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Введение

Известно, что тёмная материя составляет около 25% полной
плотности энергии современной Вселенной. Вероятно, что она
состоит из новых частиц, отсутсвующих в Стандартной модели.
Из астрономических наблюдений следует, что эти частицы
должны быть нерелятивистскими, слабо взаимодействующими
как друг с другом, так и с обычным веществом.

В данной работе рассматривается простейшая модель
массивного скалярного поля с лагранжианом:

ℒ =
1

4
g𝜇𝜈(𝜕𝜇𝜑𝜕𝜈𝜑

* + 𝜕𝜇𝜑
*𝜕𝜈𝜑) − m

2
|𝜑|2.

Физическим примером такой модели может являться аксион.
Это гипотетическая частица, возникающая при решении
проблемы CP-сохранения в сильных взаимодействиях.
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Постановка задачи

Одним из интересных физических эффектов, возникающих в
такой модели, является Бозе конденсация за счёт
гравитационного взаимодействия.

Принято считать, что темп Бозе конденсации на MD стадии Γ

пропорционален плотности энергии скалярного поля 𝜌𝜑, т.е

Γ ∝ 𝜌𝜑

Цель данной работы - показать, что темп Бозе конденсации
на MD стадии Γ пропорционален неоднородности плотности
энергии 𝛿𝜌𝜑 , а также обобщить данный результат на RD
стадию при некоторых дополнительных условиях.

Γ ∝ 𝛿𝜌𝜑
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Скалярное поле на MD стадии

Для скалярного поля можно получить уравнения движения,
простой вариацией действия.

g𝜇𝜈𝜕𝜇𝜕𝜈𝜑− g𝜇𝜈Γ𝜆𝜇𝜈𝜕𝜆𝜑+ m2𝜑 = 0

где Γ𝜆𝜇𝜈 – символы Кристоффеля, которые полностью
определяются метрикой g𝜇𝜈 .

Взяв в качестве g𝜇𝜈 возмущенную метрику Фридмана

g𝜇𝜈 = diag((1 + 2Ψ),−a2(1 − 2Φ),−a2(1 − 2Φ),−a2(1 − 2Φ))

где Ψ = Ψ(x⃗ , t),Φ = Φ(x⃗ , t) и считая Ψ=Φ, что верно на MD
стадии.
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Скалярное поле на MD стадии

Получим уравнение движения для скалярного поля :

(1 − 2Φ)𝜑+ (3H − 4Φ̇ − 6HΦ)𝜑̇− 1 + 2Φ

a2
∆𝜑+ m2𝜑 = 0 (1)

Из уравнений Эйнштейна можно получить :

∆Φ − 3Ha2(Φ̇ + HΦ) = 4𝜋Ga2𝛿𝜌 (2)

где 𝛿𝜌 = 𝜌𝜑 − 𝜌𝜑 - пространственная неоднородность полной
плотности энергии.
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Скалярное поле на MD стадии

На MD стадии основной вклад в неоднородности плотности
энергии, как и в саму плотность энергии, вносит скалярное
поле. Зная Лагранжиан скалярного поля, нетрудно найти
канонический тензор энергии импульса, а следовательно и
плотность энергии.

𝜌𝜑 =
1 − 2Ψ

2
|𝜑̇|2 +

1 + 2Φ

2a2
|∇𝜑|2 +

1

2
m2|𝜑|2 (3)

Пространственно однородная плотность энергии:

𝜌𝜑 =
1

2
(| ˙̄𝜑|2 + m2|𝜑|2) (4)

Таким образом, по сути мы знаем чему равна неоднородность
плотности энергии 𝛿𝜌 = 𝜌𝜑 − 𝜌𝜑.
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Уравнение Шрёдингера-Пуассона на MD стадии

Будем искать решение уравнений (1)(2) в виде:

𝜑 =
e−imt

a3/2
𝜓

где 𝜓 - медленно меняющаяся функция по сравнению с
фактором e−imt .

Учитывая также соотношения для плотностей, полученные
раньше (3)(4)
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Уравнение Шрёдингера-Пуассона на MD стадии

Перепишем уравнение движения скалярного поля (1)

(1 − 2Φ)(𝜓 − 2im𝜓̇) − 4Φ̇(𝜓̇ − im𝜓) =
1 + 2Φ

a2
∆𝜓−

2[m2Φ − 3

4
(Ḣ +

3

2
H2)(1 − 2Φ) + 3HΦ̇]𝜓 (5)

Перепишем уравнение для гравитационного потенциала (2)

∆Φ−3Ha2(Φ̇+HΦ) =
4G𝜋

a
(

1 − 2Φ

2
[|𝜓̇|2−3HRe(𝜓̇𝜓*)−2mIm(𝜓̇𝜓*)]+

+
1 + 2Φ

2a2
|∇𝜓|2+m2(|𝜓|2−|𝜓|2)(1+

9H2

8m2
)−m2|𝜓|2Φ[1+

9H2

4m2
])

(6)
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Уравнение Шрёдингера-Пуассона на MD стадии

Сделаем некоторые приближения :

1. Берём скалярное поле в качестве холодной тёмной
материи, т.е как предел быстрых осциляций

H

m
≪ 1, Ḣ ∼ H2

2. Рассматриваем характерные размеры неоднородностей l с
масштабом:

1

m
≪l ≪ 1

H
, l ∼ 1√

Hm

Также, довольно естественным выглядит введение малого
параметра 𝜖 = 1

ml
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Уравнение Шрёдингера-Пуассона на MD стадии

Более подробный анализ позволяет оценить порядок малости
членов, входящих в уравнения (5)(6)

∙ 𝜓 ∼ 𝒪(𝜖2)ℳPl

∙ 𝜓̇
m ∼ 𝒪(𝜖4)ℳPl

∙ 𝜓
m2 ∼ 𝒪(𝜖6)ℳPl

∙ Δ𝜓
m2 ∼ 𝒪(𝜖4)ℳPl

∙ Φ ∼ 𝒪(𝜖2)

∙ ΔΦ
m2 ∼ 𝒪(𝜖4)

∙ Φ̇
m ∼ 𝒪(𝜖4)

∙ H
m ∼ 𝒪(𝜖2)

где ℳPl = 1√
8𝜋G
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Уравнение Шрёдингера-Пуассона на MD стадии

Оставляя в уравнениях (5)(6) члены по порядку малости не
выше 𝜖4, получаем систему уравнений Шрёдингера-Пуассона:

⎧⎨⎩i𝜓̇ = − Δ𝜓
2a2m

+ mΦ0𝜓
a

∆Φ0 = 4𝜋Gm2(|𝜓|2 − |𝜓|2)
(7)

где Φ0 ≡ Φ
a , а 𝜓 - функция 𝜓 усредненная по пространству
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Уравнение Шрёдингера-Пуассона на MD стадии

Из уравнения типа Пуассона

Φ0(t, r⃗) = −Gm2

a

∫︁
d3y

|𝜓(t, y⃗)|2 − | ¯𝜓(t)|2

|r⃗ − y⃗ |
(8)

Подставляя (8) в уравнение Шрёдингера, находим
Гамильтониан системы

H(t, r⃗) = − ∆

2ma2
− Gm3

a2

∫︁
d3y

|𝜓(t, y⃗)|2 − | ¯𝜓(t)|2

|r⃗ − y⃗ |
(9)

Второе слагаемое в гамилильтониане отвечает
гравитационному взаимодействию поля

Hg (t, r⃗) = −Gm3

a2

∫︁
d3y

|𝜓(t, y⃗)|2 − | ¯𝜓(t)|2

|r⃗ − y⃗ |
(10)
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Уравнение Шрёдингера-Пуассона на MD стадии

Более подробный анализ показывает, что |𝜓|2 − |𝜓|2 = 𝛿𝜌𝜑

Тогда из вида Гамильтониана следует, что темп релаксации
комплексного скалярного поля пропорционален неоднородности
плотности энергии

Γ ∝ 𝛿𝜌𝜑 (11)
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Неоднородности на RD стадии

Оказывается, что на RD стадии можно получить полностью
аналогичную ситуацию при некоторых дополнительных
условиях.

Тут нам будет удобно пользоваться конформными
координатами (𝜂, x⃗) .В этих координатах время меняется так,
чтобы невозмущенная метрика Фридмана записывалась в виде

ds2 = a2(𝜂)(d𝜂2 − dx idx i ) = a(𝜂)2𝜂𝜇𝜈dx
𝜇dx𝜈

На рассматриваемой нами RD стадии параметр Хаббла
представим в виде:

H =
1

a𝜂
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Неоднородности на RD стадии

Запишем уравнения Эйнштейна в случае возмущенной метрике,
учитывая не только доминирующую радиацию, но и
возмущение скалярного поля.Штрихом обозначается
производная по конформному времени.

k2Φ + 3
a
′

a
Φ

′
+ 3(

a
′

a
)2Φ = −4𝜋Ga2(𝛿𝜌𝛾 + 𝛿𝜌𝜑) (12)

Φ
′′

+ 3
a
′

a
Φ

′
+ (2

a
′′

a
− (

a
′

a
)2)Φ = 4𝜋Ga2𝛿p𝛾 (13)

где 𝛿𝜌𝛾 - неоднородность плотности энергии радиации, 𝛿𝜌𝜑 -
неоднородность плотности энергии скалярного поля, 𝛿p𝛾 -
неоднородность давления радиации
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Неоднородности на RD стадии

Складывая уравнения (12) и (13), используя уравнение
Фридмана, (ij) компоненты уравнений Эйнштейна для
однородного случая, а также уравнение состояния, получаем

Φ
′′

+
4

𝜂
Φ

′
+

1

3
k2Φ = −4

3
𝜋Ga2𝛿𝜌𝜑 (14)

Решение для мод глубоко под горизонтом k𝜂 ≫ 1 ищем в виде
Φ = Φ0 + 𝛿Φ, где Φ0 - часть потенциала, создаваемая
радиацией, а 𝛿Φ - часть создаваемая скалярным полем, тогда
решение :
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Неоднородности на RD стадии

Φ = −6Φ(i)cos(
q√
3H

)
H2
eq

q2

⎛⎝ g
1
3
* (T )T

g
1
3
* (Teq)Teq

⎞⎠4

+

+
27Φ(i)H

2
eq

4q2
ln(

q√
3H

)

⎛⎝ g
1
3
* (T )T

g
1
3
* (Teq)Teq

⎞⎠3

(15)

где Φ(i) - амплитуда моды, q - физический импульс, T -
температура, g*(T ) - число эффективных степеней свободы, а
параметры с пометкой eq относятся к моменту перехода от RD
к MD стадии
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Неоднородности на RD стадии

Для заданной температуры можно выбрать достаточно
большие импульсы так, чтобы потенциал Φ полностью
определялся скалярным полем, т.е

𝛿Φ ≫ Φ0

Это верно при

q≫
√

3H(T )exp

⎛⎜⎝
⎛⎝ g

1
3
* (T )T

g
1
3
* (Teq)Teq

⎞⎠ 26
27

⎞⎟⎠ (16)

Таким образом, выбирая достаточно малые размеры
неоднородностей, мы получаем ситуацию полностью
аналогичную MD стадии. В частности

Γ ∝ 𝛿𝜌𝜑 17
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