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1 Введение

Одной из основных проблем современной физики является построение
теории квантовой гравитации. Объединение квантовой теории поля [1] и
гравитации явилось нетривиальной задачей, не решенной до сих пор. Тео-
рия струн [2], несмотря на многочисленные успехи, не смогла решить все
возникающие при построении квантовой гравитации трудности. Однако, в
последнее время значительные успехи в понимании квантовой гравитации
были достигнуты с использованием так называемого AdS/CFT-соответствия
или голографической дуальности (см., например, обзор [3]).

В 1997 году Хуан Малдасена сформулировал AdS/CFT-соответствие [4]
– описание одной и той же физической системы двумя различными спосо-
бами, с помощью общей теории относительности и квантовой теории поля.
С помощью AdS/CFT-соответствия возможно вычисление величин, трудно
вычисляемых по теории возмущений в квантовой теории поля. Зачастую
такие величины считаются сравнительно просто с помощью вычислений с
гравитационной стороны в AdS/CFT-соответствии. Однако можно обратить
данную логику – поведение различных наблюдаемых в квантовой теории по-
ля может позволить прояснить различные непертурбативные аспекты гра-
витационной теории. Еще точно не доказано, что можно без противоречий
объединить квантовую гравитации и квантовую теорию поля, но благодаря
AdS/CFT-соответствию есть основания полагать, что это будет возможно.

AdS/CFT-соответствие [4]- [6], или голографическая дуальность, сопо-
ставляет гравитационные явления в пространстве анти-де-Ситтера и кван-
товую теорию в пределе сильной связи на асимптотической границе этого
пространства. Размерность пространства анти-де-Ситтера на единицу боль-
ше чем размерность границы, где определена квантовая теория. Сначала
AdS/CFT-соответствие было сформулировано как дуальность между кон-
кретной теорией поля в четырехмерном пространстве и пятимерной теорией
гравитации [4]- [6]. Затем изучение дуальности было расширено на теории
с меньшей размерностью. Наименьшая размерность, где возможно опреде-
лить гравитационную теорию – размерность пространства-времени d = 2

(см., например, [7]- [13]). Эйнштейновская гравитация является топологиче-
ской в этой размерности (то есть у нее отсутствуют динамические степени
свободы).

В данной дипломной работе пойдет речь о варианте голографической ду-
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альности, известном как NAdS2/NCFT1 (почти-AdS/почти-CFT) [14], [15].
В качестве гравитационной теории в таком соответствии рассматривается
двумерная дилатонная гравитация, а в качестве квантовой теориии на гра-
нице – квантовомеханическая система с конформной симметрией (в пределе
сильной связи) [14]- [18]. Можно показать, что эффективной теорией, двой-
ственной такой гравитации, является теория специального вида – Шварци-
ан [19]. Шварциан [20], также может быть получен взятием низкоэнергети-
ческо предела теории, описывающей случайно взаимодействующие майора-
новские фермионы - теории Сачдева-Йе-Китаева(SYK) [21]- [25].

В дипломной работе приведен вывод действия двух копий Шварциана
как эффективного действия дилатонной гравитации для модели Джекива-
Тейтельбойма. Далее рассмотрена двумерная гравитация Алмхери-Полчинс-
кого [13], взаимодействующая с точечной массивной частицей, и получены
ее решения. Проанализировано поведение дилатона, и изучен процесс обра-
зования или исчезновения черной дыры в зависимости от энергии статиче-
ской частицы [18], [26]- [28]. Получен вид решения для массивной частицы,
двигающейся с произвольной скоростью. С точки зрения дуальности такое
решение можно интерпретировать как две копии теории Шварциана, свя-
занные некоторым взаимодействием. Рассмотрена энтропия зацепленности
между этими двумя копиями квантовой теории, определенными на левой и
правой границе двумерного анти-де-Ситтера [29]- [38].

Дипломная работа организована следующим образом. Во второй главе
рассмотрен вывод действияШварциана как эффективного действия Джекива-
Тейтельбойма. В третьей главе рассмотрено взаимодействие дилатонного
поля с точечной частицей. В четвертой главе вычислена энтропия зацеп-
ленности для теорий на левой и правой границе анти-де-Ситтера. Диплом
содержит несколько приложений, в которых приведен различный вспомога-
тельный справочный материал.

В приложении A приведены представления пространства анти-де-Ситтера,
бусты в разных системах координат. Разобрано получение действия Швар-
циана из действия Джекива-Тейтельбойма в координатах Пуанкаре (При-
ложение B). В приложении C даны необходимые определения и приведен
пример вычисления энтропии зацепленности для системы двух связанных
осцилляторов. Также в приложении D приведено описание температурной
теории в виде «термополевой двойки» (thermofield double).

Результаты, представленные в данной дипломной работе, опубликованы
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в [39].

2 Получение действия Шварциана как эффек-
тивного действия Джекива-Тейтельбойма на
AdS2

Рассмотрим евклидово пространтсво анти-де-Ситтера в глобальных ко-
ординатах (описание пространства анти-де-Ситтера в разных координатах в
приложении A.1):

ds2 =
dτ 2 + dσ2

sin2(σ)
, где 0 < σ < π, −∞ < τ < +∞ (1)

Действие Джекива-Тейтельбойма, поддерживающее такое решение запи-
сывается в виде:

SJT = − 1

16πG

(∫
dtdzφ

√
g(R + 2) + 2

∫
bdy1

du
√
gbdy1φbdy1K

+2

∫
bdy2

du
√
gbdy2φbdy2K

)
(2)

где второй интеграл – это граничный член Гиббонса-Хокинга-Йорка, необхо-
димый для определения вариационного принципа, когда мы хотим поставить
граничные условия Дирихле на границе многообразия. K– внешняя кривиз-
на, R–скаляр Риччи, u–координата на границе, gbdy– детерминант индуци-
рованной на границе метрики.

Рассмотрим одну из границ σ = 0 пространства (на второй границе вы-
кладки аналогичные). «Отрежем» пространство вдоль траектории, парамет-
ризованной в виде (τ(u), σ(u)). Фиксируем точную длину кривой с помощью
маленького параметра ε→ 0:

g|bdy =
1

ε2
,

1

ε2
=
τ ′2 + σ′2

sin2(σ)
, (3)

Также необходимо учесть, что φ расходится вблизи границы (явные фор-
мулы будут приведены в следующей главе). Введем условие на поведение
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дилатона

φbdy = φ|bdy =
φr(u)

ε
(4)

Из уравнений движения дилатона R = −2, и поэтому первый интеграл в
действии (2) обнуляется. Граничный член в действии с учетом (3), (4) можно
переписать в виде:

STJ → −
1

8πG

∫
du

ε

φr(u)

ε
K. (5)

Чтобы разрешить уравнение (3) относительно переменной σ, воспользуемся
анзацем вида (более подробно в приложении B):

σ = σ1(u)ε+ σ2(u)ε2 + σ3(u)ε3 + ..., (6)

Тогда, используя теорию возмущений, σ(u) можно представить в виде:

σ(u) = ετ ′
(

1 +
ε2

6

τ ′4 + 3τ ′′2

τ ′2

)
+ ... (7)

Вычислим внешнюю кривизну K. Для этого, воспользуемся определени-
ем K в виде:

K = −h(T,∇Tn)

h(T, T )
, (8)

h(X, Y ) = habX
aXb, (9)

или расписав явно скалярные произведения:

K =
T µ

(T )2
∇Tnµ (10)

T a = (τ ′, σ′), (11)

Ta =

(
τ ′

sin2(σ)
,

σ′

sin2(σ)

)
(12)

h(T, n) = 0, h(n, n) = 1. (13)

где na–нормаль, T a– касательный вектор. Из системы уравнений (13) полу-
чаем явное выражение для нормального вектора в глобальных координатах:

na =
sin(σ)√
σ′2 + τ ′2

(−σ′, τ ′), (14)

na =
1

sin(σ)
√
σ′2 + τ ′2

(−σ′, τ ′) (15)
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Для вычисления внешней кривизны нам понадобятся символы Кристо-
феля для метрики анти-де-Ситтера в глобальных координатах:

Γ1
11 = Γ2

21 = Γ2
12 = Γ1

22 = 0, (16)

Γ2
11 =

1

sin(σ)
, (17)

Γ1
21 = Γ1

12 = Γ2
22 = − 1

sin(σ)
. (18)

Используя (10)-(13), (14)-(18), внешняя кривизна вычисляется следующим
образом:

K =
T µ

(T )2
∇Tnµ =

T µ

(T )2

(
∂nµ
∂u
− ΓρµvnρT

v

)
=

=
T 1

(T )2

(
∂n1
∂u
− Γ1

11n1T
1 − Γ1

12n1T
2 − Γ2

11n2T
1 − Γ2

12n2T
2

)
+

+
T 2

(T )2

(
∂n2
∂u
− Γ1

21n1T
1 − Γ1

22n1T
2 − Γ2

21n2T
1 − Γ2

22n2T
2

)
=

= −τ
′(τ ′2 + σ′2 + sin(σ)σ′′)− sin(σ)σ′τ ′′

(τ ′2 + σ′2)
3
2

(19)

Подставляя (7) в (19) , получаем:

K = −1 + ε2
3(τ ′′(u))2 − 2τ ′(u)τ ′′′(u)

2(τ ′(u))2
= −1− ε2S(τ(u), u) +O(ε4) (20)

В итоге мы получим, что эффективное действие дилатонной гравитации
описывается двумя копиями Шварциана (каждая соответствует границе при
σ = 0 или σ = π)

Seff =
1

8πG

∫
du [φr1(u)S(τ1(u), u) + φr2(u)S(τ2(u), u)] . (21)

Получается теория с двумя невзаимодействующими динамическими пе-
ременными τ1(u) и τ2(u). В следующей главе мы рассмотрим дилатонную
гравитацию, взаимодействующую с материей. С точки зрения двойственной
теории это соответствует введению взаимодействия O(τ1(u))O(τ2(u)) между
левой и правой теорией.
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3 Дилатонная гравитация возмущенная, точеч-
ной частицей, и энтропия зацепленности

Рассмотрим модель двумерной гравитации – модель Алмхери-Полчинского.
Действие модели имеет вид:

S =
1

16πG

∫
dx2
√
−g [φ(τ, σ) (R + 2)− 2A] + Smatter, (22)

где φ(τ, σ)– скалярное поле дилатона, R– скаляр Риччи, Smatter– действие
полей материи. Ищем решение для метрики в виде (лоренцева сигнатура):

ds2 = b(σ)(−dτ 2 + dσ2) (23)

Первое уравнение движения получается варьированием действия по по-
лю:

δS

δφ
= −b(σ)b′′(σ) + b′2(σ) + 2b3(σ) = 0. (24)

Остальные три уравнения получаются варьированием действия по ком-
понентам метрики gαβ:

b′(σ)φσ(τ, σ)− 2b(σ) (φσσ(τ, σ) + b(σ)(A− φ(τ, σ))) = Tττ(τ, σ),

b′(σ)φτ(τ, σ)− 2b(σ)φτσ(τ, σ) = Tστ(τ, σ), (25)

b′(σ)φσ(τ, σ)− 2b(σ) (b(σ)(φ(τ, σ)− A) + φττ(τ, σ)) = Tσσ(τ, σ),

где, Tαβ– тензор энергии импульса:

Tαβ =
2√
−g

δSmatter
δgαβ

. (26)

Для начала найдем решение системы уравнений движения в случае отсут-
ствия полей материи. Мы имеем систему нелинейных дифференциальных
уравнений в частных производных второго порядка:

−b(σ)b′′(σ) + b′2(σ) + 2b3(σ) = 0, (27)

2b(σ) (φσσ(τ, σ) + b(σ)(A− φ(τ, σ)))− b′(σ)φσ(τ, σ) = 0, (28)

b′(σ)φτ(τ, σ)− 2b(σ)φτσ(τ, σ) = 0, (29)

b′(σ)φσ(τ, σ)− 2b(σ) (b(σ)(φ(τ, σ)− A) + φττ(τ, σ)) = 0,
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Одно из частных решений первого уравнения системы имеет вид:

b(σ) =
1

sin2 σ
, 0 < σ < π, (30)

это решение задает двумерную метрику анти-де-Ситтера в глобальных коор-
динатах (τ, σ). Подставив анзац (30) во второе уравнение системы, получаем:

1

sin(σ)

(
1

sin2(σ)
(A− φ(τ, σ)) + φσσ(τ, σ) + cot(σ)φσ(τ, σ)

)
= 0 (31)

В это уравнение входят производные только по переменной σ. Решение
уравнения имеет вид:

φ(τ, σ) = A+
1

sin(σ)
(C1(τ)− iC2(τ) cos(σ)) (32)

Это решение должно удовлетворять всем уравнениям системы. Чтобы
найти неизвестные множители C1(τ), C2(τ), подставим найденное решение
в третье и четвертое уравния системы. Учитывая, что решение для метрики
имеет вид (30), мы получаем систему уравнений для нахождения неизвест-
ных функций C1(τ), C2(τ):

C ′2(τ) = 0,

−i cos(σ)C ′′2 (τ) + C ′′1 (τ) + C1(τ) = 0 (33)

Решение системы уравнений (33) имеет вид:

C1(τ) = C3 cos(τ) + C4 sin(τ),

C2(τ) = C5. (34)

Таким образом, решение системы уравнений движения поля дилатона
для метрики в глобальных координатах принимает вид:

φ(τ, σ) = A+ c1
cosσ

sinσ
+ c2

sin τ

sinσ
+ c3

cos τ

sinσ
, σ ∈ (0, π), (35)

где c1, c2, c3 – произвольные константы.
Рассмотрим точечную частицу, которая покоится в центре пространства

анти-де-Ситтера в точке σ = π
2 , заданного в глобальных координатах. Тен-

зор энергии-импульса точечной покоящейся частицы в центре пространтва
имеет вид:

Tτσ = Tσσ = 0, (36)

Tττ(σ) =
E√

bG(σ)
√
−g

δ
(
σ − π

2

)
=

E

b
3/2
G (σ)

δ
(
σ − π

2

)
, (37)
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где E– энергия частицы. Тогда система уравнений для поля дилатона при-
нимает вид:

b′(σ)φσ(τ, σ)− 2b(σ) (φσσ(τ, σ) + b(σ)(A− φ(τ, σ))) =
E

b
3/2
G (σ)

δ
(
σ − π

2

)
,

b′(σ)φτ(τ, σ)− 2b(σ)φτσ(τ, σ) = 0, (38)

b′(σ)φσ(τ, σ)− 2b(σ) (b(σ)(φ(τ, σ)− A) + φττ(τ, σ)) = 0,

Анологично случаю в отсутсвии полей материи, решаем систему уравнений
движения, используя подстановку (30). Первое уравнение системы принима-
ет вид:

1

sin2(σ)

(
sin2(σ)(φ(τ, σ)− A)− φσ,σ(τ, σ)− cot(σ)φσ(τ, σ)

)
= Eδ(π − 2σ)

(39)
Решая уравнение относительно дилатона получаем:

φ(τ, σ) = A− iC2(τ) cot(σ) + C1(τ)
1

sin(σ)
+

1

2
E θ(2σ − π) cot(σ)− 1

2
E cot(σ),

(40)
где C1(τ), C2(τ) – некоторые неизвестные функции. Подставляя это решение
в другие уравнения системы получаем систему уравнений на неизвестные
функции C1(τ), C2(τ):

C ′2(τ) = 0,

−i cos(σ)C ′′2 (τ) + C ′′1 (τ) + C1(τ) = 0 (41)

Урвнения в случае вакуумной теории и теории с неподвижной частицей
совпадают, поэтому константы c1, c2, c3, которые войдут в выражение для
поля дилатона совпадают для обеих теорий.

Таким образом в присутсвии покоящейся точечной частицы решение урав-
нений движения (35) поля дилатона модифицируется как:

φ(τ, σ) = A+ θ(2σ − π)
E

2

cosσ

sinσ
+

(
c1 −

E

2

)
cosσ

sinσ
+ c2

sin τ

sinσ
+ c3

cos τ

sinσ
(42)

Асимптотики решения дилатона на двух границах1 пространства анти-де-
Ситтера:

φ = A+
c1 − E/2 + c2 sin τ + c3 cos τ

σ
+O (σ) , σ → 0

φ = A+
c2 sin τ + c3 cos τ − c1

π − σ
+O (π − σ) , σ → π. (43)

1В данном тексте под словом "граница"понимается "конформная граница".
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Рассмотрим инвариантные относительно трансляций по времени конфи-
гурации скалярного поля дилатона, когда c2 = c3 = 0:

φ(τ, σ) = A+ θ(2σ − π)
E

2

cosσ

sinσ
+

(
c1 −

E

2

)
cosσ

sinσ
(44)

φ = A+
c1 − E/2

σ
+O (σ) , σ → 0

φ = A+
−c1
π − σ

+O (π − σ) , σ → π. (45)

Из выражений для асимтотик (45) видно, что при отрицательной энергии
E < 0 можно так подобрать константы A и c1, что дилатон принимает поло-
жительные значения на обеих границах пространства анти-де-Ситтера. На
Рис.1 построены несколько графиков дилатонного поля (44) для различных
значений энергии и фиксированных значениях констант c1 и A:

0.5 1.0 1.5 2.0 2.5 3.0 σ

-10

-5

5

10

15

ϕ

E=-10

E=0

E=10

Рис. 1: Зависимость скалярного поля дилатона от σ при c2 = c3 = 0 и c1 =

−1. Пунктирная линия соответсвует значению энергии E = −10, сплошная
– E = 0, точка-пунктир – E = 10. A = 1

Рассмотрим внимательней точки пространства-времени, где скалярное
поле дилатона φ обращается в ноль. Известно, что гравитационную тео-
рию Джекива-Тейтельбойма можно получить размерной редукцией некото-
рой черной дыры высшей размерности, например, редукцией почти экстре-
мальной черной дыры Рейснера-Нордстрема [31] или БТЗ-черной дыры [32].
После редукции, сингулярность черной дыры соответсвует нулям поля ди-
латона. Используя такую интерпретацию в терминах пространств большей
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размерности, будем в дальнейшем называть точки τ0, σ0, где поле дилатона
обращается в ноль φ(τ0, σ0) = 0, точками сингулярности.

Для общего решения системы уравнений движения с произвольными ко-
эффициентами c1, c2, c3 существует несколько конфигураций дилатона (35)
в отсутствии частицы, которые изображены на Рис.2.

Рис. 2: Нули поля дилатона (35) при A = 1, c1 = −0.2, c3 = 0.02. Красная
сплошная линия соответсвует c2 = 0.1, пунктирная синия – c2 = 0.3, точка-
пунктир зеленая – c2 = 0.5

Сплошная волнистая линия, обозначающая сингулярность, разделяет две
границы, пунктирная – только части двух границ. Нули, обозначенные лини-
ей точка-пунктир, «запирают» двумерный анти-де-Ситтер для трансляций
времени во всем простраснтве.

Проанализируем поведение дилатона (35) в окрестности границ простран-
ства в отсутвии полей материи. Разрешим уравнение на сингулярные точки
(нули дилатона) относительно переменной σ0. Решение уравнения:

φ(τ0, σ0) = A+ c1
cosσ0
sinσ0

+ c2
sin τ0
sinσ0

+ c3
cos τ0
sinσ0

= 0, (46)
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имеет вид:

σ0 = arctan

[
2c1
√
F − 2A(c2 sin(τ0) + c3 cos(τ0))

−A
√
F − 4c1(c2 sin(τ0) + c3 cos(τ0))

]
,

F = A2 + 4c21 − 4(c2 sin(τ0) + c3 cos(τ0))
2. (47)

Точка экстремума функции F (τ) задается выражением:

τextr = arctan

(
c2
c3

)
. (48)

Условие возникновения «запертых» по времени областей анти-де-Ситтера –
F = 0. Подставляя τextr в F , получаем, что трансляция возможна при:

c3 =
√
A2 + c21 − c22. (49)

Условие проходимости (условие, когда нули дилатона отсутствуют) для си-
стемы, возмущенной статической точечной частицей, задается как:

проходимость : c1 <
√
c22 + c23, E = 2c1 +

√
c22 + c23 (50)

Теперь рассмотрим точечную частицу, движущуюся в пространстве анти-
де-Ситтера со скоростью v, меньшей скорости света. После буста, явный вид
которого в глобальных координатах (см. Приложение A.2):

σ → arccotan
[
γ

(
v

cos(τ)

sin(σ)
+ cot(σ)

)]

τ → arccos

 γ
(
cos(τ)
sin(σ) + v cot(σ)

)
√

1 + γ2
(
v cos(τ)sin(σ) + cot(σ)

)2
 , (51)

где:
γ =

1√
1− v2

. (52)

Метрика остается той же, а траектория точечной частицы теперь имеет
форму:

σ = arccos
(
± v cos τ

)
(53)

Вакуумная независящая от времени (c2 = c3 = 0) конфигурация дилатона
после буста:

φ = A+ c1γ cot(σ) + c1vγ
cos τ

sinσ
(54)
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Из-за наличия частицы конфигурация дилатона меняется. С правой стороны
от траектории (53) она имеет вид (54), а с левой стороны:

φ = A+

(
c1 −

E

2

)
γ cot(σ) +

(
c1 −

E

2

)
vγ

cos τ

sinσ
. (55)

На рис.3 представлены эти конфигурации для разных значений энергии
E.

0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3
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5

6

0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

4

5

6

Рис. 3: Контурный график взаимодействия дилатона с массивной забусто-
ванной частицей. Скорость частицы v = 0.8, на правом графике E = 3,
на левом – E = −3. Здесь c2 = c3 = 0 и c1 = −1, A = 0.5 Белая кривая
соответствует мировой линии частицы.
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4 Энтропия зацепленности для теорий на ле-
вой и правой границе анти-де-Ситтера

Теперь рассмотрим эволюцию энтропии зацепленности (см. приложение
C) в системе, которая является дуальной двумерному глобальному анти-де-
Ситтеру, деформированному массивной частицей с конечным импульсом.
Рассмотрим зацепленность между степенями свободы, живущими на левой
и правой границах пространства. В AdSd+1/CFTd-соответсвии энтропия за-
цепленности соответствует площади минимальной гиперповерхности с ко-
размерностью равной двум. В AdS2/CFT1-соответсвии это соответствие вы-
рождается [35,36]. Подробные детали соответсвия в данном случае недоста-
точно изучены. Однако в случае глобального AdS2 энтропия зацепленно-
сти [29] в фиксированный момент времени между левой и правой теориями
задается минимальным значением дилатона:

Sent(τ) = φ(σ, τ)
∣∣∣
σ=σm

, (56)

где σm – точка, в которой дилатон принимает свою минимальное значение
φmin при фиксированном времени τ (см. также аналогичный случай для за-
цепленных черных дыр в [30]). На рис.5 продемонстрирована эволюция эн-
тропии зацепленности для различных импульсов и энергии частиц.

1 2 3 4 5 6 τ

1.0

1.5

2.0

2.5

S

Рис. 4: Энтропия зацепленности для двумерного анти-де-Ситтера, воз-
мущенного точечной частицей с различными значения скорости буста v.
Сплошная красная линия соответсвует v = 0.9, пунктирная синяя – v = 0.6,
точка-пунктир красная – v = 0.5
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5 Заключение

Рассмотрена модель Алмхери-Полчинского двумерной гравитации с при-
сутствием полей материи. Найдены решения уравнений движения для слу-
чая взаимодействия поля дилатона с точечной массивной частицей, двигаю-
щейся с произвольной скоростью. Получено условие на энергию статической
частицы, когда кротовая нора становится проходимой. Изучена эволюция эн-
тропии зацепленности для двух копий квантовых теорий, живущих на двух
разных границах глобального анти-де-Ситтера, возмущенного точечной ча-
стицей. Рассмотрен вывод действия Шварциана с помощью теории возмуще-
ния как эффективного действия дилатонной гравитации модели Джекива-
Тейтельбойма.

Выражаю глубокую признательность своему научному руководителю док-
тору физ.-мат. наук, профессору Белокурову Владимиру Викторовичу и на-
учному консультанту кандидату физ.-мат. наук Агееву Дмитрию Сергеевичу
за помощь на всех этапах выполнения дипломной работы. Особую благодар-
ность хотелось бы выразить доктору физ.-мат. наук, профессору Арефьевой
Ирине Ярославне и участникам её научного семинара за конструктивные
замечания в ходе подготовки дипломной работы. Отдельная благодарность
сотрудникам кафедры физики частиц и космологиии за теплую атмосферу
и возможность подготовить и защитить дипломную работу.
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A Пространство анти-де-Ситтера

A.1 Геометрия

Рассмотрим двумерное пространтсво анти-де-СиттераAdS2 – максималь-
но симметричное двумерное пространтсво с постоянной отрицательной ска-
лярной кривизной R.

Двумерными пространствами постоянной кривизны являются: плоскость
(когда кривизна тождественно равна нулю), сфера (кривизна больше нуля)
и гиперболическая плоскость (кривизна меньше нуля).

Пространство анти-де-Ситтера AdS2 имеет вид гиперболоида, вложен-
ного в плоское трехмерное пространство R1,2. Дополнительная размерность
соответсвует дополнительной координате времени. Чтобы в плоском трех-
мерном пространстве R3 вырезать двумерное пространство анти-де-Ситтера
AdS2 нужно наложить одно дополнительное условие на координаты. Зада-
дим координаты трехмерного плоского пространства в виде Z = (Z0, Z1, Z2).
Такие координаты называются координатами вложения. Метрика плоского
пространства имеет вид:

ds2 = ηABdZ
AdZB (57)

, где η =diag(-1,1,1) для евклидового пространства анти-де-Ситтера и η =diag(-
1,-1,1) – для Лоренцевого анти-де-Ситтера. Зададим скалярное произведе-
ние:

Z1 · Z2 = ηABZ
A
1 Z

B
2 (58)

Тогда дополнительное условие на координаты имеет вид:

Z · Z = −1 (59)

– это уравнение задает гиперболоид, вложенный в трехмерное пространство.
Евклидовый анти-де-Ситтер имеет вид двуполостного гиперболоида, лорен-
цевый анти-де-Ситтер – однополостного гиперболоида.

Рассмотрим также представление пространства анти-де-Ситтера в так
называемых Пуанкаре координатах (t, z). Метрика AdS2 в координатах Пу-
анкаре имеет вид:
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ds2 =
1

z2
(
±dt2 + dz2

)
(60)

где, z > 0, −∞ < t <∞ – координаты задают верхнюю полуплоскость. Ко-
ординаты Пуанкаре покрывают половину пространтсва AdS2. z = 0 – кон-
формная граница анти-де-Ситтера, z = ∞ – горизонт анти-де-Ситтера. За-
мена переменных от координат вложения Z к координатам Пуанкаре (t, z):

Z = ±
(

1 + t2 + z2

2z
,
t

z
,
1− t2 − z2

2z

)
(61)

Координаты, которые покрывают всё пространство-время анти-де-Ситтера,
называются глобальными координатами. Метрика пространства анти-де-Ситтера
в таких координатах (τ, σ) имеет вид:

ds2 =
±dτ 2 + dσ2

sin2(σ)
(62)

Эта метрика задает пространство анти-де-Ситтера в виде полосы 0 < σ < π,
−∞ < τ <∞ с двумя границами : σ = 0, σ = π.

Метрику глобального анти-де-Ситтера можно получить заменой коорди-
нат из метрики в координатах Пуанкаре:

t =
1

2

(
tan

(
τ + σ

2

)
+ tan

(
τ − σ

2

))
, (63)

z =
1

2

(
tan

(
τ + σ

2

)
− tan

(
τ − σ

2

))
(64)

Вся поверхность гиперболоида двумерного анти-де-Ситтера, вложенного
в плоское трехмерное пространство, параметризуется следующим образом:

Z0 = −cos(τ)

sin(σ)
, (65)

Z1 = − cot(σ), (66)

Z2 = −sin(τ)

sin(σ)
(67)

Обратные преобразования от глобальных координат к Пуанкаре коорди-
натам имеют вид:

τ = arctan(t+ z) + arctan(t− z), (68)

σ = arctan(t+ z)− arctan(t− z), (69)
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и обратные преобразования от глобальных координат к координатам плос-
кого трехмерного простраства:

σ = π − arccotan(Z1), (70)

τ = arccos
Z0√

1 + Z2
1

, (71)

или τ = arcsin
Z2√

1 + Z2
1

(72)

Рассмотрим метрику в координатах Риндлера (ρ, tr) (они покрывают
только часть пространства анти-де-Ситтера):

ds2 = −M 2 sinh2(ρ)dt2r + dρ2 (73)

После замены переменных ρ = arccosh R
M , tr = tShc метрика в координатах

Шварцшильда (tShc, R) имеет вид:

ds2 = −(R2 −M 2)dt2Sch +
dR2

R2 −M 2
. (74)

Таким образом риндлеровские координаты описывают черную дыру. Отме-
тим, что в такой метрике отсутствует сингулярность, свойственная много-
мерным черным дырам. Сингулярность черной дыры в решениях дилатон-
ной гравитации понимается в смысле поведения дилатона (точки сингуляр-
ности отождествляются с точками, где дилатон обращается в ноль). Преоб-
разования переменных от Пуанкаре координат к Риндлеровским имеет вид:

z± = z ± t =
(1± cosh(ρ))eMtr/2 ∓ sinh(ρ)e−Mtr/2

(1± cosh(ρ))eMtr/2 ± sinh(ρ)e−Mtr/2
(75)

Метрику в риндлеровских координатах можно также получить с помощью
параметризации координат трехмерного плоского пространства Z = (Z0, Z1, Z2),
в которое вложен гиперболоид простратва анти-де-Ситтера:

Z0 =
1

2

(
sinh(ρ)etr − sinh(ρ)e−tr

)
(76)

Z1 =
1

2

(
sinh(ρ)etr + sinh(ρ)e−tr

)
(77)

Z2 = cosh(ρ) (78)

Заменой координат r = tanh(ρ/2) из евклидовой метрики в риндлеров-
ских координатах (ρ, tr) получается метрика модели диска Пуанкаре, опи-
сываемой метрикой:
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ds2 =
4

(1− r2)2
(dr2 +M 2r2dt2r) (79)

К метрике Пуанкаре диска переход от координат вложения имеет вид:

Z =

{
r2 + 1

1− r2
,−2r cos(Mτ)

r2 − 1
,−2r sin(Mτ)

r2 − 1

}
(80)

если M = 1 : ±
(

1 + x2 + y2

1− x2 − y2
,

2x

1− x2 − y2
,

2y

1− x2 − y2

)
(81)

Напомним, что AdS2-черную дыру определяют как двумерное простран-
ство анти-де-Ситтера с выделенным направлением времени. Все двумерные
пространства отрицательной кривизны локально эквивалентны AdS2. Чер-
ная дыра соответствует специальному выбору времени tSch так, что
−∞ < tSch < ∞ не покрывает полностью AdS2. Горизонтом черной ды-
ры является поверхность, из-под которой геодезические не могут попасть в
область −∞ < tSch <∞.

Рис. 5: (a)–AdS2 в глобальных координатах, (b)– координаты Пуанкаре, (c)–
координаты Шварцшильда
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A.2 Бусты

Буст переводит гиперболоид, заданный в координатах Z, в гиперболоид
в координатах Y:

Z0 = γ(Y0 + vY1), (82)

Z1 = γ(vY0 + Y1), (83)

Z2 = Y2, (84)

γ =
1√

1− v2
, (85)

v–скорость.
Буст в Пуанкаре координатах (t, z) имеет вид:

t2 =
t̃2(1− v)

1 + v
(86)

z =

√
1− vz̃√
1 + v

(87)

Буст в глобальных координатах задается выражениями:

σ = arccotan
[
γ

(
v

cos(τ̃)

sin(σ̃)
+ cot(σ̃)

)]
(88)

τ = arccos

 γ
(
cos(τ̃)
sin(σ̃) + v cot(σ̃)

)
√

1 + γ2
(
v cos(τ̃)sin(σ̃) + cot(σ̃)

)2
 (89)

Буст в риндлеровских координатах (ρ, tr) выглядит:

ρ = − arcsin(sin(ρ̃)) (90)

T = ±arccosh

(
−cosh(T̃ ) + v sinh(T̃ )√

1− v2

)
(91)

или

ρ = arcsin(sin(ρ̃)) (92)

T = ±arccosh

(
cosh(T̃ ) + v sinh(T̃ )√

1− v2

)
(93)
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B Получение действия Шварциана из AdS2 для
координат Пуанкаре

Рассмотрим пространство анти-де-Ситтера в евклидовых Пуанкаре ко-
ординатах:

ds2 =
1

z2
(dt2 + dz2) (94)

Проанализируем уравнения движения в теории Джекив-Тейтельбойма.
Действие такой теории имеет вид:

SJT = − 1

16πG

(∫
dtdzφ

√
g(R + 2) + 2

∫
bdy

dy
√
gbdyφbdyK

)
(95)

где K– внешняя кривизна, R–скаляр Риччи. Отрежем пространство по тра-
ектории, параметризованной в виде (t(u), z(u)). Фиксируем точную длину
кривой с помощью маленького параметра ε→ 0:

g|bdy =
1

ε2
, (96)

1

ε2
=
t′2 + z′2

z2
, (97)

Чтобы разрешить уравнение (97) относительно переменной z воспользу-
емся анзацем вида:

z = z1(u)ε+ z2(u)ε2 + z3(u)ε3 + ..., (98)

Подстановка анзаца в уравнение позволяет найти коэффициент при пер-
вой степени ε:

1− t′2(u)

z21(u)
= 0, (99)

z1(u) = t′(u) (100)

Теперь в уравнение (97) подставляем анзац в виде:

z = t′(u)ε+ z2(u)ε2 + z3(u)ε3 + ..., (101)

получаем ответ для коэффициента при второй степени ε:

z2(u) = 0 (102)
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Анзац принимает вид:

z = t′(u)ε+ z3(u)ε3 + ..., (103)

и после его подстановки в уравнение получаем:

z3(u) =
1

2

t′′2(u)

t′(u)
(104)

Итоговый ответ с точностью до ε3 включительно можно записать в виде:

z = εt′

(
1 +

ε2

2

(
t′′

t′

)2
)

+ ... (105)

Таким образом, мы можем написать еще одно граничное условие:

φbdy = φ|bdy =
φr(u)

ε
(106)

Граничный член в действии можно переписать в виде:

STJ → −
1

8πG

∫
du

ε

φr(u)

ε
K, (107)

где K-внешняя кривизна. Вычислим K. Для этого воспользуемся определе-
нием K в виде:

K = −h(T,∇Tn)

h(T, T )
, (108)

h(X, Y ) = habX
aXb, (109)

или расписав явно скалярные произведения:

K =
T µ

(T )2
∇Tnµ (110)

T a = (t′, z′), (111)

Ta = (
t′

z2
,
z′

z2
), (112)

h(T, n) = 0, h(n, n) = 1. (113)

где na–нормаль, T a– тангенсальный вектор. Из системы уравнений (113) по-
лучаем явное выражение для нормального вектора в Пуанкаре координатах:

na =
z√

z′2 + t′2
(−z′, t′), (114)

na =
1

z
√
z′2 + t′2

(−z′, t′) (115)
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Для вычисления внешней кривизны нам понадобятся символы Кристо-
феля для метрики анти-де-Ситтера в Пуанкаре координатах:

Γ1
11 = Γ2

21 = Γ2
12 = Γ1

22 = 0, (116)

Γ2
11 =

1

z
, (117)

Γ1
21 = Γ1

12 = Γ2
22 = −1

z
. (118)

Используя (110)-(112), (114)-(118) внешняя кривизна вычисляется следу-
ющим образом:

K =
T µ

(T )2
∇Tnµ =

T µ

(T )2

(
∂nµ
∂u
− ΓρµvnρT

v

)
=

=
T 1

(T )2

(
∂n1
∂u
− Γ1

11n1T
1 − Γ1

12n1T
2 − Γ2

11n2T
1 − Γ2

12n2T
2

)
+

+
T 2

(T )2

(
∂n2
∂u
− Γ1

21n1T
1 − Γ1

22n1T
2 − Γ2

21n2T
1 − Γ2

22n2T
2

)
=

=
t′

(t′2 + z′2)/z2

(
∂n1
∂u

+
1

z
n1z

′ − 1

z
n2t
′
)

+

+
z′

(t′2 + z′2)/z2

(
∂n2
∂u

+
1

z
n1t
′ +

1

z
n2z

′
)

=

= −t
′(t′2 + z′2 + zz′′)− zz′t′′

(t′2 + z′2)
3
2

(119)

Подставим найденное выше выражение для z в K и оставим второй по-
рядок по ε:

K = −1 + ε2
3(t′′(u))2 − 2t′(u)t′′′(u)

2(t′(u))2
= −1− ε2S(t(u), u) +O(ε4), (120)

где S(t(u),u) – производня Шварца:

S(t(u), u) =
2t′t′′′ − 3t′′2

2t′2
. (121)

В итоге мы получим, что эффективное действие дилатонной гравитации
описывается Шварцианом:

Seff =
1

8πG

∫
duφr(u)S(t(u), u). (122)
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C Энтропия зацепленности двух связанных ос-
цилляторов

Мы хотим посчитать энтропию зацепленности для двух связанных ос-
цилляторов по формуле:

S = −Tr(ρ log ρ) (123)

Обозначим волновые функции двух несвязанных друг с другом систем,
состоящие каждая из одного осциллятора, соответсвенно |A〉 ∈ HA–для пер-
вой системы, |B〉 ∈ HB– для второй. А состояние составной системы из двух
связанных осцилляторов

|Ψ〉 ∈ HAB = HA ⊗HB (124)

Матрица плотности связанной системы задается формулой:

ρ = |Ψ〉〈Ψ| (125)

Определение приведенной матрицы плотности:

ρA =
∑
j

〈j|B|Ψ〉〈Ψ||j〉B = TrBρ (126)

Рассмотрим гамильтониан системы двух связанных осцилляторов:

H =
1

2

[
p21 + p22 + k0(x

2
1 + x22) + k1(x1 − x2)2

]
, (127)

где k1, k2–константы. Решая задачу на собственные вектора и собственные
значения, можно найти нормированную волновую функцию основного со-
стояния системы:

ψ0(x1, x2) = π−1/2(w+w−)1/4 exp
[
−(w+x

2
+ + w−x

2
−)/2

]
, (128)

где x± = (x1 ± x2)/
√

2, w+ = k
1/2
0 , и w− = (k0 + 2k1)

1/2.
Тогда приведенную матрицу плотности можно найти проинтегрировав

матрицу плотности по координате x1:

ρA(x2, x
′
2) =

∫ +∞

−∞
dx1 ψ0(x1, x2)ψ

∗
0(x1, x

′
2)

= π−1/2(γ − β)1/2 exp
[
−γ(x22 + x′22 )/2 + βx2x

′
2

]
, (129)

24



где β = 1
4(w+ − w−)2/(w+ + w−) и γ − β = 2w+w−/(w+ + w−).

Чтобы посчитать энтропию зацепелнности (123) удобно найти собствен-
ные значения pn приведенной матрицы плостности ρA(x2, x

′
2). Тогда формула

для расчета энтропии зацепленности упрощается:

S = −
∑
n

pn log(pn) (130)

Задача на собственные значения матрицы записыватеся в виде:∫ +∞

−∞
dx′ρA(x, x′)fn(x

′) = pnfn(x) (131)

И ее решения (методом подбора):

pn = (1− ξ)ξn

fn(x) = Hn(α
1/2x) exp(−αx2/2) (132)

где Hn– полиномы Эрмита, α = (γ2 − β2)1/2 = (w+w−)1/2, ξ = β/(γ + α),
0 < n <∞. Выражения (132) подразумевают, что ρA эквивалентна тепловой
матрице плотности одиночного гармонического осциллятора с частотой α и
температурой T = α/ log(1ξ ). Тогда энтропия выглядит:

S(ξ) = − log(1− ξ)− ξ

1− ξ
log ξ (133)

где ξ– функция, зависящая только от отношения k1/k0.

D Термополевая двойка

Вечная черная дыра в анти-де-Ситтере (максимально расширенное про-
странство AdS) имеет две границы, каждая из которых соответсвует одной
копии комформной теории поля. Другими словами, вечная черная дыра ду-
альна двум копиям конформной теории поля. Связь между теорией тепло-
вого поля и этим удвоением степеней свободы называется «термополевой
двойкой».

Рассмотрим систему с гамильтонианом H1, которая может находится в
нескольких состояниях, обозначаемых |n〉1:

H1|n〉1 = En1|n〉1 (134)
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Пусть у нас есть смешанное состояние системы с матрицей плотности в
виде:

ρ1 =
1

Z
e−βH1 (135)

Посмотрим как из этого смешанного состояния можно получить чистое
состояние для большей по числу состояний системы. Для этого удвоим чис-
ло степеней свободы первоначальной системы. Мы рассматриваем две оди-
наковых копии квантовомеханической системы, которые живут в в разных
простарствах-времени. Они не связаны друг с другом, и состояние удвоенной
системы записывается в виде:

|Ψ〉 = |m〉1|n〉2 (136)

Каждое смешанное состояние системы, принадлежащее конечномерно-
му Гильбертову пространтву, может быть получено как приведеное состо-
яние из некоторого чистого состояния. Эта процедура получила название
«очищение смешанного квантового состояния». Иными словами, если верно
утверждение:

Tr2 (|Ψ〉〈Ψ|) = ρ1, (137)

то говорят, что |Ψ〉 очищает ρ1. Таким образом, любое смешанное состояние
может быть очищено путем добавления достаточного количества вспомога-
тельных состояний и взятие следа по ним.

Теперь в удвоенной системе рассмотрим «термополевую двойку». Для её
определения необходимо ввести статистическую сумму. В квантовомехани-
ческой системе с дискретным спектром энергии статистическая сумма опре-
деляется как:

Z(β) = Tr(e−βĤ) (138)

Тогда «термополевая двойка» |Φ〉 в двойной системе записывается в виде:

|Φ〉 =
1√
Z(β)

∑
n

e−βEn/2|n〉1|n〉2 (139)

Запишем матрицу плотности двойной квантовомеханической системы в
этом состоянии:

ρ = |Φ〉〈Φ| (140)
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Вычислим приведенную матрицу плотности по формуле (126):

Tr2ρ =

=
∑
m

〈m|2

∑
n,n′

e−βEn/2|n〉1|n〉2〈n′|2〈n′|2e−βEn′/2

 |m〉2
=
∑
n

e−βEn|n〉1〈n|1 =
1

Z
e−βH1

≡ ρ1 (141)

Таким образом чистое состояние в двойной системе неотличимо от тер-
мотеплового состояния. Расссмотрим, например,локальный оператор O1 =

φ1(x1)χ1(y1) · · · действующий на первую систему с гамильтонианом H1. То-
гда:

〈Φ|O1|Φ〉 =
1

Z(β)
TrH1

e−βH1O1 (142)

Хотя первая и вторая система не связаны в лагранжиане двойной систе-
мы они коррелируют в состоянии. Если рассмотреть еще один локальный
оператор O2, действующий только на вторую систему, получим, что выра-
жение:

〈Φ|O1O2|Φ〉 (143)

может не равняться нулю.
Для удобства определим гамильтониан двойной системы следующим спо-

собом:
Htotal = H1 −H2 (144)

При таком выборе гамильтониана «термотепловая двойка» не зависит от
времени, так как фазовые множители сократятся:

|Φ(t)〉 ≡ e−iHtotal|Φ〉 =
∑
n

e−βEn/2e−i(H1−H2)|n〉1|n〉2 = |Φ〉 (145)

27



Список литературы

1. Боголюбов Н.Н., Ширков Д.В. «Введение в теорию квантованных полей»

2. Б.Цвибах «Начальный курс теории струн», 2011

3. Aref’eva, I. Ya. "Holographic approach to quark–gluon plasma in heavy ion
collisions."Physics-Uspekhi 57.6 (2014): 527.

4. J. M. Maldacena, “The Large N limit of superconformal field theories and
supergravity,” Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2,
231 (1998)] doi:10.1023/A:1026654312961, 10.4310/ATMP.1998.v2.n2.a1 [hep-
th/9711200].

5. S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory
correlators from noncritical string theory,” Phys. Lett. B 428, 105 (1998)
doi:10.1016/S0370-2693(98)00377-3 [hep-th/9802109].

6. E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys.
2, 253 (1998) doi:10.4310/ATMP.1998.v2.n2.a2 [hep-th/9802150].

7. Jackiw, R. (1985). Lower dimensional gravity. Nuclear Physics B, 252, 343-356.
doi:10.1016/0550-3213(85)90448-1

8. Teitelboim, C. (1983). Gravitation and Hamiltonian structure in two
spacetime dimensions. Physics Letters B, 126(1-2), 41-45. doi:10.1016/0370-
2693(83)90012-6

9. Frolov, V. P. (1992). Two-dimensional black hole physics. Physical Review D,
46(12), 5383. doi:10.1103/PhysRevD.46.5383

10. M. Spradlin and A. Strominger, “Vacuum states for AdS(2) black holes,”
JHEP 9911, 021 (1999) doi:10.1088/1126-6708/1999/11/021 [hep-th/9904143].

11. M. O. Katanaev, W. Kummer and H. Liebl, “Geometric interpretation and
classification of global solutions in generalized dilaton gravity,” Phys. Rev. D
53, 5609 (1996) doi:10.1103/PhysRevD.53.5609 [gr-qc/9511009].

12. M. O. Katanaev, “Effective action for scalar fields in two-dimensional gravity,”
Annals Phys. 296, 1 (2002) doi:10.1006/aphy.2001.6259 [gr-qc/0101033].

28



13. A. Almheiri and J. Polchinski, “Models of AdS2 backreaction and holography,”
JHEP 1511, 014 (2015) doi:10.1007/JHEP11(2015)014 [arXiv:1402.6334 [hep-
th]].

14. J. Maldacena, D. Stanford and Z. Yang, “Conformal symmetry and its
breaking in two dimensional Nearly Anti-de-Sitter space,” PTEP 2016, no.
12, 12C104 (2016) doi:10.1093/ptep/ptw124 [arXiv:1606.01857 [hep-th]].

15. I. Kourkoulou and J. Maldacena, “Pure states in the SYK model and nearly-
AdS2 gravity,” arXiv:1707.02325 [hep-th].

16. K. Jensen, “Chaos in AdS2 Holography,” Phys. Rev. Lett. 117, no. 11, 111601
(2016) doi:10.1103/PhysRevLett.117.111601 [arXiv:1605.06098 [hep-th]].

17. J. Engelsoy, T. G. Mertens and H. Verlinde, “An investigation
of AdS2 backreaction and holography,” JHEP 1607, 139 (2016)
doi:10.1007/JHEP07(2016)139 [arXiv:1606.03438 [hep-th]].

18. J. Maldacena and X. L. Qi, “Eternal traversable wormhole,” arXiv:1804.00491
[hep-th].

19. D. Bagrets, A. Altland and A. Kamenev, Nucl. Phys. B 911, 191 (2016)
doi:10.1016/j.nuclphysb.2016.08.002 [arXiv:1607.00694 [cond-mat.str-el]].

20. V. V. Belokurov and E. T. Shavgulidze, “Exact solution of
the Schwarzian theory,” Phys. Rev. D 96, no. 10, 101701 (2017)
doi:10.1103/PhysRevD.96.101701 [arXiv:1705.02405 [hep-th]].

21. Subir Sachdev and Jinwu Ye, "Gapless spin-fluid ground state in a random
quantum Heisenberg magnet"Phys. Rev. Lett. 70, 3339 – Published 24 May
1993 doi.org/10.1103/PhysRevLett.70.3339

22. A. Kitaev, “A simple model of quantum holography,”
http://online.kitp.ucsb.edu/online/entangled15/kitaev/ (2015)

23. J. Maldacena and D. Stanford, “Remarks on the Sachdev-Ye-Kitaev model,”
Phys. Rev. D 94, no. 10, 106002 (2016) doi:10.1103/PhysRevD.94.106002
[arXiv:1604.07818 [hep-th]].

24. I. Aref’eva and I. Volovich, “Spontaneous symmetry breaking in fermionic
random matrix model,” arXiv:1902.09970 [hep-th].

29



25. I. Aref’eva, M. Khramtsov, M. Tikhanovskaya and I. Volovich, “Replica-
nondiagonal solutions in the SYK model,” arXiv:1811.04831 [hep-th].

26. P. Gao, D. L. Jafferis and A. Wall, “Traversable Wormholes via a Double
Trace Deformation,” JHEP 1712, 151 (2017) doi:10.1007/JHEP12(2017)151
[arXiv:1608.05687 [hep-th]].

27. J. Maldacena, D. Stanford and Z. Yang, “Diving into traversable wormholes,”
Fortsch. Phys. 65, no. 5, 1700034 (2017) doi:10.1002/prop.201700034
[arXiv:1704.05333 [hep-th]].

28. D. Bak, C. Kim and S. H. Yi, “Transparentizing Black Holes
to Eternal Traversable Wormholes,” JHEP 1903, 155 (2019)
doi:10.1007/JHEP03(2019)155 [arXiv:1901.07679 [hep-th]].

29. Y. Chen and P. Zhang, “Entanglement Entropy of Two Coupled SYK Models
and Eternal Traversable Wormhole,” arXiv:1903.10532 [hep-th].

30. A. Goel, H. T. Lam, G. J. Turiaci and H. Verlinde, “Expanding the Black
Hole Interior: Partially Entangled Thermal States in SYK,” JHEP 1902, 156
(2019) doi:10.1007/JHEP02(2019)156 [arXiv:1807.03916 [hep-th]].

31. J. Navarro-Salas and P. Navarro, “AdS(2) / CFT(1) correspondence and near
extremal black hole entropy,” Nucl. Phys. B 579, 250 (2000) doi:10.1016/S0550-
3213(00)00165-6 [hep-th/9910076].

32. A. Achucarro and M. E. Ortiz, “Relating black holes in two-
dimensions and three-dimensions,” Phys. Rev. D 48, 3600 (1993)
doi:10.1103/PhysRevD.48.3600 [hep-th/9304068].

33. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement
entropy from AdS/CFT,” Phys. Rev. Lett. 96, 181602 (2006)
doi:10.1103/PhysRevLett.96.181602 [hep-th/0603001].

34. V. E. Hubeny, M. Rangamani and T. Takayanagi, “A Covariant holographic
entanglement entropy proposal,” JHEP 0707, 062 (2007) doi:10.1088/1126-
6708/2007/07/062 [arXiv:0705.0016 [hep-th]].

35. A. Castro and F. Larsen, “Near Extremal Kerr Entropy from
AdS(2) Quantum Gravity,” JHEP 0912, 037 (2009) doi:10.1088/1126-
6708/2009/12/037 [arXiv:0908.1121 [hep-th]].

30



36. T. Azeyanagi, T. Nishioka and T. Takayanagi, “Near Extremal Black Hole
Entropy as Entanglement Entropy via AdS(2)/CFT(1),” Phys. Rev. D 77,
064005 (2008) doi:10.1103/PhysRevD.77.064005 [arXiv:0710.2956 [hep-th]].

37. N. Callebaut and H. Verlinde, “Entanglement Dynamics in 2D CFT
with Boundary: Entropic origin of JT gravity and Schwarzian QM,”
arXiv:1808.05583 [hep-th].

38. J. Lin, “Entanglement entropy in Jackiw-Teitelboim Gravity,”
arXiv:1807.06575 [hep-th].

39. Агеев Д.С., Арефьева И.Я., Лысухина А.В., "О кротовых норах в грави-
тации Джекива-Тейтельбойма, Теоретическая и математическая физика,
2019

31


