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ВВЕДЕНИЕ

На сегодняшний день инфляция является основным кандидатом на описа-

ние эволюции ранней Вселенной. Теория инфляции последовательно объясня-

ет текущие космологические наблюдения. Тем не менее, альтернативные ранние

эпохи жизни Вселенной также заслуживают рассмотрения. Изучение одного из

таких альтернативных сценариев и является целью данной диссертации.

Во-первых, чтобы убедиться, что инфляция действительно имела место в

далёком прошлом, все другие вероятные сценарии должны быть исключены. Во-

вторых, даже инфляция не может решить проблему начальной сингулярности [1].

Таким образом, поиск альтернатив инфляционной модели является весьма моти-

вированной задачей.

Такие альтернативные теории ранней Вселенной как отскок [2–5] или гене-

зис [6–12] не обязательно должны полностью исключить инфляционную эпоху,

но могут быть и дополнением к ней, чтобы избавить модель ранней Вселенной

от начальной сингулярности. Эпоха генезиса в данной работе изучается в рамках

теорииХорндески. ТеорияХорндески или теория обобщенного галилеона [13–23]

- это общее скалярно-тензорное обобщение теории гравитации. Такие теории име-

ют замечательное свойство: их лагранжианы содержат производные второго по-

рядка, однако при этом уравнения движения не содержат производные выше вто-

рого порядка. Они позволяют нарушать изотропное условие энергодоминантно-

сти (см., например, обзор [24]):

Tµνη
µην > 0,

в рассматриваемой теории, оставляя при этом все решения стабильными. В фор-

муле выше Tµν - это тензор энергии-импульса, ηµ - любой изотропный вектор.

Нарушение данного условия энергодоминантности позволяет построить несингу-
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лярную космологию (конкретно в данной работе генезис), что и является нашей

целью.

В модели генезиса эволюция Вселенной стартует с бесконечного отрица-

тельного времени и плоского пространства Минковского, далее постепенно плот-

ность энергии поля галилеона начинает расти и при приближении к t = 0 про-

исходит переход к инфляционной стадии или же разогрев и переход на горячую

стадию.

Однако, на этом история не заканчивается. В работе [25] было отмечено,

что одним из возможных сценариев генезиса, свободным от неустойчивостей во

все космологические эпохи1, является тот, в котором, на первый взгляд, возникает

режим сильной связи на очень ранних временах.

Это можно увидеть из анализа теории на устойчивость. В данной диссерта-

ции изучается подкласс теории Хорндески вида:

LH = G2(ϕ,X)−G3(ϕ,X)□ϕ+G4(ϕ)R, (1)

гдеG2,G3 иG4 функции переменной поля галилеона и переменной вида кинети-

ческого слагаемого:

X = −1

2
gµν∂µϕ∂νϕ.

Рассмотрим такую теорию в возмущенной метрике вида:

ds2 = −N 2dt2 + γij
(
dxi +N idt

) (
dxj +N jdt

)
, (2)

где

γij = a2e2ζehij , (3)

а ζ и hij - скалярное и тензорное возмущения (хотя следует сказать, что в данную

метрику входят и другие скалярные возмущения - об этом и о метрике такого вида
1В [25] показана возможность обхода так называемой запрещающей теоремы.

4



в целом будет подробно изложено в главе 3 и в разделах 3.1 и 3.2). Подставляя дан-

ную метрику в действие с выбранным лагранжианом Хорндески и раскладывая

его до второго порядка по возмущениям ζ и hij , получим квадратичное действие

для этих возмущений вида:

S
(2)
ζ =

∫
Ndtd3x a3

[
AS

ζ̇2

N 2
− BS

a2
(∂ζ)2

]
, (4)

S
(2)
h =

1

8

∫
Ndtd3x a3

[
AT

ḣ2ij
N 2

− BT

a2
(∂hij)

2

]
, (5)

где коэффициенты AS, BS, AT , BT есть комбинации функций начального невоз-

мущенного лагранжиана:

AT = 2G4, (6)

BT = 2G4, (7)

а коэффцициенты для действия скалярных возмущений имеют более сложный вид

(см. раздел 3.1). Известно, что теория будет свободна от градиентных и духовых

неустойчивостей, если

AS, BS, AT , BT > 0, (8)

причем здесь важна гладкость этих функций по времени (эти коэффициенты дей-

ствительно являются функциями времени, так как зависят изначально от поля га-

лилеона ϕ, а оно в свою очередь зависит от времени t). Благодаря тому, что коэф-

фициент BS в данной теории можно записать как:

BS =
1

a

dξ

dt
−BT , (9)

то одно из условий стабильности BS > 0:

1

a

dξ

dt
−BT > 0 при −∞ < t <∞, (10)
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и здесь ξ = aA2
T/W , гдеW - очередная громоздкая комбинация функций невоз-

мущенного лагранжиана, a = a(t) есть масштабный фактор. Важно теперь отме-

тить, что для любого момента времени |W | < ∞, A2
T > 0, а масштабный фактор

a ≥ const и растет со временем (это общие требования для построения несин-

гулярной и устойчивой космологической модели). Это означает, что введенная ξ

является монотонно растущей функцией времени, которая никогда не пересекает

ноль. Интегрируя (10) от −∞ до некоторого момента t и от него же до∞, получа-

ем:

ξ(t)− ξ(−∞) >

∫ t

−∞
a(t)BTdt, (11)

и

ξ(∞)− ξ(t) >

∫ ∞

t
a(t)BTdt. (12)

Очевидно, для стабильности требуем, чтобы интегралы сходились. Несходимость

интегралов будет означать, что в какой-то момент эволюции Вселенной условия

устойчивости нарушены. Это возможно сделать подбором правильных асимпто-

тик коэффициента BT , конкретно здесь он должен быстро идти к нулю, чтобы

подавить рост масштабного фактора на бесконечностях. Таковы общие сообра-

жения так называемых запрещающих теорем.

В данном случае опасность запрещающей теоремы кроется в следующем.

Если рассмотреть теорию, в которой поле галилеона взаимодействует с гравита-

цией минимально, то есть в лагранжиане Хорндески положить G4 = M 2
Pl/2 =

const, то запрещающая теорема мгновенно говорит нам о том, что один из ин-

тегралов выше расходится и в какой-то момент эволюции условия устойчивости

будут нарушены (ведь BT = 2G4).

Для обхода запрещающей теоремы, то есть построения устойчивой космо-

логии (для нас это будет генезис, очень ранние времена) требуются стремление

функции G4 к нулю при t→ −∞.
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Таким образом обойти запрещающую теорему можно, но возникает новая

проблема. Стремление к нулю коэффициента в слагаемом типа

LH ∋ G4R,

сигнализирует нам о том, что в теории есть потенциальная возможность сильной

связи на ранних временах. В силу этого отпадает возможность описывать систе-

му доступными классическими методами. В данной работе детально рассматри-

вается именно этот вопрос, и в результате показано, что классическое полевое

описание эволюции Вселенной в ранние времена всё же возможно в рамках рас-

сматриваемой модели. Следует убедиться в том, что даже при эффективной массе

Планка, стремящейся к нулю в далеком прошлом (что и является наивным сиг-

налом о возникновении сильной связи в теории), классический анализ является

законным в определённом диапазоне параметров выбранного нами лагранжиана

Хорндески.

Анализ режима сильной связи или, иными словами, возможность приме-

нения классического полевого описания эволюции Вселенной на ранних стади-

ях производится следующим образом: необходимо определить и сравнить харак-

терные масштабы энергии. С одной стороны это масштаб сильной связи, кото-

рый связан с взаимодействиями возмущений метрики – в нашей модели мы рас-

смотрели скалярные и тензорные возмущения метрики, а так же предстоит изу-

чить смешанный сектор (взаимодействия типа ”тензор-скаляр-скаляр”и ”тензор-

тензор-скаляр”). С другой стороны - обратное характерное время эволюции кос-

мологических решений (т.н. решений бэкграунда или фоновых решений).

В главе 1 обсуждается возможность построения несингулярных космологи-

ческих сценариев в рамках теории Хорндески. В главе 2 приведена модель гене-

зиса, которая полностью свободна от неустойчивостей, но которая потенциально

находится в режиме сильной связи. Поэтому в главе 3 производится детальный

анализ действия второго и третьего порядков по скалярным (раздел 3.1) и тен-
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зорным возмущениям (раздел 3.2), определяются характерные классический мас-

штаб энергий и масштаб энергий сильной связи. Из их сравнения были найдены

условия отсутствия в модели генезиса режима сильной связи. Это, однако, налага-

ет на параметры теории сильные ограничения. Выводы и заключение приведены

в главе 4.
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1. ПРОБЛЕМА НАЧАЛЬНОЙ КОСМОЛОГИЧЕСКОЙ

СИНГУЛЯРНОСТИ И НАРУШЕНИЕ ИЗОТРОПНОГО УСЛОВИЯ

ЭНЕРГОДОМИНАНТНОСТИ В ТЕОРИИ ХОРНДЕСКИ КАК ЕЕ РЕШЕНИЕ

Среди множества условий энергодоминантности в теориях гравитации осо-

бое место занимает изотропное условие (Null Energy Condition, всюду далее NEC)

для тензора энергии-импульса вещества Tµν , которое имеет вид

Tµνη
µην ≥ 0 (13)

для любого изотропного вектора ηµ. В космологическом контексте NEC имеет

интересное следствие. А именно, в рамках общей теории относительности, для

пространственно-плоскойметрикиФридмана-Леметра-Робертсона-Уокера для рас-

ширяющейсяВселенной, которая заполнена изотропными однородным веществом,

из уравений Эйнштейна следует, что параметр Хаббла H со временем не возрас-

тает, то есть dH/dt ≤ 0. Это означает, что в далеком прошлом параметр Хаб-

бла был бесконечно велик. Из закона ковариантного закона сохранения энергии

∇µT
µν = 0 следует так же, что dρ

dt = −3H(ρ + p) ≤ 0, то есть в расширяю-

щейся Вселенной плотность энергии уменьшается со временем. Таким образом,

для приведенной выше модели расширение Вселенной началось с сингулярности,

которая характеризуется бесконечными плотностью энергии ρ и темпом расши-

ренияH .

Таким образом, возникает идея нарушать NEC для построения несингуляр-

ной космологии. Однако, при нарушении NEC появляются следущие трудности.

Так, для модели одного скалярного поля возникают нейстойчивые возмущения

над фоновым полем.

В данной работе для нарушения NEC используется весьма нетривиальная

теория Хорндески или теория обобщенного галилеона [6–12], в рамках которой
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можно нарушать NEC без возникновения неустойчивостей. Ее наиболее приме-

чательным свойством является тот факт, что несмотря на наличие вторых про-

изводных по времени и пространственным координатам в лагранжиане, уравне-

ния движения остаются второго порядка по производным. Наиболее общий вид

лагранжиана, приводящий к полевым уравнениям второго порядка, был получен

Г. Хорндески в [13]. Лагранжиан данной теории имеет вид

SH =

∫
d4x

√
−gLH, (14)

LH = G2(ϕ,X)−G3(ϕ,X)□ϕ+

G4(ϕ,X)R +G4,X

[
(□ϕ)2 − (∇µ∇νϕ)

2
]

+G5(ϕ,X)Gµν∇µ∇νϕ

− 1

6
G5,X

[
(□ϕ)3 − 3□ϕ(∇µ∇νϕ)

2 + 2(∇µ∇νϕ)
3
]
, (15)

где ϕ - скалярное поле галилеона,X - переменная вида кинетического слагаемого:

X = −1

2
gµν∂µϕ∂νϕ,

а оператор Д’Аламбера имеет вид:

□ϕ = gµν∇µ∇νϕ.

Функции G2, G3, G4, G5 в лагранжиане (15) - произвольные функции поля ϕ и

переменной X , R - скаляр Риччи, а Gµν = Rµν − 1
2gµνR - тензор Эйнштейна,

сигнатура метрики выбрана положительно определенной, (−,+,+,+).

Рассмотрим частный случай лагранжиана (15) вида:

LH = G2(ϕ,X)−G3(ϕ,X)□ϕ+G4(ϕ)R, . (16)

Подчеркнем, что функцияG4 в данной модели зависит только от поля ϕ. В рамках

такой теории при подборе соответствующих функций лагранжиана возможно по-

строить несингулярные космологические сценарии. Перейдем непосредственно

к построению модели генезиса в теории Хорндески.
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2. МОДЕЛЬ ГЕНЕЗИСА

Для получения решения типа генезиса в теории Хорндески удобнее перей-

ти из ковариантного формализма (15) в формализм Арновитта - Дезера - Мизнера

(везде далее - АДМ), как это было сделано в работе [25]. Формализм предполага-

ет, что пространство-время можно расслоить на совокупность пространственно-

подобных 3-мерных гиперповерхностей, которые параметризуеются временной

координатой, а на каждой гиперповерхности вводятся пространственные коор-

динаты. Уравнения движения в общей теории относительности в рамках данно-

го формализма оказываются записанными в гамильтоновой форме. Лагранжиан

Хорндески (15) в формализме АДМ имеет вид:

LH = A2(t, N) + A3(t, N)K + A4(K
2 −K2

ij) +B4(t, N)R(3), (17)

где мы используем унитарную калибровку ϕ = ϕ(t), а такжеKij внешняя кривиз-

на, K = gijKij и R
(3)
ij трехмерный (пространственный) тензор Риччи. Функции

A2, A3, A4, B4 снова произвольные функции, но теперь новых переменных АДМ

- времени t и т.н. функции хода N .

Функции лагранжианов записанные в двух различных формализмах (15) и

(17) связаны следующими соотношениями:

G2 =A2 − 2XFϕ, (18)

G3 =− 2XFX − F , (19)

G4 =B4,. (20)

Здесь F (ϕ,X) - некая вспомогательная функция, для которой выполняется соот-

ношение:

FX = − A3

(2X)
3
2

− B4ϕ

X
. (21)

Так же была выбрана следующая калибровка:

e−ϕ = −
√
2Y0t,
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и

eϕ
√
Y0
X

= N. (22)

При построении модели генезиса возникает следующая проблема. В большинстве

случаев такие решения обладают градиентной неустойчивостойчивостью, кото-

рая может возникнуть в то или иное время в дальнейшей космологической эволю-

ции Вселенной [25–28]. Для доказательства существования таких неустойчиво-

стей в разных теориях формулируются так называемые ”запрещающие теоремы”

или ”No-Go теоремы”. Для выбранного нами лагранжиана Хорндески (17) была

доказана соответствующая No-Go теорема [25], но в то же время был указан и

путь ее обхода. Для этого функции лагранжиана (17) нужно взять в виде:

A2 =M 4
Plf

−2(α+1)−δa2(N), (23)

A3 =M 3
PLf

−2α−1−δa3(N), (24)

A4 = −B4 = −MPlf
−2α, (25)

где α, δ - единственные параметры лагранжиана и теории в целом, причем 2α >

1 + δ > 0 (первая часть неравенства требуется для обхода No-Go теоремы [25],

а вторая - для построения генезиса),MPl - масса Планка, а f(t) - некая функция,

имеющая при t→ −∞ асимптотику:

f ≈ −ct, c = const > 0. (26)

В [25] был выбран конкретный вид функций a2(N), a3(N):

a2(N) = − 1

N 2
+

1

3N 4
, (27)

a3(N) =
1

4N 3
. (28)

Невозмущенная метрика в нашей задаче имеет вид:

ds2 = −N(t)2dt2 + a(t)2dxidx
i, (29)
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где a(t) - масштабный фактор. Уравнения движения получаются вариацией невоз-

мущенной части лагранжиана по N и a [29]:

L(0) = Na3(A2 + 2A3H + 6A4H
2). (30)

В итоге получаем:

(NA2)N + 3NA3NH + 6N 2(N−1A4)NH
2 = 0, (31)

A2 − 6A4H
2 − 1

N

d

dt
(A3 + 4A4H) = 0, (32)

гдеH = ȧ/(Na) - параметр Хаббла. При t→ −∞ решение этих уравнений имеет

вид:

H ≈ χ

(−t)1+δ
, (33)

a ≈ 1 +
χ

δ(−t)δ
, N ≈ 1 , (34)

что и являет собой стадию генезиса: масштабный фактор и функция хода при t→

−∞ стремятся к постоянному значению. Это и означает, что эволюция Вселенной

в далеком прошлом стартовала с плоского пространства Минковского. Константа

χ имеет вид:

χ =
2
3M

2
Pl +

c
4 (2α + 1 + δ)MPl

4(2α + 1 + δ)c2+δ
. (35)

Чтобы данная модель была устойчива в последующие времена, требуется нало-

жить следующее условие на функции лагранжиана:

B4(t, N), A4(t, N) → 0 при t→ −∞, (36)

или для ковариантного формализма:

G4(ϕ,X) → 0 при t→ −∞ . (37)

С одной стороны, такие условия необходимо соблюсти, чтобы избежать градиент-

ных и духовых неустойчивостей [25], но с другой стороны условие (37) сигнали-

зирует нам о возможном наличии в теории сильной связи на временах t → −∞.
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Этот вопрос детально изучен далее, рассмотрены второй и третий порядки дей-

ствия по возмущениям и показано, что классическое описание эволюции Вселен-

ной на столь ранних временах возможно при определенных значениях параметров

α, δ.
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3. ИССЛЕДОВАНИЕ РЕЖИМА СИЛЬНОЙ СВЯЗИ

3.1 Скалярный сектор

Рассмотрим скалярные возмущения метрики. Возмущенная метрика имеет

вид:

ds2 = −N 2dt2 + γij
(
dxi +N idt

) (
dxj +N jdt

)
, (38)

где

N = eα , Ni = ∂iβ , γij = a2e2ζehij , (39)

α, β, ζ - скалярные возмущения, а hij - тензорное. Для рассмотрения скалярного

сектора полагаем ehij = δij . Раскадывая действие (14) до второго порядка по ска-

лярным возмущениям, получаем квадратичное действие в унитарной калибровке:

S
(2)
α,β,ζ =

∫
Ndt ad3x[−3gζ

( a
N
ζ̇
)2

+ cζ (∂ζ)
2 − 3a2H2mαα

2+

2gζ∂α∂ζ + 6
a2

N
Hfααζ̇ + 2

a

N
gζζ∂

2β − 2aHfαα∂
2β],

(40)

где ∂ обозначает производную по пространственным координатам, а также вве-

дены обозначения:

gζ = 2(B4 +NB4N),

cζ = 2B4,

fα = 2

(
NA3N

4H
+B4 −NB4N −N 2B4NN

)
,

mα = B4 −NB4N + 2N 2B4NN +N 3B4NNN

− 1

6H2

(
A2 + 3NA2N +N 2A2NN

)
− 1

2H

(
NA3N +N 2A3NN

)
. (41)
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Асимптотики этих функций на t → −∞ при полученных ранее фоновых реше-

ниях (33) и (34):

gζ ∼ cζ ∼ (−t)−2α , (42a)

fα ∼ (−t)−2α , (42b)

mα ∼ −(−t)−2α+δ . (42c)

Возмущенияα и β возможно исключить из квадратичного действия. Соответству-

ющие уравнения связи имеют вид:

α =
gζ
Hfα

1

N
ζ̇, (43)

∂2β =
gζ

aHfα
∂2ζ − 3

(
gζmα

f 2α
− 1

)
a

N
ζ̇, (44)

где мы для удобства записи введем ω = gζ/aHfα и σ = 3(gζmα/f
2
α − 1). Соот-

ветственно, асимптотики этих новых функций при t→ −∞:

ω ∼ (−t)1+δ, σ ∼ (−t)δ. (45)

Подставляя уравнения связи (44) в действие (40), получаем квадратичное дей-

ствие для возмущения ζ:

S
(2)
ζ =

∫
Ndt ad3x

(
ϵs
c2s

a2

N 2
ζ̇2 − ϵs(∂ζ)

2

)
, (46)

где

ϵs =
1

aN

d

dt

(
ag2ζ
Hfα

)
− cζ , c2s =

ϵs
3gζ

(
1− gζmα

f 2α

)−1

. (47)

Асимптотики для ϵs и cs находим, используя (42):

ϵs ∼ (−t)−2α+δ, c2s ∼ (−t)0 . (48)

Заметим, что благодаря тому, что на параметры α и δ изначально наложено усло-

вие 2α− δ > 1, коэффициент ϵs стремится к нулю при t→ −∞, что говорит нам

о наличии сильной связи на рассматриваемых временах.
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Чтобы наверняка убедиться в том, что сильная связь имеет место в нашей

теории, рассмотрим последующий порядок действия по возмущениям. Здесь мы

воспользовались результатом работы [30] для кубического действия в скалярном

секторе. Для всех скалярных возмущений α, β и ζ имеем:

S
(3)
ζ,α,β =

∫
Ndt ad3x

{
gζ
[
− 9

a2

N 2
ζζ̇2 + 2

a

N
ζ̇
(
ζ∂2β + ∂iζ∂

iβ
)
− α(∂iζ)

2

+(∂iβ)
2∂2ζ − 1

2
ζ
(
4α∂2ζ − (∂2β)2 + (∂i∂jβ)

2
)]

+

+cζζ(∂iζ)
2 − 9(aH)2mαα

2ζ + 2aHfαα
(
9
a

N
ζζ̇ − ζ∂2β − ∂iζ∂

iβ
)

+
λ1
aH

[ a3
N 3

ζ̇3 − a2

N 2
ζ̇2∂2β +

1

2

a

N
ζ̇
(
4α∂2ζ + (∂2β)2 − (∂i∂jβ)

2
)
− α

(
∂2ζ∂2β

−∂i∂jζ∂i∂jβ
)]

+ λ2α
[
3
a2

N 2
ζ̇2 − 2

a

N
ζ̇∂2β +

1

2

(
(∂2β)2 − (∂i∂jβ)

2
)]

−

−λ3aHα2
(
3
a

N
ζ̇ − ∂2β

)
− λ4α

2∂2ζ +
λ5
2
(aH)2α3

}
, (49)

где λ1, λ2, λ3, λ4, λ5 снова представляют из себя комбинации начальных функций

A2, A3, A4 лагранжиана (17), а так же коэффициентов из квадратичного лагран-

жиана (4) gζ , cζfα,mα, в них входит и параметр Хаблла H . Асимптотическое по-

ведение для коэффициентов из кубического действия имеет вид на t→ ∞:

λ1 = 0,

λ2 ∼ (−t)−2α,

λ3 ∼ (−t)−2α,

λ4 ∼ (−t)−2α,

λ5 ∼ (−t)−2α+δ. (50)

Вновь избавлясь от α и β с помощью (44) (доказательство того факта, что урав-

нения связи, полученные из действия второго порядка по возмущениям можно

использовать и в действии третьего порядка приведено в Приложении Б) получа-
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ем кубическое действие в терминах ζ:

S
(3)
ζ =

∫
Ndt ad3x

{
Λ1

( a
N
ζ̇
)3

+ Λ2

( a
N
ζ̇
)2
ζ + Λ3

( a
N
ζ̇
)2
∂2ζ + Λ4

( a
N
ζ̇
)
ζ∂2ζ

+ Λ5

( a
N
ζ̇
)
(∂iζ)

2 ++Λ6ζ (∂iζ)
2 + Λ7

( a
N
ζ̇
) (
∂2ζ
)2

+ Λ8ζ
(
∂2ζ
)2

+ Λ9∂
2ζ (∂iζ)

2 + Λ10

( a
N
ζ̇
)
(∂i∂jζ)

2 + Λ11ζ (∂i∂jζ)
2 + Λ12

( a
N
ζ̇
)
∂iζ∂

iψ

+ Λ13∂
2ζ∂iζ∂

iψ + Λ14∂
2ζ (∂iψ)

2 + Λ15

( a
N
ζ̇
)
(∂i∂jψ)

2 + Λ16ζ (∂i∂jψ)
2+

+ Λ17

( a
N
ζ̇
)
∂i∂jζ∂

i∂jψ + Λ18ζ∂i∂jζ∂
i∂jψ

}
, (51)

где ψ = ∂−2(aζ̇/N); Λ1...Λ18 - комбинации коэффициентов и функций лагран-

жианов (17) и (40), (4), то есть gζ , cζfα,mα, A2, A3, A4, H , а потому просто явля-

ются функциями времени t (благодаря тому, что все асимптотики выбраны как

степенные функции, см. (23)-(25)). Поэтому далее для Λ1...Λ18 можно записать

асимптотики на t→ −∞ в виде:

Λi ∼ (−t)xi, i = 1, 18, (52)

здесь xi есть комбинации из параметров α и δ.

Для оценки масштаба сильной связи прибегнем к размерному анализу. Наш

кубический лагранжиан для этого можно схематически написать в виде:

Li = Λi · ζ3 · (∂t)ai · (∂)bi , (53)

где ai и bi являют собой количество производных по времени и по координатам,

соответственно.

В нашем анализе мы используем канонически нормированное поле π вме-

сто ζ . Так как a(t), N(t) и c2s(t) стремятся к постоянному значению на t → −∞,

канонически нормированная переменная имеет вид:

π →
√

2ϵs
c2s
ζ ∝ |t|−α+δ/2ζ . (54)
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Итак, в терминах канонически нормированного поля π мы можем переписать (53)

как:

Li = Λ̃i · π3 · (∂t)ai · (∂)bi (55)

где

Λ̃i = Λiϵ
−3/2
s = Λi|t|−

3
2 (δ−2α) ∼ |t|xi− 3

2 (δ−2α) . (56)

Далее, из размерного анализа (размерностьΛi есть [Λi] = 4−ai−bi, а для [ϵs] = 2)

мы получаем, что характерный энергетический масштаб сильной связи, связан-

ный с конкретным слагаемым канонизированного лагранжиана Li есть:

E
(i)
strong ∼ Λ̃

− 1
ai+bi−1

i ∼ |t|−
xi+3α−3δ/2

ai+bi−1 . (57)

Единственным размерным параметром в нашей задаче, который характеризует

классическую эволюцию Вселенной является параметр Хаббла, а связанный с

ним масштаб энергий (сравнение с которым дает наиболее сильное условие от-

сутствия сильной связи):

Eclass ∼
Ḣ

H
∼ |t|−1 . (58)

Чтобы говорить о применимости классического описания эволюции Вселенной

на столь ранних временах, мы потребуем чтобы все классические масштабы были

много меньше характерного масштаба сильной связи, то есть

Eclass ≪ E
(i)
strong, (59)

для всех i. Из этих соображениймы наконец получаем наиболее общее выражение

для условия отсутствия сильной связи в нашей модели, которое и накладывает

определенные ограничения на параметры задачи α и δ:

xi + 3α− 3

2
δ < ai + bi − 1 , i = 1, 18 . (60)

Видно, что наиболее сильные условия будут возникать из слагаемых с наимень-

шим значением ai + bi − xi. Были найдены асимптотики всех коэффициентов из
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действия третьего порядка (то есть значения всех xi, см. (52)), и получено, что

наиболее сильное условие получается, например, для слагаемого с i = 1, так что:

Λ1 ∼ (−t)1−2α+3δ , a1 = 3 , b1 = 0 , a1 + b1 − x1 = 2 + 2α− 3δ, (61)

(список асимптотик и соответствующих условий отсутствия сильной связи пред-

ставлены в таблице (3.1)). Таким образом, из анализа скалярного сектора, мы по-

лучаем необходимые условия (ограничения на параметры лагранжиана) для того,

чтобы построить несингулярный, стабильный на всех временах генезис без силь-

ной связи:

0 < δ <
1

4
, 2− 3δ > 2α > 1 + δ. (62)
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Слагаемое
[
Li

]
x a b Условие

Λ1

(
ζ̇
)3 −2 1− 2α + 3δ 3 0 2α + 3δ < 2

Λ2

(
ζ̇
)2
ζ −1 −2α + 2δ 2 0 2α + δ < 2

Λ3

(
ζ̇
)2
∂2ζ −3 2− 2α + 3δ 2 2 2α + 3δ < 2

Λ4ζ̇ζ∂
2ζ −2 1− 2α + 2δ 1 2 2α + δ < 2

Λ5ζ̇
(
∂iζ
)2 −2 1− 2α + δ 1 2 2α− δ < 2

Λ6ζ
(
∂iζ
)2 −1 −2α 0 2 2α− 3δ < 2

Λ7ζ̇
(
∂2ζ
)2 −4 3− 2α + δ 1 4 2α− δ < 2

Λ8ζ
(
∂2ζ
)2 −3 2− 2α + δ 0 4 2α− δ < 2

Λ9∂
2ζ
(
∂iζ
)2 −3 2− 2α + δ 0 4 2α− δ < 2

Λ10ζ̇
(
∂i∂jζ

)2 −4 3− 2α + δ 1 4 2α− δ < 2

Λ11ζ
(
∂i∂jζ

)2 −3 2− 2α + δ 0 4 2α− δ < 2

Λ12ζ̇∂iζ∂
iψ −1 −2α + δ 2 0 2α− δ < 2

Λ13∂
2ζ∂iζ∂

iψ −2 1− 2α + 2δ 1 2 2α + δ < 2

Λ14∂
2ζ
(
∂iψ
)2 −1 −2α + 2δ 2 0 2α + δ < 2

Λ15∂
2ζ̇
(
∂i∂jψ

)2 −2 1− 2α + 3δ 3 0 2α + 3δ < 2

Λ16∂
2ζ
(
∂i∂jψ

)2 −1 −2α + 2δ 2 0 2α + δ < 2

Λ17ζ̇∂i∂jζ∂
i∂jψ −3 1− 2α + 3δ 2 2 2α + 3δ < 4

Λ18ζ∂i∂jζ∂
i∂jψ −2 1− 2α + 2δ 1 2 2α + δ < 2

Таблица 3.1 – Анализ сильной связи в скалярном секторе. Приведены соответ-

ствующие слагаемые разложенного до третьего порядка действия, размерность

каждого слагаемого, степень асимптотического стремления на ранних временах

x, количество производных по времени a и координатам b для каждого слагаемо-

го, и, наконец, условия отсутствия сильной связи.
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3.2 Тензорный сектор

Совершенно аналогично изучается и тензорный сектор. Вметрике (38) остав-

ляем теперь только тензорные возмущения [31]

g00 = −1, g0i = 0, gij = a2(t)(eh)ij, (63)

где (
eh
)
ij
= δij + hij +

1

2
hikhkj +

1

6
hikhklhlj + · · · , (64)

подставляем такую метрику в исходный лагранжиан и раскладываем его до вто-

рого и третьего порядков.

Действие второго порядка в тензорном секторе имеет вид:

S
(2)
h =

∫
Ndtd3x

a

8

(
ϵT
c2T

a2

N 2

(
ḣij
)2

− ϵT (∂khij)
2

)
, (65)

где

ϵT = cζ , c2T =
cζ
gζ
. (66)

а также

ϵT ∼ (−t)−2α, c2T ∼ (−t)0. (67)

при t→ −∞. Выпишем новую каноническую переменную:

qij →
√

ϵT
4c2T

hij ∝ |t|−αhij . (68)

Действие третьего порядка имеет вид [31]:

S
(3)
h =

∫
Ndtd3x a3

[
Xϕ̇G5X

12N 4
ḣijḣjkḣki

+
FT

4a2

(
hikhjl −

1

2
hijhkl

)
∂k∂lhij

]
, (69)

где

FT = 2
[
G4 −X

(
ϕ̈G5X +G5ϕ

)]
. (70)
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В случае рассматриваего нами неполного лагранжиана Хорндески (16), кубиче-

ское действие в тензорном секторе упрощается, так как мы полагаемG4 = G4(ϕ)

и G5 = 0.

Переходя к нашему размерному анализу, вновь напишем схематичный вид

лагранжиана третьего порядка по тензорным возмущениям:

L(3)
T = ΛT · h3ij · (∂t)aT · (∂)bT , (71)

где ΛT ∼ G4 = B4 ∼ (−t)−2α и в канонических переменных:

L(3)
T = Λ̃T · q3ij · (∂t)aT · (∂)bT , (72)

а также

Λ̃T = ΛT ϵ
−3/2
T = ΛT |t|−

3
2 (−2α) ∼ |t|−2α− 3

2 (−2α) ∼ |t|α . (73)

Итого, характерный масштаб сильной связи в тензорном секторе имеет вид:

E
(T )
strong ∼ Λ̃

− 1
aT+bT−1

T ∼ |t|−
α

aT+bT−1 . (74)

Из действия (69) подсчитываем количество всех производных. Видно, что имеем

только bT = 2 производных по пространственным координатам, aT = 0 - количе-

ство производных по времени. Энергетический масштаб классической эволюции

берется вновь как:

Eclass ∼
Ḣ

H
∼ |t|−1 , (75)

тоже самое - и с условием отсутствия сильной связи:

Eclass ≪ E
(T )
strong, (76)

Собирая все вместе, готовы написать итоговый ответ для тензорного сектора:

α < 1. (77)

Условие получилось более слабое, чем от скалярного сектора. Результаты

от обоих секторов наглядно представлены на Рис.(1).
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Отметим интересное свойство касательно условий отсутствия сильной свя-

зи. Оказывается, что если над метрикой произвести конформные преобразования,

то есть совершить переход из одной теории в другую (принято в таком случае

говорить о смене системы (от англ. frame)), то условия будут инвариантны отно-

сительно такого перехода. Более подробно об этом написано в Приложении А.
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Рисунок 1 – Область допусимых значений α и δ, полученная из анализа скалярно-

го и тензорного секторов. Для построения генезиса, который свободен от началь-

ной сингулярности, стабилен и лишен сильной связи, необходимо выбрать пара-

метры лагранжиана из области пересечения всех трех областей (область, ограни-

ченная черным треугольником).
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4. ВЫВОДЫ И ЗАКЛЮЧЕНИЕ

В данной диссертации был рассмотрен генезис как альтернатива или завер-

шение инфляционного сценария. Построение таких конфигураций гипотетически

возможно только в теориях, нарушающих изотропное условие энергодоминант-

ности. Это условие довольно сложно нарушить так, чтобы в получившейся теории

не возникало ни духовых, ни градиентных неустойчивостей. В случае скалярного

поля с лагранжианом, содержащим только первые производные поля по време-

ни и пространственным координатам, было показано, что нарушение NEC неиз-

бежно влечёт за собой появление таких неустойчивостей. Этот факт способствует

развитию интереса к теориям, содержащим вторые производные поля в лагран-

жиане, но лишённым третьих производных в уравнениях движения, поскольку

в таких теориях возможно построение стабильных конфигураций, нарушающих

NEC. Теория Хорндески - самая общая теория, удовлетворяющая такому свой-

ству: уравнения движения остаются второго порядка, несмотря на вторые произ-

водные в лагранжиане.

Генезис в данной работе как раз и был построен в рамках теорииХорндески.

В этой космологической модели пустая (единственная существующая форма ма-

терии - поле галилеона) Вселенная стартует с бесконечного отрицательного вре-

мени и плоского пространства Минковского, постепенно плотность энергии поля

галилеона начинает расти и при приближении к некоторому выбранному момен-

ту времени генерируется переход на последующую стадию (инфляция или сразу

разогрев). На данный момент стадия генезиса в научной литературе изучена до-

статочно подробно. Во множестве работах освещались такие вопросы и направ-

ления, связанные с генезисом как сверхсветовые скорости распространения воз-

мущений галилеонного поля при добалении во Вселенную известной материи,

описание генезиса с помощью конформной теории поля, построение генезиса в
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наиболее общей модели Хорндески, изучение первичного разогрева Вселенной

сразу после генезиса и возможного спектра возмущений, построение запрещаю-

щих теорем, следствием которых является невозможность построить стабильный

на всех временах генезис, описание первичных космологических возмущений для

случаев закрытой и открытой Вселенных в рамках теории Хорндески.

Предметом изучения данной работы являлся еще один интересный аспект

модели генезиса. Как было показано в работе [25], построить устойчивый гене-

зис в рамках теории Хорндески можно, однако, на первый взгляд в такой модели

появляется сильная связь.

Наш анализ режима сильной связи или, иными словами, возможность при-

менения классического полевого описания эволюции Вселенной на ранних ста-

диях базируется на сравнении характерных масштабов энергии: чтобы выяснить,

является ли классический подход законным на рассматриваемых ранних време-

нах, нужно оценить масштаб сильной связи и сравнить его с обратным харак-

терным временем эволюции космологических решений (т.н. решений бэкграунда

или фоновых решений). Масштаб сильной связи определяется взаимодействиями

возмущений метрики – в нашей модели мы рассматривали скалярные и тензорные

возмущения метрики. Таким образом, лагранжиан Хорндески в невозмущённой

метрике ФЛРУ (Фридмана-Леметра-Робертсона-Уокера) и его вариация даёт нам

модифицированные уравненияФридмана и, соответственно, классические космо-

логические решения для масштабного фактора, параметра Хаббла; интересующее

нас решение – генезис – может быть получен в рамках выбранного лагранжиана.

Далее были изучены уже возмущения метрики: разложение исходного лагранжи-

ана до второго порядка по этим возмущениям не позволяет в полной мере осу-

ществить анализ сильной связи, но позволяет провести анализ на стабильность

теории, что уже было продемонстрировано во многих научных работах.

Анализ применимости классического описания эволюции ранней Вселен-
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ной начинается с разложения исходного действия теории до третьего порядка

по скалярным и тензорным возмущениям. Необходимо отметить, что исследо-

вать характерные энергетические масштабы сильной связи нужно во всех секто-

рах: скалярном, тензорном и смешанном (взаимодействия типа скаляр-гравитон-

гравитон, скаляр-скаляр-гравитон). В данной работе были представлены резуль-

таты по скалярному и тензорному секторам, а анализ смешанного сектора совер-

шается нами в данный момент.

Таким образом, было получено, что классический энергетический масштаб

действительно может быть меньше, чем масштаб сильной связи в скалярном и

тензорном секторах. Показано, что такое условие может быть удовлетворено в

определенном диапазоне начальных параметров лагранжиана. Удовлетворение по-

следнего условия и говорит об отсутствии режима сильной связи на стадии гене-

зиса.

Важно заметить, что отсутствие сильной связи при анализе действия тре-

тьего порядка по возмущениям ничего не говорит о наличии/отсутствии сильной

связи в модели вообще. Поэтому если сильная связь не найдена при изучении

трёхточечных вершин, то следует изучать четвёртый и следующие порядки по

возмущениям. Интересно также посмотреть, как будет происходить дальнейшая

эволюция Вселенной, которая в рамках нашей теории стартует с генезиса. Иными

словами, конечно, стоит необходимость сшивать наши асимптотические решения

с последующими инфляцией, стадией разогрева и т.д.
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ПРИЛОЖЕНИЕ

ПриложениеА. Конформные преобразования метрики и условие отсутствия силь-

ной связи

Здесь обсуждается упомянутое в данной диссертации свойство того, что

условия отсутствия сильной связи инвариантны по отношению к смене фреймов.

Данное утверждение рассмотрим на примере скалярного сектора и вытекающих

из него условий на параметры α и δ.

Можно сделать над метрикой gµν конформные преобразования вида:

g̃µν = Ω(ϕ)gµν ,

где Ω(ϕ) есть некоторая функция скалярного поля галилеона. Тогда наш началь-

ный лагранжиан (в так называемой системе Йордана):

LH = G2(ϕ,X)−G3(ϕ,X)□ϕ+G4(ϕ)R ,

примет вид (система Эйнштейна):

L̃H = G̃2(ϕ, X̃)− G̃3(ϕ, X̃)⊞ ϕ+
M 2

Pl

2
R , ⊞ϕ = g̃µν∇̃µ∂νϕ .

Здесь функции G̃2, G̃3, G̃4 являются некоторыми комбинациямифункцийG2, G3, G4:

G̃2 =
G2

G2
4

− 2XG3
G4ϕ

G3
4

+ 3X
G2

4ϕ

G3
4

,

G̃3 =
G3

G4
, G̃4 =

M 2
Pl

2
,

а также

X̃ = −1

2
g̃µν∂µϕ∂νϕ =

X

G4

Для такого перехода функцияΩ(ϕ) = 2G4/M
2
Pl. Далее всюду будем для простоты

полагатьM 2
Pl/2 = 1. При выбранном конформном преобразовании невозмущен-

ная метрика:

ds2 = −N(t)2dt2 + a(t)2dxidx
i,
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примет вид

d̃s2 = −ΩN 2dt2 + Ωa2dx2.

Для удобства можно ввести новые переменные:

Ñ 2 = ΩN 2, ã2 = Ωa2,

и метрику можно переписать как:

d̃s2 = −dτ 2 + dl2,

где новые время и координаты выражаются через старые как:

dτ 2 = ΩN 2dt2, dl2 = Ωa2dx2.

Из первого соотношения в предыдущей формуле можно найти следующую связь:

τ ∼ (−t)1−α

α− 1
,

но более точно из уравнений движения в новой системе находим фоновые реше-

ния:

eϕ ∼ 1

(−τ)
, ã ∼ 1

(−τ)α/(1−α)
, H̃ ∼ 1

(−τ)
,

что представляет из себя модифицированный генезис.

Возмущенная метрика после конформного преобразования принимает вид,

аналогичный тому, что был в прежней системе Йордана. Поэтому вполне закон-

но использовать формулы для действий второго и третьего порядков и для новой

системы. Но при этом все должно быть написано в терминах новой системы, то

есть:

S
(2)
ζ =

∫
Ñdt ãd3x

(
ϵ̃s
c̃2s

ã2

Ñ 2
ζ̇2 − ϵ̃s(∂ζ)

2

)
,

S
(3)
ζ =

∫
Ñdt ãd3x

{
Λ̃1

(
ã

Ñ
ζ̇

)3

+ Λ̃2

(
ã

Ñ
ζ̇

)2

ζ + ...+ Λ̃18ζ∂i∂jζ∂
i∂jψ

}
,
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где нами было показано, что

c̃2s = c2s = inv,

ϵ̃s = γϵs,

Λ̃i = γΛi,

здесь γ = 1/B4 ∼ (−t)2α. Далее из аналогичного размерного анализа в новой

системе будут получаться совершенно аналогичные старой системе условия от-

сутствия сильной связи.

Итак, снова запишем действие третьего порядка в канонически нормиро-

ванных переменных:

S(3) =

∫
dṼ Λ̃NORM

i (∂̇)ai(∂i)
biπ3,

где следует обратить внимание на то, что dṼ , все производные и все величины,

входящие в Λ̃NORM
i написаны в терминах новой системы, то есть через время τ ,

координаты l и т.д. Здесь коэффициенты будут иметь соответственно вид:

Λ̃NORM
i = Λ̃iã

bi−2Ñai

(
c̃2s
2ϵ̃s

)3/2

,

где коэффициент ãbi−2Ñai появился как раз за счет того, что мы сделали переход

к координатам и времени новой системы. В новой системе для коэффициентов из

действия третьего порядка имеем:

Λ̃i ∼ (−τ)
2α+xi
1−α ,

а так же выпишем и коэффициент от канонической нормировки:(
c̃2s
2ϵ̃s

)3/2

∼ (−τ)
3δ

2(α−1) .

Собирая все вместе, получаем:

Λ̃NORM
i ∼ (−τ)

1
α−1(−2α−xi+biα−2α+aiα+

3
2δ).
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Масштабы энергий:

ẼSt ∼ (Λ̃NORM
i )

1
1−ai−bi ,

ẼCl ∼ (−τ)−1.

В новой системе тоже требуем ESt ≫ ECl и получаем:

−
4α + xi − aiα− biα− 3

2δ

(−α + 1)(ai + bi − 1)
> (−1),

откуда немедленно следует точно такое же условие отсутствия сильной связи, ко-

торое было получено в разделе 3.1 для системы Йордана:

xi + 3α− 3

2
δ < ai + bi − 1 , i = 1, 18 . (78)
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Приложение Б. Уравнения связей в разных порядках по возмущениям

В данной диссертации были рассмотрены разложения действия Хорндески

до второго и третьего порядка по скалярным возмущениям:

S
(2)
α,β,ζ =

∫
Ndt ad3x[−3gζ

( a
N
ζ̇
)2

+ cζ (∂ζ)
2 − 3a2H2mαα

2+

2gζ∂α∂ζ + 6
a2

N
Hfααζ̇ + 2

a

N
gζζ∂

2β − 2aHfαα∂
2β],

и

S
(3)
ζ,α,β =

∫
Ndt ad3x

{
gζ
[
− 9

a2

N 2
ζζ̇2 + 2

a

N
ζ̇
(
ζ∂2β + ∂iζ∂

iβ
)
− α(∂iζ)

2

+(∂iβ)
2∂2ζ − 1

2
ζ
(
4α∂2ζ − (∂2β)2 + (∂i∂jβ)

2
)]

+

+cζζ(∂iζ)
2 − 9(aH)2mαα

2ζ + 2aHfαα
(
9
a

N
ζζ̇ − ζ∂2β − ∂iζ∂

iβ
)

+
λ1
aH

[ a3
N 3

ζ̇3 − a2

N 2
ζ̇2∂2β +

1

2

a

N
ζ̇
(
4α∂2ζ + (∂2β)2 − (∂i∂jβ)

2
)
− α

(
∂2ζ∂2β

−∂i∂jζ∂i∂jβ
)]

+ λ2α
[
3
a2

N 2
ζ̇2 − 2

a

N
ζ̇∂2β +

1

2

(
(∂2β)2 − (∂i∂jβ)

2
)]

−

−λ3aHα2
(
3
a

N
ζ̇ − ∂2β

)
− λ4α

2∂2ζ +
λ5
2
(aH)2α3

}
,

где все коэффициенты типа mα или λ1 и т.д. представляют собой комбинации

функций невозмущенного лагранжиана Хорндески:

LH = A2(t, N) + A3(t, N)K + A4(K
2 −K2

ij) +B4(t, N)R(3).

Оказывается, что возмущения α и β могут быть исключены из рассмотрения пу-

тем отрешивания их из действия как второго, так и третьего порядка (вариацией

действия по ним). В итоге, конечное действие остается в терминах единственного

возмущения ζ .

В данном приложении речь будет идти об одном интересном свойстве ка-

сательно данной процедуры. Было показано, что для получения уравнений связи
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между α и ζ и β и ζ

α =
gζ
Hfα

1

N
ζ̇,

∂2β =
gζ

aHfα
∂2ζ − 3

(
gζmα

f 2α
− 1

)
a

N
ζ̇,

можно проварьировать поα иβ действия лишь второго порядка. Далее такие урав-

нения можно будет законно подставлять как в действие второго порядка, так и в

действие третьего порядка. Это так в силу того, что учтенные поправки в уравне-

ниях связи от вариации действия уже третьего порядка будут сокращаться, либо

давать превышение точности (будут возникать более высокие порядки по ζ).

Покажем это явно на простом примере. Рассмотрим действие второго и тре-

тьего порядков для произвольных возмущений в наиболее общем виде:

S(2) + S(3) =

∫
dV (c1α

2 + f (1)α︸ ︷︷ ︸
второй порядок

+h(1)α2 + g(2)α + c2α
3︸ ︷︷ ︸

третий порядок

),

где α - возмущение, причем не обязательно единственное в теории, c1 и c2 есть

константы, f (1), h(1) и g(2) есть комбинации всех остальных возмущений теории,

кроме α, причем в f (1) и в h(1) входят возмущения только первого порядка, а в g(2)

- второго. Проварьируем сперва действие второго порядка S(2) по α, получим:

2c1α + f (1) = 0.

Отсюда выражаем α

α = −f
(1)

2c1
,

и подставляем назад в полное S(2) + S(3):

S(2) + S(3) =

∫
dV
(
c1

(
−f

(1)

2c1

)2

+ f (1)

(
−f

(1)

2c1

)

+ h(1)

(
−f

(1)

2c1

)2

+ g(2)

(
−f

(1)

2c1

)
+ c2

(
−f

(1)

2c1

)3 )
,
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S(2)+S(3) =

∫
dV
(
− (f (1))2

4c1
+h(1)

(
−f

(1)

2c1

)2

+ g(2)

(
−f

(1)

2c1

)
+ c2

(
−f

(1)

2c1

)3 )
.

Теперь проварьируем по α действие и второго, и третьего порядков:

α2 +
α

3c2
(2c1 + 2h(1)) +

f (1) + g(2)

3c2
= 0,

α1,2 =
−2c1+2h(1)

3c2
±
√

1
9c22

(2c1 + 2h(1))2 − 4f (1)+g(2)

3c2

2
,

что после небольшого вычисления приводит нас к выражению типа:

α = −f
(1)

2c1
+ ...,

и мы выбрали корень со знаком+, чтобы в низшем порядке восстанавливался ре-

зультат от варьирования действия второго порядка. Под ... мы подразумеваем все

поправки первого и второго порядков. Подставляя результат с поправками обрат-

но в действие S(2) + S(3), нетрудно убедиться, что отрешанное действие без α в

данном случае получается точно такое же, как после подстановки α из проварьи-

рованного действия второго порядка.

Таким образом, видно, что отпадает надобность каждый раз варьировать

полное действие всех порядков по возмущениям - можно всегда пользоваться

уравнениями связи, полученными вариацией действия только лишь второго по-

рядка.
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