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1 Введение

Работа посвящена поиску связей между функциональными интеграла-
ми, возникающими в разных квантовомеханических задачах. В статье [12]
Виттен рассматривает SYK-модель (модель Сачдева-Йе-Китаева), которая,
как предполагается, дуальна к модели черной дыры в 1+1 пространстве.
Производящая функция SYK-модели записывается через функциональный
интеграл, действие которого является SL(2,R) инвариантным и может быть
переписано через производную Шварца от некоторой функции.

С другой стороны, производная Шварца возникает при замене перемен-
ных в уравнении Риккати, при изучении квантовомеханических моделей.
Уравнение Шредингера может быть сведено к уравнению Риккати, связы-
вающему волновую функцию состояния с нулевой энергией и потенциал вза-
имодействия. Каноническое уравнение Риккати не меняет свою форму при
некоторых заменах переменных, что делает возможным связать некоторые
задачи квантовой механики. В этой работе изучаются замены переменных
в уравнении Риккати, в надежде, что это прольет свет на преобразования в
функциональных интегралах, где тоже возникает производная Шварца.

В квантовой механике небольшое количество задач можно довести ана-
литически до точного ответа. Возникает вопрос, есть ли что-то общее меж-
ду этими задачами. Возможно ли используя какие-то общие черты между
точно решаемыми задачами и не решаемыми, получать информацию о по-
следних. Некоторые задачи квантовой механики имеют что-то общее. Так,
например, в статье Калоджеро [1], изучается парный сингулярный обратно-
квадратичный потенциал. В ней показано, что собственные значения задачи
Калоджеро с парным взаимодействием частиц отличаются от значений зада-
чи с несколькими независимыми осцилляторами на константу. Затем были
явно построены преобразования, сводящие одномерную задачу нескольких
тел в потенциале Калоджеро к системе свободных гармонических осцилля-
торов [2]. Продолжая работу в этом направлении, в статьях [3], [10] были
исследованы задачи с “выключенным” гармоническим потенциалом и был
предложен универсальный способ, позволяющий связать модель с обратно-
квадратичным потенциалом с системой несвязанных свободных частиц.

Способы сведения задач с сингулярным потенциалом к задачам со сте-
пенным потенциалом представляют собой большой практический интерес.
Это обусловлено распространенным численным методом Монте-Карло, поз-
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воляющем получать оценочные значения решений. Но этот метод сталкива-
ется с большими вычислительными сложностями в задачах с сингулярными
потенциалами. Однако, для некоторых простых потенциалов хорошо раз-
виты точные численные методы, и полученная связь позволяет применить
методы для более сложных задач.

В этой работе будем отталкиваться от теории двойственных потенциалов,
которые вводятся в теории суперсимметрии. С помощью такого подхода уда-
лось перейти от линейного дифференциального уравнения Шредингера 2-го
порядка к нелинейному дифференциальному уравнению Риккати 1-го по-
рядка, которое связывает волновую функцию состояния c нулевой энергией
и потенциал взаимодействия.

В этой работе рассмотрены одномерные одночастичные модели. Здесь
предложено два подхода, оба основываются на возможности факториза-
ции гамильтониана. В первом случае, изучено уравнение Риккати, его ин-
вариантность относительно некоторых замен переменных. Преобразования,
оставляющие канонический вид уравнения Риккати, позволяют связать вол-
новые функции состояний c нулевой энергией потенциалов, для которых
записаны уравнения Риккати. Во втором случае изучается построение двой-
ственных потенциалов и связь их спектров. Особое внимание уделено гармо-
ническому осциллятору, потенциалам Калоджеро и Морс, задаче Кулона.

Интерес к инвариантности канонического уравнения Риккати относи-
тельно некоторых замен переменных связан с тем, что при замене пере-
менных в уравнении возникает производная Шварца – и эта же структура
возникает при замене переменных в функциональных интегралах квантово-
механических задач.
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2 Уравнение Риккати

2.1 Факторизация гамильтониана. Уравнение Риккати

В этой части работы пойдет речь о преобразованиях уравнения Риккати,
связывающего потенциал взаимодействия и волновую функцию с нулевой
энергией. Для начала покажем, как получается нелинейное дифференциаль-
ное уравнение Риккати и уравнения Шредингера, записанного для волновой
функции с нулевой энергией.

Рассмотрим случай, когда гамильтониан можно факторизовать, т.е. пред-
ставить в виде [5]:

H = A+A−, A± =
1√
2

(∓ d

dx
+ f(x))

Тогда гамильтониан можно переписать через функцию f(x):

H =
1

2
(− d2

dx2
+ f 2(x)− f ′(x)),

и потенциал примет вид:

V (x) =
1

2
(f 2(x)− f ′(x))

При заданном потенциале мы можем найти волновую функцию, соответ-
свующую состоянию системы с нулевой энергией, решая дифференциальное
уравнение первого порядка:

Hψ0 = 0, A+A−ψ0 = 0, A−ψ0 = 0

1√
2

(
d

dx
+ f(x)

)
ψ0 = 0,

dψ0

dx
+ f(x)ψ0 = 0

Таким образом, мы можем перевыразить фунцкию f(x) через функцию
ψ0:

f(x) = −ψ
′
0

ψ0
= −(lnψ0)

′

Тоже самое можно получить, рассмотрев уравнение Шредингера, запи-
санное для волновой функции с энергией E = 0:

− d2

2dx2
ψ0 + (−E + V )ψ0 = 0, E == 0, ψ′′0 = 2V ψ0
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(
ψ′0
ψ0

)′
=
ψ′′0
ψ0
− ψ′20
ψ2

0

,

(
ψ′0
ψ0

)′
+
ψ′20
ψ2

0

= 2V, f(x) = −ψ
′
0

ψ0

f 2(x)− f ′(x) = 2V (x), (∗)

Таким образом, для заданного потенциала мы можем сразу же найти
волновую функцию состояния с нулевой энергией, решая уравнение (*). Это
уравнение носит название канонического уравнения Риккати.

2.2 Общие сведения об каноническом уравнении Рик-
кати

Рассмотрим подход, в основе которого лежит то, что каноническое урав-
нение Риккати сохраняет свою форму при некоторых заменах переменных
(некоторые преобразования переводят каноническое уравнение снова в ка-
ноническое уравнение, но с другой неоднородностью - потенциалом взаимо-
действия). Ранее было показано, что имеет место уравнение:

f ′(x) = f 2(x)− 2V (x), f(x) = −ψ
′
0

ψ0

Это и есть уравнение Риккати в каноническом виде. В уравнение Риккати
входит потенциал задачи в явном виде. Это уравнение связывает волновую
функцию состояния с нулевой энергией и потенциал взаимодействия.

Уравнение Риккати является нелинейным дифференциальным уравнени-
ем первого порядка. Его нельзя разрешить в квадратурах, т.е. нельзя запи-
сать решение через конечное число последовательных интегралов. Но если
известно частное решение y0(x), то можно записать общее решение через две
квадратуры (теорема [6]):

y(x) = y0(x) + F (x)

(
c−

∫
F (s)ds

)−1

f(x) = e2
∫
y0(s)ds

Действительно, будем искать решение в виде y(x) = y0(x) + z(x). Тогда
подставив анзац в уравнение Риккати получим:

z′x = z2 + 2y0z

Это есть уравнение Бернули. Его решение записывается через две квад-
ратуры.
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Уравнение Риккати инвариантно при следующих дробно-линейных заме-
нах переменных:

x = φ(x̃), y =
aỹ + b

cỹ + d

Существует несколько замен относительно которых каноническое урав-
нение Риккати переходит в каноническое уравнение Риккати. Так как в урав-
нение в явном виде входит потенциал взаимодействия, то мы можем с по-
мощью замены переменных переходить от задачи с одним потенциалом, к
задаче с другим потенциалом.

Из решения уравнения Рикати можно найти волновую функцию состо-
яния c нулевой энергией, поэтому с помощью таких замен переменных мы
получаем связь между волновыми функциями с нулевой энергией разных
задач.

2.3 Связь преобразований уравнения Риккати с произ-
водной Шварца

Рассмотрим дифференциальный оператор от аналитической функции g(x),
называемый производной Шварца:

Sg(x) =
g′′′(x)

g′(x)
− 3

2

(
g′′(x)

g′(x)

)2

Интересно, что потенциал модели можно переписать через производ-
ную Шварца от некоторой функции g(x). Действительно, пусть ψ0(x) =

(g′(x))−
1
2 , тогда из уравнения Риккати получим:

V (x) =
1

2
(f 2(x)− f ′(x)) = −1

4

[
g′′′(x)

g′(x)
− 3

2

(
g′′(x)

g′(x)

)2
]

= −1

4
Sg(x),

Отметим важное свойство производной Шварца от сложной функции
h(g(x)):

Sh(g(x))(x) = Sh(g(x)) ∗ (g′(x))2 + Sg(x), (∗∗)

С другой стороны, при некоторых преобразованиях уравнения Риккати
f ′x = f 2 +F (x), тоже может возникать производная Шварца в неоднородном
члене уравнения:

x = φ(ξ), y =
1

φ′ξ
ω(ξ)− 1

2

φ′′ξξ
(φ′ξ)

2
,
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после замены переменных уравнение Риккати примет вид:

ω′ξ = ω2 +R(ξ), R(ξ) = F (φ(x))[φ′(ξ)]2 +
1

2
Sφ(ξ)

Таким образом, из-за того что потенциал взаимодействия представляет
собой производную Шварца, то замена переменных в уравнении Риккати
тесно связана с ранее записанным (**) свойством производной Шварца от
сложной функции.

2.4 Преобразования уравнения Риккати для потенциа-
ла Морса

Интересно было бы найти и изучить связь между потенциалами взаи-
модействия и волновыми функциями (с нулевой энергией) точно решаемых
задач. Рассмотрим далее замены переменных для канонического уравнения
Риккати, с помощью которых можно переходить от моделей с потенциалом
Морса к моделям гармонического осциллятора, потенциала Калоджеро и
Кулона.

Общий вид преобразований, позволяющий связать многие потенциалы,
в которые входить показательная функция, со степенными потенциалами
имеет вид [9]:

y′x = y2 − α2

4
+ e−2αxf(e−αx),

ω′ξ = ω2 +
1

α2
f(ξ),

ξ = e−αx, w =
1

−α
eαxy − 1

2
eαx,

где f(e−αx) произвольная непрерывная функция с аргументом e−αx. Тогда
обратные преобразования можно записать в виде:

x =
−1

α
ln|ξ|

y = ωξ − α

2

Выбирая конкретный вид фукции f(e−αx) можно связать уравнение Рик-
кати с потенциалом Морса и уравнения с потенциалами гармонического ос-
циллятора, Калоджеро и одномерного Кулона (см. Таблицу 1).
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В таблице 1 в первом столбце выписаны потенциалы Морса, во втором
столбце записана функция f(e−αx) для каждого конретного частного слу-
чая потенциала Морса, а в третьем столбце таблицы – потенциалы взаимо-
действия, которые получаются после замены переменных при конкретном
выборе функции f(e−αx):

−2V (x) f(e−αx) −2Ṽ (ξ)

−α2

4 +D
[
e−4αx − 2e−2αx

]
−2 + e−2αx D

α2ξ
2 − 2D

α2

−α2

4 +D
[
e−4αx − 2e−2αx + C

]
−2 + e−2αx + 1

e−2αx
D
α2ξ

2 + DC
α2

1
ξ2 −

2D
α2

−β2

4 +D
[
e−2βx − 2e−βx

]
1 + −β

e−βx
D
β2 − 2D

β2
1
|ξ|

Таблица 1 - Преобразования потенциалов

Для проверки полученных формул подставим в известную волновую функ-
цию состояния с нулевой энергией потенциала Морса новые переменные и
проверим, получим ли мы правильную волновую функцию для другого по-
тенциала.

Рассмотрим переход от потенциала Морса к потенциалу Калоджеро. Мож-
но воспользоваться известным выражением для волновой функции основно-
го состояния потенциала Морса [8], для упрощения положив α = 1/2, D = 1,
тогда:

ψ0(x) = e−e
−x

2s(e−x)s ≡ exp(−
∫
ydx),

где s =
√
−2E
2α . После замены переменных:

ψ0(ξ) = e−ξ2sξs ≡ exp(−
∫
ωdξ −

∫
1

2ξ
dξ) = ψ0(ξ)e

−
∫

1
2ξdξ = ψ0(ξ)

1√
ξ

=> волновая функция имеет вид ψ0(ξ) = Ce−ξξs−
1
2 , что соответсвует потен-

циалу Калоджеро.
Заметим также, что при выборе констант таких, что β = 2α, −3

4α
2 1
D = C,

потенциалы Морса, из которых получаются заменой переменных потенциа-
лы Калоджеро и Кулона, становятся идентичными. Таким образом получаем
связь через замену переменных для потенциалов Кулон-Морс-Калоджеро.
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2.5 Некоторые общие преобразования уравнения Рик-
кати

Существует не мало других преобразований уравнения Риккати, сохра-
няющих канонический вид и которые можно использовать для связи волно-
вых функций состояний с нулевой энергией разных гамильтонианов. Итак,
рассмотрим замены переменных, такие что:

f ′x(x) = f 2(x)− 2V (x) => w′ξ(ξ) = w2(ξ)− 2Ṽ (ξ)

Замены переменных представлены в виде Таблицы 2 (1ый и 2ой столбец
– вид неоднородности уравнения Риккати до и после замены, 3ий и 4ый –
новые переменные):

−2V (x) −2Ṽ (ξ) ξ ω

a2f(ax+ b) f(ξ) ax+ b y/a

x−4f( 1
x ) f(ξ) 1/x −x2y − x

1
(cx+d)4 f(ax+bcx+d ),∆ = ad− bc ∆−2f(ξ) ax+b

cx+d ∆−1((cx+ d)2y + c(cx+ d))

−λ2

4 + e−2λxf(−eλx) λ−2f(ξ) e−λx 1
λe

λxy − 1
2e
λx

1−n2

4x2 + x2n−2f(axn + b) (an)−2f(ξ) axn + b 1
anx

1−ny + 1−n
2an x

−n

1−n2

4x2 + ax2m−2(bxm + c)n a(bm)−2ξn bxm + c 1
bmx

1−my + 1−m
2bm x−m

−λ2 + achn(λx)sh−n−4(λx) λ−2ξn cth(λx) − 1
λsh

2(λx)y − sh(λx)ch(λx)

λ2 + Csinn(λx+ a)sin−n−4(λx+ b) C(λsin(b− a))−2ξn sin(λx+a)
sin(λx+b)

sin2(λx+b)
sin(b−a) ( yλ + ctg(λx+ b))

− 1
2λ

2 − 3
4λ

2tg2(λx) + acos2(λx)sinn(λx) aλ−2ξn sin(λx) y
λcos(λx) + sin(λx)

2cos2(λx)

Таблица 2 - Некоторые общие преобразования уравнения Риккати

В шестой строке Таблицы 2 предложена замена переменных, которая поз-
воляет связывать степенные потенциалы и потенциалы с обратно-квадратичной
зависимостью. К сожалению такая замена переменных не работает в част-
ном случае для пары потенциалов Калоджеро и гармонического осцилля-
тора. Был рассмотрен случай m=1, n=2 (при таких значениях должен был
бы теоретически выполняться переход от потенциала взаимодействия Ка-
лоджеро к гармоническому осциллятору), однако для таких значений m и n
замена становится тривиальной, и перестает работать – такое преобразова-
ние только масштабирует исходное уравнение Риккати.
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Так же существует еще одна интересная замена переменных, позволяю-
щая свести потенциал со степенной и обратно квадратичной зависимостью к
потенциалу с только степенной зависимостью. Однако такой способ тоже не
подходит для частного случая Калоджеро-гармонический осциллятор, из-за
обнуления констант при попытке потребовать m=2, n=4.

y′x = ay2 + bxn−2 +
c

x2
, aA2 − A+ c = 0, ω = xy + A

xω′x = aω2 + (1− 2aA)ω + bxn

xω′x = αω2 + βω + γxn, ξ = xβ, η = yx−β, m =
n

β
− 2

η′ξ =
α

β
η2 +

γ

β
ξm

Тем не менее, такие замены все равно представляют большой интерес
для численных расчетов волновых функций с нулевой энергией. Для сте-
пенных потенциалов взаимодействия хорошо развиты численные методы, в
то время как численные расчеты сингулярных потенциалов связаны с боль-
шими трудностями. Поэтому преобразования, сводящие уравнение Риккати
с сингулярным потенциалом, к уравнению со степенным, позволяют исполь-
зовать хорошо разработанные для простых потенциалов численные методы
при работе с сингулярными потенциалами.

В дальнейшем было бы интересно рассмотреть замены, переводящие ка-
ноническое уравнение Риккати в неканоническое, так как любое уравнение
Риккати можно свести к каноническому виду [9] - то есть рассмотреть цепоч-
ки из двух замен переменных, то есть цепочки, переводящие каноническое
уравнение в каноническое. Возможно в этом случае возникнут новые преоб-
разования, отличные от разобранных.
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3 Двойственные потенциалы

3.1 Основные понятия

В данной части работы пойдет речь о так называемых двойственных
потенциалах. Рассмотрим и сравним пары двойственных потенциалов, по-
строенные на разных волновых функциях.

В предыдущей работе [4] были изучены подходы к факторизации гамиль-
тонианов. Используя тот факт, что гамильтониан можно представить в виде
произведения двух операторов, аналогичных оператору рождения и уничто-
жения в гармоническом осцилляторе, можно построить теорию двойствен-
ных потенциалов[5], спектры и волновые функции которых связаны. Изло-
жим вкратце ниже основные положения этой теории [11].

Теории без взаимодействия.
Введем операторы рождения и уничтожения в виде:

Q+ = qb−f+, Q− = qb+f−

, где b−, f− - операторы уничтожения одного бозона и одного фермиона
соответсвенно, b+, f+ - операторы рождения. Требуем эрмитовость Q+

+ =

Q−.
Два фермиона не могут находиться в одном состоянии, поэтому операто-

ры Q+, Q− обладают свойством: Q2
+ = 0, Q2

− = 0. Для удобства введем
опреаторы Q1, Q2:

Q1 = Q+ +Q−, Q2 = −i(Q+ −Q−).

Можно показать, что:

{Q1, Q2} = 0, Q2
1 = Q2

2 = {Q+, Q−}

, где {A,B} = AB + BA - антикоммутатор. Обозначим {Q+, Q−} ≡ H.
Покажем, что H - это гамильтониан системы бозонов и фермионов. Имеют
место соотношения:

{Qi, Qj} = 2Hδij, [H,Q+] = [H,Q−] = 0

С учетом {f+, f−} = 1 получим:

{Q+, Q−} = q2

(
b+b− +

1

2

)
+ q2

(
f+f− −

1

2

)
= H = HB +HF
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, где HB, HF - бозонный и фермионный гамильтонианы.
Важные свойства:
1) Все уровни энергии такого гамильтониана неотрицательны: En > 0;
2) Все уровни энергии (кроме нулевого) двукратно вырождены;
3) Для состояния с нулевой энергией : H|Ψ0 >= 0 => ||Q1|Ψ0 >

||2 = 0, ||Q2|Ψ0 > ||2 = 0, где Ψ0 - волновая функция сосотояния с нулевой
энергией.

Теории с взаимодействием.
Рассмотрим теории со взаимодействием. Аналогично введем операторы

рождения и уничтожения:

Q+ = B+(b+, b−)f+, Q− = B−(b+, b−)f−

Обозначения:

f+ = ( 0 1
0 0 ) , f− = ( 0 0

1 0 ) , Ψ =
(

Ψ1
Ψ2

)
, σ3 = ( 1 0

0 −1 ) .

Тогда, используя сигма-матрицу матричный гамильтониан H можно за-
писать в виде:

H = {Q+, Q−} =
1

2
[B+, B−] +

1

2
{B+, B−}σ3

В координатном представлении будем искать операторы рождения и уни-
чтожения в виде:

B± =
1√
2

(±ip+ f(x))

, p - импульс, f(x) - некоторая функция от координат.
Тогда, нетрудно показать, что для такого вида операторов рождения и

уничтожения гамильтониан имеет вид:

H =

H1

H2

 =

1
2(p2 + f 2(x) + f ′(x)) 0

0 1
2(p2 + f 2(x)− f ′(x))


Рассмотрим как cвязаны спектры двойственных потенциалов и потенци-

алов из квантовомеханических задач. Изучим задачу на собственные значе-
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ния матричного гамильтониана:

H

Ψ+

Ψ−

 = E

Ψ+

Ψ−

 , E > 0

Если E = 0

H

Ψ+

Ψ−

 = 0, H =

B+B− 0

0 B−B+


=> B−|Ψ+ >= 0, B+|Ψ− >= 0

1√
2

(
± d

dx
+ f(x)

)
Ψ∓ = 0

Ψ± = Cexp

(
±
∫ x

0

f(s)ds

)
Видно, что при минимальной возможной энергии, т.е. при E = 0, обе

волновые функции Ψ−, Ψ+ с нулевой энергией не могут быть одновремен-
но нормированы. Мы хотим, чтобы волновая функция состояния с нулевой
энергией задачи квантовой механики была квадратично интегрируема. Здесь
возможны три варианта в зависимости от вида f(x):

1) ||Ψ+|| =∞, ||Ψ−|| =∞
2) ||Ψ+|| =∞, ||Ψ−|| <∞
3) ||Ψ+|| <∞, ||Ψ−|| =∞
Значит нормированная функция Ψ0 задачи на собственные значения мат-

ричного либо единсвтенна, либо не существует. Наиболее распространенный
частный случай показательных потенциалов, для которых нормированное
состояние существует можно записать в виде: f(x) = Cxn, где n - нечетное
число, C - константа.
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3.2 Гармонический осциллятор

В рамках теории двойственных потенциалов ,была рассмотрена модель
гармонического осциллятора [5]. На основе волновой функции основного со-
тояния ψ0 построены два двойственных потенциала, которые в данном слу-
чае являются гармоническими осцилляторами:

ψ0 f(x) = −ψ′0
ψ0

V2 En V1 En

e−x
2/2 x 1

2(x2 − 1) n 1
2(x2 + 1) n+ 1

Таблица 3 - Двойственные потенциалы для ψ0

Потенциал гармонического осциллятора может быть получен, если взять
и следующие две волновые функции, описывающие возбужденные состояния
осциллятора:

ψ0 f(x) = −ψ′
0

ψ0
V2 En V1 En

√
2xe−x

2/2 x− 1
x

1
2
(x2 − 3) n− 1 1

2
(x2 + 2

x2
− 1) 2n+ 2

1√
2
(2x2 − 1)e−x

2/2 x− 4x
2x2−1

1
2
(x2 − 5) n− 2 1

2
(x2 + 8

2x2−1 + 16
(2x2−1)2 − 3) –

Таблица 4 - Двойственные потенциалы, построенные на волновых функциях
возбужденных состояний гармонического осциллятора

Нижний уровень энергии гармонического осциллятора сместился вниз,
из-за того что мы взяли за основу волновую функцию не основного состоя-
ния.

В работе построены двойственные потенциалы на функциях, которые не
принадлежат гильбертову пространству и не квадратично интегрируемы.
Начинает прослеживаться закономерность, что если брать за основу при по-
строении двойственных потенциалов одну из волновых функций гармониче-
ского осциллятора или соответсвующие им не квадратично-интегрируемые
функции, то один из получивщихся потенциалов всегда будет гармониче-
ским. Это продемонстрированно в Таблице 5:
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ψ0 f(x) = −ψ′0
ψ0

V2 V1

e−x
2/2 x 1

2(x2 − 1) 1
2(x2 + 1)

√
2xe−x

2/2 x− 1
x

1
2(x2 − 3) 1

2(x2 + 2
x2 − 1)

1√
2
(2x2 − 1)e−x

2/2 x− 4x
2x2−1

1
2(x2 − 5) 1

2(x2 + 8
2x2−1 + 16

(2x2−1)2 − 3)

(8x3−12x)

4
√

3
e−x

2/2 2x4−9x2+3
2x3−3x

1
2(x2 − 7) 1

2(x2 + 8
2x2−3 + 48

(2x2−3)2 + 2
x2 − 5)

ex
2/2 −x 1

2(x2 + 1) 1
2(x2 − 1)

√
2xex

2/2 x+ 1
x

1
2(x2 + 3) 1

2(x2 + 2
x2 + 1)

Таблица 5 - Двойственные потенциалы на основе волновых функций гармонического
осциллятора

Видно, что второй двойственный потенциал всегда имеет форму осцилля-
тора, смещенного на энергию волновой функции, на основе которой построен
этот потенциал.

3.3 Потенциал Калоджеро

Далее, используя тот же подход, рассмотрим потенциал Калоджеро в
одночастичной модели.

Будем факторизовать гамильтониан так: f(x) = x+ a
x

H =

1
2(p2 + x2 + 2a+ 1 + a(a−1)

x2 ) 0

0 1
2(p2 + x2 + 2a− 1 + a(a+1)

x2 )


a = 1

H =

1
2(p2 + x2 + 3) 0

0 1
2(p2 + x2 + 1 + 2

x2 )


Здесь суперпотенциал f(x) ведет себя как ||Ψ−|| <∞, поэтому квадратично-

интегрируемой функцией состояния с нулевой энергией обладает только по-
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тенциал V2. Рассмотрим выражение:

1

2
(p2 + x2 + 1 +

2

x2
)Ψ− = 0

Перейдем в квантовую механику и найдем энергию основного состояния по-
тенциала V2:

1

2
(p2 + x2 +

2

x2
)Ψ− = −1

2
Ψ−

энергия основного состояния E0 = −1
2 . Пусть теперь a = −1

H =

1
2(p2 + x2 − 1 + 2

x2 ) 0

0 1
2(p2 + x2 − 3)


Случай 2):

1

2
(p2 + x2 − 3)Ψ− = 0

Переход в КМ:
1

2
(p2 + x2)Ψ− =

3

2
Ψ−

Итак, гамильтониан с потенциалом Калоджеро можно факторизовать
следующим образом:

b+
α =

1√
2

(
− d

dx
+ x+ αx−1

)
, b−α =

1√
2

(
d

dx
+ x+ αx−1

)
Гамильтониан имеет вид:

H = b+
α b
−
α +

1

2
− α =

1

2

(
− d2

dx2
+ x2 + 2x−2

)
Где α = −2; 1. Операторы не образуют алгебру Гейзенберга, как для

гармонического осциллятора. Однако [7], существуют операторы B+, B−,

B+ = b+
α b

+
−α =

1

2

(
d2

dx2
+ x2 − 2x−2 − 2x

d

dx
− 1

)

B− = b−α b
−
−α =

1

2

(
d2

dx2
+ x2 − 2x−2 + 2x

d

dx
+ 1

)
которые удовлетворяют соотношению [7]:

[B±, H] = ∓2B±
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То есть образуют алгберу, похожую на алгебру гармонического осцилля-
тора. С учетом

b−αψ0(x) = 0

собственная функция, отвечающая нулевому значению энергии равна:

ψ0(x) = x−αe−
x2

2

Тогда в соответсвии с ψn = (B+)nψ0 можно найти остальные собственные
функции и собственные значения энергии

ψ
(−2)
0 (x) = P2n+2(x)e−

x2

2 , En =
5

2
+ 2n

где полином P2n+2 содержит только чётные степени x.

ψ
(1)
0 (x) = (x−1 + P2n−1(x))e−

x2

2 , En = −1

2
+ 2n

где полином P2n−1(x) содержит только нечётные степени x.
С помощью опрераторов рождения и уничтожения были получены вол-

новые функции 1го и 2го возбужденных состояний и на основе их построены
двойственные потенциалы:

ψ0 f(x) = −ψ
′
0

ψ0
V2 V1

1
xe
−x2/2 1

x + x 1
2 ( 2
x2 + x2 + 1) 1

2 (x2 + 3)

(1− 2x2 − 1
x2 )e−

x2

2
2x4−x2+1
x(2x2+1) x2 + 2

x2 − 3 1
2 (x2 + 8

2x2+1 −
16

(2x2+1)2 − 1)

x2e−x
2/2 x− 2

x
1
2 (x2 + 2

x2 − 5) 1
2 (x2 + 6

x2 − 3)

2(x2 − 1)x2e−
x2

2 −x
6−10x4+17x2−2

x4−x2
1
2 [ (x

6−10x4+17x2−2)2
x4(x2−1)2 + 1

2 [ (x
6−10x4+17x2−2)2

x4(x2−1)2 −

+ 2x(x8−2x6−7x4+4x2−2)
x4(x2−1)2 ] − 2x(x8−2x6−7x4+4x2−2)

x4(x2−1)2 ]

(4x6 − 22x4 + 22x2)e−
x2

2
22x−8x3

2x4−11x2+11+ 1
2 (x2 + 2

x2 + 1
2 (x2 + 6

x2 +

+x− 2
x + 2(6x2−11

2x4−11x2+11) − 13) + 264x2

(2x4−11x2+11)2)2 +

+ 2(14x2+11)
2x4−11x2+11 − 11)

x−αe−x
2/2 x+ α

x
1
2 (x2 − 2α− α2

x2 ) (x+ α
x )2 + 1− α

x2

Таблица 6 - Двойственные потенциалы для волновых функций потенциала Калоджеро

Видно, что отталкиваясь от определенных волновых функций гармони-
ческого осциллятора или потенциала Калоджера, будут получаться пары
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двойственных потенциалов осциллятор-Калоджеро. У этих потенциалов бу-
дут совпадать спектры энергии, но волновые фукции будут разные. Кроме
того у одного из потенциалов всегда не будет нормированного состояния с
нулевой энергией.

3.4 Потенциал Морса

Рассмотрим задачу с потенциалом взаимодействия Морса. Найдем для
нее основной уровень энергии с помощью метода двойственных потенциалов.

V (x) = Ae−2αx +Be−αx

Будем функцию f(x) искать в виде f(x) = −ae−αx+bПриравняем потенциал
и выражение для потенциала, записанное в терминах функции f(x), из этого
соотношения найдем неизвестные константы α, β:

f 2 − f ′ = 2V (x) + c

a2e−2αx − 2abe−αx + b2 − aαe−αx = 2Ae−2αx + 2Be−αx + c

Следовательно:

a =
√

2A

b = − 1√
2

B√
A
− α

2

f(x) = −ae−αx + b

H =

H1

H2

 =


1
2
(p2 + a2e−2αx− 0

−(2ab− aα)e−αx + b2)

0 1
2
(p2 + a2e−2αx − (2ab+ aα)e−αx + b2)


, где b2 = 1

2
B2

A + α√
2
B√
A

+ α2

4 .
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Или для записи в виде f(x) = −
√

2Ae−αx − 1√
2
B√
A
− α

2 :

H =

H1

H2

 =



1
2
[p2 + 2Ae−2αx + (2B − 2α

√
2A)e−αx 0

+1
2
B2

A
+ α√

2
B√
A

+ α2

4
]

0 1
2
[p2 + 2Ae−2αx + 2Be−αx

+1
2
B2

A
+ α√

2
B√
A

+ α2

4
]


Из вида функции f(x) следует, что для данного потенциала имеет место
случай ||Ψ−|| <∞. Тогда можно записать:

H1Ψ− = 0 ∗Ψ−

1

2

(
p2 + 2Ae−2αx + 2Be−αx +

1

2

B2

A
+

α√
2

B√
A

+
α2

4

)
Ψ− = 0 ∗Ψ−

(
1

2
p2 + Ae−2αx +Be−αx

)
Ψ− = −

(
1

4

B2

A
+

α

2
√

2

B√
A

+
α2

8

)
Ψ−

E0 = −A
(

1

4

B2

A
+

α

2
√
A

B√
2

+
α2

8

)
Если взять B = −2A, то получим известный результат для точно реша-

емого частного случая потенциала Морса [8]:

E0 = −A
(

1− α√
2A

+
α2

8A

)
Получили два двойственных потенциала - оба потенциала Морса, отли-

чающиеся только на константу перед экспонентой. Причем модель с первым
потенциалом не имеет нормированного основного состояния. Построим те-
перь двойственные потенциалы на основе волновой функции ψ1 для точно
решаемого потенциала с параметрамиB = −2A. Известно [8], что для такого
потенциала волновые функции имеют вид:

ψn = e−
η
2ηsL2s

n (η)

η =

(
−2
√

2A

α
e−αx

)
, s =

√
−2E

α
, n =

√
2A

α
−
(
s+

1

2

)
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Тогда для α = 1, A = 1 двойственные потенциалы имеют вид:

V2(x) = s2 − 2
√

2se−x − 2se−x

2s− e−x + 1
+

2
√

2e−2x

2s− e−x + 1
− e−x

2s− e−x + 1
+

+2e−2x −
√

2e−x,

V1(x) = s2 − 2
√

2se−x − 2se−x

2s− e−x + 1
+

2
√

2e−2x

2s− e−x + 1
+

e−x

2s− e−x + 1
+

+
2e−2x

(2s− e−x + 1)2
+ 2e−2x +

√
2e−x.

Итак, в этом разделе были рассмотрены двойственные потенциалы, по-
строеные на волновых функциях гармонического осциллятора, потенциа-
ла Калоджеро и Морса. Было замечено, что при построении на определен-
ных волновых функциях гармонического осциллятора получаются два двой-
ственных потенциала, один из которых потенциал гармонического осцилля-
тора, а другой - потенциал Калоджеро. И наоборот, при выборе волновых
функций потенциала Калоджера как основных, один из двойственных по-
тенциалов имеет форму потенциала гармонического осциллятора.

Кроме того, при построении двойственных потенциалах на основе вол-
новых функций гармонического осциллятора (в том числе и функций, кото-
рые формально могут удовлетворять уравнению Шредингера, но не лежат
в гильбертовом пространстве и не квадратично-интегрируемы) один из двух
получившися потенциалов всегда имеет форму потенциала осциллятора со
смещенной энергией основного состояния.

Был подробно рассмотрен потенциал Морса для произвольных констант
A,B и найдено основное состояние такой модели. Примечательно, что двой-
ственный потенциал к потенциалу Морса тоже является потенциаломМорса,
но с другой константой перед членом e−αx. Построены двойственные потен-
циалы для Морса на волновой функции первого возбужденного состояния
ψ1.

Напомним, что только один из двух двойственных потенциалов имеет
квадратично-интегрируемую волновую функцию (для энергии равной ну-
лю), которую можно найти из условия f(x) = −ψ′0

ψ0
.
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4 Заключение

Отталкиваясь от возможности переписать линейное дифференциальное
уравнение Шредингера для волновой функции с нулевой энергией в ви-
де нелинейного дифференциального уравнения Риккати, которое связывает
волновую функцию с нулевой энергией и потенциал взаимодействия, была
исследована взаимосвязь некоторых одночастичных квантовомеханических
задач.

Были рассмотрены замены переменных в уравнении Риккати, которые
оставляют канонический вид уравнения, т.е. были найдены преобразования,
связывающие волновые функции с нулевой энергией для разных потенциа-
лов взаимодействия. В том числе, были предложены замены, позволяющие
связать задачи с потенциалами взаимодействия Кулона, Морса и Калодже-
ро.

Была подробно изучена возможность сведения уравнения Риккати, за-
писанного для потенциала Калоджеро, к уравнению, описывающему гармо-
нический осциллятор. Основная проблема в поиске таких преобразований
заключается в нелинейности уравнения Риккати.

Построены преобразования для некоторого класса задач с сингулярными
потенциалами взаимодействия, сводящие уравнение Риккати к уравнению
со степенными потенциалами. Для случая простых степенных потенциалов
существуют разработанные методы расчета физических величин. Представ-
ляет интерес исследовать как с помощью полученных преобразований эти
методы могут быть модифицированы для более сложных потенциалов.

Кроме того были построены пары двойственных потенциалов на основе
разных волновых функций, описывающих состояния потенциалов гармони-
ческого осциллятора, Калоджеро, Морса. Были рассмотрены сходства пар
двойственных потенциалов для некоторых волновых функций потенциалов
Калоджеро и гармонического осциллятора. Рассмотрено построение двой-
ственных потенциалов для волновых функций гармонического осциллятора,
нележащих в гильбертовом пространстве. С помощью теории двойственных
потенциалов найдена энергия основного состояния для обобщенного потен-
циала Морса.

Представляет интерес изучить, как замены переменных, сохраняющие
вид уравнения Риккати, связаны с преобразованием функциональных инте-
гралов.
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