звёзд в 2D, таким образом, стабильны лишь

звёзды с орбитальным моментом l = 1.
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6 Заключение

• Получены профили невращающейся бозе-звезды в 3D и вращающихся

звезд в 2D.

• Изучена стабильность этих объектов.

• Показано, что все невращающиеся бозе-звёзды стабильны.

• Двумерные вращающиеся бозе-звезды с l=1 стабильны, а с l=2 - неста-

бильны.
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