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1.Введение. 

Данная работа посвящена изучению гравитационных линз – объектов, 

искривляющих пространство вокруг себя и отклоняющих свет. Этот эффект 

позволяет получать искаженные изображения фоновых объектов, что позволяет 

изучать, как далекие галактики, так и саму линзу, что наиболее интересно. С 

помощью эффекта гравитационного линзирования можно восстановить 

массовое распределение вещества линзы и детектировать клампы темной 

материи.  

2.Отклонение светового луча гравитационным полем. 

Под действием гравитационного поля массивных объектов различной 

природы, таких как галактические кластеры и облака темной материи, 

прямолинейно распространяющийся свет изменяет свою траекторию на 

гиперболическую. Гравитационная линза, как и обычная, обладает свойством 

фокусировки лучей, однако угол преломления зависит от прицельного 

параметра 𝑝 (кратчайшего расстояния от центра линзы до луча). Гравитационная 

линза не имеет точки, в которой сходятся все параллельные лучи. [Рис.2.1] 

 

Рис.2.1 Преломление лучей света в поле тяготения [1] 

Можно провести рассуждения, приводящие к получению выражения для 

угла отклонения светового луча, основываясь на принципе эквивалентности 

двух систем, одна из которых находится  в однородном поле тяжести, а другая 

движется с постоянным ускорением. [Рис.2.2.] 
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Рис.2.2. Покоящаяся система отсчета в однородном гравитационном поле (I). 

Система отсчета движется с постоянным ускорением (II).[1] 

В покоящейся системе без гравитационного поля луч прямолинеен, а в 

равноускоренной представляет собой ветвь параболы. При малых углах 𝑑𝛼̃ =

−
𝑑𝜐𝑧

𝑑𝜐𝑥
. Для компонент скорости имеем: 𝜐𝑥 = 𝑐;  𝜐𝑦 = 0;  𝑑𝜐𝑧 = −𝑔𝑑𝑡.Тогда для 

угла: 𝑑𝛼̃ =
𝑔𝑑𝑡

𝑐
=

𝑔𝑑𝑥

𝑐2
; 

𝑑𝛼̃

𝑑𝑥
=

𝑔

𝑐2
= 𝑐−2 𝑑𝛷

𝑑𝑧
. 

Для произвольной ориентации луча относительно гравитационного поля 

получаем уравнение: 

𝑑𝛼̃

𝑑𝑠
=

1

𝑐2

𝜕𝛷

𝜕𝑁
=

sin 𝜈

𝑐2

𝑑𝛷

𝑑𝑧
                                          (2.1) 

Здесь  𝑣 = 𝑣0 + 𝛼1 – угол между направлением луча и ускорением, s – 

расстояние вдоль луча. Нормаль направлена так, чтобы луч искривлялся к 

центру тяжести. [Рис.2.3.] 

 

Рис.2.3.Отклонение луча гравитационным полем. Слева – точечный источник; 

справа – бесконечно удаленный. [1] 

Далее будем интегрировать 2.1 по не искривленному лучу. 

𝛼̃ =
1

𝑐2 ∫
𝜕𝛷

𝜕𝑧

∞

−∞

𝑑𝑥 

Рассмотрим центрально-симметричное поле  𝛷 = −
𝑀𝐺

𝑟
,   

𝜕𝛷

𝜕𝑧
= sin 𝜃

𝑑𝛷

𝑑𝑟
 и 

заменим переменную интегрирования 𝑥 = 𝑝𝑐𝑡𝑔𝜃, 𝑑𝑥 = −
𝑝𝑑𝜃

sin2 𝜃
. 

В итоге получаем выражение для угла отклонения светового луча:  

𝛼̃ =
𝐺𝑀

𝑝𝑐2 ∫ sin 𝜃 𝑑𝜃 =
𝜋

0

2𝐺𝑀

𝑝𝑐2
                                    (2.2) 
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Теперь введем удобную для описания происходящего величину – 

эффективный показатель преломления. Запишем закон Снеллиуса для среды с 

переменным показателем преломления. В качестве модели можно взять 

плоскослоистую среду.   

𝑛𝑔 sin 𝑣 = 𝑐𝑜𝑛𝑠𝑡 

𝑑𝑛𝑔

𝑑𝑧
sin 𝑣 + 𝑛𝑔 cos 𝑣

𝑑𝑣

𝑑𝑧
= 0 

Учтем, что cos 𝑣
𝑑𝑣

𝑑𝑧
=

𝑑𝑣

𝑑𝑠
  и получим уравнение: 

𝑑𝛼̃

𝑑𝑠
= −

sin 𝑣

𝑛𝑔

𝑑𝑛𝑔

𝑑𝑧
                                             (2.3) 

Тогда, приравнивая правые части уравнений 2.1 и 2.3 и интегрируя, 

получаем выражения для эффективного показателя преломления 𝑛𝑔 = 1 −
𝛷

с2
 и 

соответствующей эффективной скорости света 𝑐𝑔 =
𝑐

𝑛𝑔
≃ (1 −

𝛷

𝑐2
). Поскольку 

потенциал при нашей нормировке отрицателен, 𝑛𝑔 > 0, а 𝑐𝑔 < 𝑐. 

             

 

 

 

Рис.2.4. Отклонение светового луча 

призмой. [2]                                                                             

 

 

 

 

Однако формула 2.2 дает заниженные в два раза значения. Для того чтобы 

получить верный результат, необходимо обратиться к теории относительности и 

учесть искривление пространства вокруг массивного тела. В пространстве 

Минковского в инерциальных системах отсчета квадрат четырехмерного 
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расстояния между двумя близкими событиями записывается виде 𝑑𝑠2 =

(𝑐𝑑𝑡)2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2 = (𝑐𝑑𝑡)2 − 𝑑𝑙2. А в неинерциальной системе отсчета  

интервал дается квадратичной формой 𝑑𝑠2 = 𝑔𝑖𝑘𝑑𝑥𝑖𝑑𝑥𝑘. Здесь 𝑥0 = 𝑐𝑡; 𝑥1,2,3 =

𝑥, 𝑦, 𝑧. Коэффициенты 𝑔𝑖𝑘 зависят от массы и отвечают за метрику, то есть за 

геометрию пространства-времени.   

Для сферически-симметричного гравитационного поля квадрат интервала 

приобретает вид  

𝑑𝑠2 = (1 −
𝑟𝑔

𝑟
) 𝑐2𝑑𝑡2 −

𝑑𝑟2

1−
𝑟𝑔

𝑟

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2)              (2.4)[1] 

Здесь 𝑟𝑔– гравитационный радиус. Эту формулу можно получить, записав 

квадрат интервала в обычных сферических координатах и воспользовавшись 

принципом эквивалентности и преобразованиями Лоренца, а также считая поле 

слабым. На самом деле формула 2.4. свободна от этих ограничений и может 

применяться в любых полях. Рассмотрев отдельно, пространственную часть 

интервала и записав выражение для расстояния между двумя точками на 

плоскости и в пространстве, можно получить уравнения для поверхностей 

вращения с одинаковой метрикой. 

 

Рис.2.5. Поверхность вращения  𝑧 = 𝜁(𝑟), имеющая ту же метрику, что и 

кривая на плоскости (а); та же поверхность в отсутствии гравитационного 

поля (б).[1] 

Из рисунка видно, как искривленное пространство вносит свой вклад в 

изменение траектории луча. Линии, соединяющие точки А и B, показывают 
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кратчайший путь между ними в пространстве, искаженном гравитационном 

полем [рис.2.5(а)], и в пространстве без массы [рис.2.5(б)]. Данные линии можно 

было бы воспринимать как луч, если бы их построение учитывало искривление 

времени. Коэффициенты g перед слагаемыми, связанными с временной и 

пространственной частью интервала, равны 1 −
𝑟𝑔

𝑟
 и вносят одинаковый вклад в 

искривление луча.  

Вернемся к модели, использующей эффективный показатель преломления 

и изменяющуюся в гравитационном поле скорость света. 

𝑐𝑔 =
𝑑𝑟

𝑑𝑡
= √(1 −

𝑟𝑔

𝑟
) (1 −

𝑟𝑔

𝑟
) 𝑐 = (1 −

𝑟𝑔

𝑟
) 𝑐 = (1 +

2𝛷

с2
) 𝑐 

Это выражение можно получить, приравняв нулю квадрат интервала и 

зафиксировав θ и 𝜑 в 1.4. А также учтя, что 𝑟𝑔 =
2𝐺𝑀

𝑟
, |𝛷| =

𝐺𝑀

𝑟
. 

Для эффективного показателя преломления имеем 𝑛𝑔 ≃ 1 −
2𝛷

с2
. А для угла 

отклонения: 

𝛼̃ =
4𝐺𝑀

𝑝𝑐2
                                                     (2.5) 

Таким образом, для получения правильного выражения для угла 

отклонения луча гравитационным полем точечной массы необходимо 

прибегнуть к ОТО. Нельзя ограничиться Ньютоновской механикой или 

кинематическим подходом, так как они не учитывают искривления 

пространства. Формула 2.5 была подтверждена экспериментально.  

Введение эффективного показателя преломления позволяет упростить 

рассмотрение геометрической оптики гравитационной линзы и не обращать 

внимания на изменения метрики пространства-времени вблизи тела, создающего 

сильное гравитационное поле. 

Так можно получить уравнение траектории луча в сферически-слоистой 

среде: 

1

𝑟
=

1

𝑛𝑔𝑚𝑟𝑚
(cos 𝜃 +

𝑟𝑔

𝑛𝑔𝑚𝑟𝑚
)                                       (2.1) 

Здесь 𝑟𝑚 - минимальное расстояние от луча до гравитационного центра, а 

𝑛𝑔𝑚 – соответствующий показатель преломления. Из уравнения видно, что 
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траектория представляет собой гиперболу. Однако из-за того, что массивное 

тело изменяет метрику значительно в ограниченной области пространства, 

можно использовать приближение, в котором луч распространяется по 

асимптотам этой гиперболы cos 𝜃 = −
𝑟𝑔

𝑛𝑔𝑚𝑟𝑚
. Данное уравнение имеет два корня 

𝜃1 =
𝜋

2
+

𝑟𝑔

𝑛𝑔𝑚𝑟𝑚
 и 𝜃2 =

𝜋

2
−

𝑟𝑔

𝑛𝑔𝑚𝑟𝑚
. Угол между асимптотами совпадает с углом 

отклонения, полученным ранее. [Рис.2.6.] 

 

Рис.2.6. Замена истинной траектории луча (а) ее прямолинейными 

асимптотами. [1] 

3. Приближение тонкой линзы. 

Для наблюдаемых гравитационных линз хорошо подходит модель тонкой 

линзы со спроецированной на плоскость линзы плотностью 𝛴 = ∫ 𝜌( 𝜉, 𝑥)𝑑𝑥. 

Здесь 𝜉- вектор в плоскости линзы, x первоначальное направление 

распространения луча, а 𝜌(𝜉, 𝑥) - объемная плотность линзы. Такое 

приближение справедливо, так как существенное воздействие поля на 

траекторию луча проявляется на малых расстояниях вдоль линии 

распространения света, а характерные расстояния между телами гораздо 

больше. Выражение для угла отклонения светового луча тонкой линзой 

представляет  собой суперпозицию отклонений от всех элементов массы 

плоскости: 

𝛼⃗̃(𝜉) =
4𝐺

𝑐2 ∫
(𝜉⃗⃗−𝜉′⃗⃗⃗⃗⃗)𝛴(𝜉′⃗⃗⃗⃗⃗)

|𝜉⃗⃗−𝜉′⃗⃗⃗⃗⃗|
2 𝑑2𝜉′                                       (3.1) 

Рассмотрим геометрию тонкой линзы, определяющую формирование 

изображений. Получим уравнение тонкой линзы. 
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Рис. 3.1. Схема, иллюстрирующая 

приближение тонкой линзы.[2] 

 

 

 

Световой луч, двигаясь от источника S, отклоняется на угол 𝛼̃, пройдя 

сквозь гравитационную линзу, и приходит к наблюдателю O. Угол между 

оптической осью линзы и направлением на истинное положение источника 𝛽, а 

угол между оптической осью и изображением – 𝜃. 𝐷𝑑- расстояние от 

наблюдателя до линзы, 𝐷𝑑𝑠- между линзой и источником, а 𝐷𝑠- между 

источником и наблюдателем. Для данной модели справедливо приближение 

малых углов. Удобно ввести угол между направлениями на источник и на 

изображение 𝛼⃗ =
𝐷𝑑𝑠

𝐷𝑠
𝛼⃗̃, а также векторные углы, направленные параллельно 

линзе в сторону оптической оси. Тогда справедливо уравнение, выражающее 

расстояние от оптической оси до изображения: 𝜃⃗𝐷𝑠 = 𝛽𝐷𝑠 + 𝛼⃗̃𝐷𝑑𝑠. Его можно 

переписать в виде: 

𝛽 = 𝜃⃗ − 𝛼⃗(𝜃⃗)                                             (3.2) 

Уравнение 3.2 будем называть уравнением гравитационной линзы. В 

общем случае оно нелинейно, и заданному положению источника 𝛽 может 

соответствовать несколько изображений 𝜃⃗. 

Рассмотрим линзу с постоянной поверхностной плотностью 𝛴. Используя 

формулу 3.1, получаем 𝛼(𝜃) =
4𝐺

𝑐2𝜉

𝐷𝑑𝑠

𝐷𝑠

(𝛴𝜋𝜉2) =
4𝜋𝐺𝛴

𝑐2

𝐷𝑑𝐷𝑑𝑠

𝐷𝑠
𝜃. Теперь можно 

ввести величину критической поверхностной плотности 𝛴𝑐𝑟 
=

𝑐2

4𝜋𝐺𝐷
, где 𝐷 =

𝐷𝑑𝐷𝑑𝑠

𝐷𝑠
. Очевидно, что для линзы с постоянной поверхностной плотностью 𝛽 = 0, 

то есть реализуется маловероятный случай расположения источника строго за 

гравитационной линзой. Можно справедливо предположить, что для 

формирования изображения с другой стороной линзы необходимо, чтобы 𝛼 был 

больше 𝜃, а это условие выполняется при 𝛴 > 𝛴𝑐𝑟.  
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4. Влияние аберраций на искривление лучей и рассуждения о 

формировании изображений.  

В оптической тонкой линзе с правильно подобранными параметрами 

аберрации не сильно влияют на формирование изображения. Однако в 

гравитационной линзе угол отклонения луча сильно зависит от прицельного 

параметра, таким образом, параллельно идущие лучи не пересекаются в одной 

точке.  

Рассмотрим лучи, идущие в какой либо плоскости, проходящей через 

центр линзы. Введем вектора 𝒑, 𝝆 и 𝜽𝒈, направления которых указаны на 

рисунке. Здесь 𝝆 определяет смещение наблюдателя от оси x. [Рис. 4.1] 

 

 

Рис.4.1. Преломление лучей 

гравитационной линзой. [1] 

 

 

 

Теперь можем записать уравнение, связывающее введенные нами 

векторные величины: 𝝆(𝒑, 𝑥) = 𝒑 + 𝑥𝜽𝒈(𝒑) = 𝒑 −
2𝑟𝑔𝑥

𝑝2
𝒑. Отсюда найдем 

прицельные параметры, соответствующие фиксированному положению 

наблюдателя: 

 𝒑1,2(𝝆) = 𝝆 (
1

2
± √

1

4
±

2𝑟𝑔𝑥

𝜌2
)                                   (4.2) 

Из формулы 4.2 видно, что лучи с разными прицельными параметрами, 

пройдя с разных сторон от гравитационной линзы, в итоге сходятся в одной 

точке [Рис.4.2.]. Таким образом, проведя рассуждения, основываясь на 

предположениях о сферически-симметричном поле точечной гравитационной 

линзы, уже можно наблюдать возможность формирования нескольких 

изображений одного объекта, что соответствует сильному гравитационному 

линзированию. Однако следует заметить, что для слабого линзирования, при 
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котором обычно наблюдается сильное смещению от оси x, будет только одно 

изображение.  

 

Рис.4.2. Связь между входными и 

выходными и выходными апертурами в 

гравитационной линзе.[1] 

 

 

Произведя замену переменных, можно получить формулу, абсолютно 

аналогичную 4.2 и для точечного источника, не удаленного на бесконечность 

[Рис.4.3.]. 

Рис.4.3.  Траектория лучей, идущих 

от источника, находящегося на конечном 

расстоянии от гравитационной линзы. 

Ось x совмещена с наблюдателем.[1] 

 

Корни аберрационного уравнения примут вид: 

 𝒑1,2(𝝆) = 𝝆𝑠̃ (
1

2
± √

1

4
±

𝑙2̃

𝜌𝑠
2̃
)                                     (4.3) 

Здесь 𝑙 = √
4𝐺𝑀𝑥𝑥𝑠

𝑐2(𝑥+𝑥𝑠)
 – радиус Эйнштейна.  Отметим, что средняя 

поверхностная плотность внутри круга, задаваемого радиусом Эйнштейна, в 

модели тонкой линзы равна критической. 

Далее будем рассуждать о формировании изображения протяженного 

объекта, границы которого задаются уравнением 𝜌𝑠̃ = 𝜌𝑠̃(𝜑). А угол 𝜑 – 

полярный угол в плоскости перпендикулярной оси [Рис.4.4.]. Если размеры 

источника и прицельный параметр малы, то уравнение 4.3 можно упростить 

𝒑1,2(𝝆) = 𝝆𝑠̃ (
1

2
±

𝑙

𝜌𝑠̃
). Пусть источник имеет форму диска с радиусом R. Тогда 

изображением будет кольцо ширины ∆𝑝 = 𝑝1 − 𝑝2. При этом средний радиус 

кольца будет равен радиуса Эйнштейна. Далее при постепенном смещении 

источника от оси x мы будем последовательно наблюдать две лунки с 
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соприкасающимися краями, а затем два изогнутых эллипса, один из которых 

постепенно выродится в расположенную в центре точку, а второй приближается 

к истинному положению источника. Последний случай соответствует 

расположению источника вне радиуса Эйнштейна и слабому гравитационному 

линзированию.   

 

Рис. 4.4. Изображение кругового источника радиуса 𝑅𝑠 при различных 

смещениях его центра от оси линза – наблюдатель.[1] 

Важной характеристикой получаемых изображений является их 

увеличение. [3] Чтобы увидеть, что по крайней мере одно из изображений 

получается увеличенным, нужно сравнить элементы площадей источника и 

изображения [Рис.3.5.]. 

 

 Рис.4.5. Преобразование элемента площади при линзировании.[3] 

𝑑𝑆 = 𝛽∆𝜑∆𝛽 – площадь элемента источника; 

𝑑𝑆′ = 𝜃∆𝜑∆𝜃 – площадь элемента изображения. 

Следовательно, увеличение задается формулой 𝜇 = |
𝜃∆𝜃

𝛽∆𝛽
| = |

𝜃𝑑𝜃

𝛽𝑑𝛽
|. 

Запишем уравнение линзы 4.2. в другом виде:  𝛽 = 𝜃 −  
𝜃𝐸

𝜃
,  где 𝜃𝐸 - 

угловой радиус Эйнштейна. Решением уравнения является пара корней 𝜃1,2 =
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1

2
(𝛽 ± √𝛽2 + 4𝜃𝐸

2). Тогда 
𝑑𝜃

𝑑𝛽
=

1

2
(1 ±

𝛽

√𝛽2+4𝜃𝐸
2
). В итоге для коэффициента 

увеличения получаем: 

𝜇1,2 =
1

4
(1 ±

𝛽

√𝛽2+4𝜃𝐸
2

+
√𝛽2+4𝜃𝐸

2

𝛽
± 2)                               (4.4) 

 

Рис.4.6. График зависимости увеличения изображений от приведенного 

углового направления на истинное положение источника.[3] 

Заметим, что при 𝛽 → ∞, линзирование не наблюдается, а при 𝛽 → 0, 

увеличение бесконечно. Также обратим внимание на то, что изменение размеров 

происходит только в одном направлении, а значит, изображение получается 

искаженным.  

Теперь перейдем к еще одной важной характеристике получаемого 

изображения – коэффициенту усиления q. На рисунке обозначены все важные 

для нас величины [Рис.4.7.]. 

 

Рис.4.7. Траектория лучей, идущих 

от источника, находящегося на 

конечном расстоянии от 

гравитационной линзы. Ось x 

совмещена с источником.[1] 
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Мы можем определить видимую интенсивность из закона сохранения 

энергии внутри лучевой трубки 𝐽0𝛴вх = 𝐽(𝑥, 𝜌)2𝜋𝜌𝑑𝜌. Здесь 𝐽0- интенсивность 

излучения источника, 𝛴вх = 2𝜋𝑝1𝑑𝑝1 + 2𝜋𝑝2|𝑑𝑝2|- площадь входной апертуры, 

соответствующая положению наблюдателя. Тогда c использованием 

аберрационного уравнения в данной системе координат (аналогичное 4.3) 

получаем выражение для коэффициента усиления: 

𝑞(𝑥, 𝜌) =
𝐽(𝑥,𝜌)

𝐽0
= ∑

𝑝𝑖

𝜌

2
𝑖=1 |

𝑑𝑝𝑖

𝑑𝜌
| =

𝑙

𝜌

𝜌2

2𝑙2+1

√ 𝜌2

4𝑙2+1

                            (4.5)  

Здесь 𝑙 = √2𝑟𝑔𝑥. Из формулы 4.5 видно, что при удалении от линзы 

яркость изображения только увеличивается, это объясняется возрастанием 

апертуры. Имеет смысл рассмотреть коэффициенты усиления для отдельных 

изображений. 

𝑞1,2(𝑥, 𝑝) =
𝑙

2𝑝

𝜌2

2𝑙2+1

√ 𝜌2

4𝑙2+1

±
1

2
                                         (4.6) 

Благодаря формулам 3.3, 3.4 и 3.6 можно сделать вывод о характере 

изображений при разных положениях источника от оси линза – наблюдатель. 

При сильном удалении одно из изображений приближается к истинному 

положению на небе, его коэффициенты увеличения и усиления стремится к 1 

сверху. Второе изображение приближается к оси линза – наблюдатель, 

уменьшается и становится более тусклым. То есть в пределе, при 𝜌 → ∞, 

останется одно неискаженное изображение, как и ожидалось. При слабом 

линзировании будет одно несколько увеличенное и усиленное изображение, 

пригодное для изучения. При сильном линзировании – несколько усиленных, 

увеличенных изображений, форма и количество, которых будет определяться 

положением относительно каустик.  

5. Понятия скалярного потенциала, сдвига и сходимости. 

Для того чтобы продолжить анализ наблюдаемых изображений и перейти 

к восстановлению распределения плотности вещества по данным линзирования, 

надо ввести несколько характеристик. [2],[4] 

Определим скалярный потенциал:  

𝜓(𝜃⃗) =
𝐷𝑑𝑠

𝐷𝑑𝐷𝑠

2

𝑐2 ∫ 𝛷(𝜉(𝜃⃗), 𝑥)𝑑𝑥                                (5.1) 
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Производные скалярного потенциала по 𝜃⃗ связаны с параметрами 

системы. Так градиент равен углу отклонения луча: 

𝛻⃗⃗𝜃𝜓 = 𝐷𝑑𝛻⃗⃗𝜉𝜓 =
𝐷𝑑𝑠

𝐷𝑠

2

𝑐2 ∫ 𝛻⃗⃗⏊𝜓 𝛷𝑑 = 𝛼⃗                         (5.2) 

А лапласиан пропорционален поверхностной плотности линзы: 

∆𝜃𝜓 =
𝐷𝑑𝐷𝑑𝑠

𝐷𝑠

2

𝑐2 ∫ ∆𝜉 𝛷𝑑𝑥 =
𝐷𝑑𝐷𝑑𝑠

𝐷𝑠

2

𝑐2
4𝜋𝐺𝛴 = 2

𝛴(𝜃⃗⃗⃗)

𝛴𝑐𝑟
= 2𝜅(𝜃⃗)        (5.3) 

Здесь используется уравнение Пуассона для связи Ньютоновского 

потенциала с плотностью. Тут же вводим параметр сходимость 𝜅(𝜃⃗) =
𝛴(𝜃⃗⃗⃗)

𝛴𝑐𝑟
. 

Очевидно, что скалярный потенциал теперь можно переписать в терминах 

сходимости: 

𝜓(𝜃⃗) =
1

𝜋
∫ 𝜅 (𝜃′⃗⃗⃗⃗ ) ln |𝜃⃗ − 𝜃′⃗⃗⃗⃗ | 𝑑2𝜃′                           (5.4) 

Следовательно, выражение для угла имеет вид: 

𝛼⃗(𝜃⃗) = 𝛻⃗⃗𝜃𝜓 =
1

𝜋
∫ 𝜅 (𝜃′⃗⃗⃗⃗ )

𝜃⃗⃗⃗−𝜃′⃗⃗⃗⃗⃗

|𝜃⃗⃗⃗−𝜃′⃗⃗⃗⃗⃗|
2 𝑑2𝜃′                         (5.5) 

Локальные свойства изображения, получаемого при линзировании, 

выражаются матрицей Якоби A. 

𝐴 ≡
𝜕𝛽⃗⃗⃗

𝜕𝜃⃗⃗⃗
= (𝛿𝑖𝑗 −

𝜕𝛼𝑖(𝜃⃗⃗⃗)

𝜕𝜃𝑗
) = (𝛿𝑖𝑗 −

𝜕𝜓2(𝜃⃗⃗⃗)

𝜕𝜃𝑖𝜕𝜃𝑗
) = 𝑀−1               (5.6) 

Введем обозначение: 
𝜕𝜓2(𝜃⃗⃗⃗)

𝜕𝜃𝑖𝜕𝜃𝑗
= 𝜓𝑖𝑗. 

Тогда для сходимости имеем: 

 𝜅 =
1

2
(𝜓11 + 𝜓22) =

1

2
𝑡𝑟 𝜓𝑖𝑗                                 (5.7) 

Также важны еще две линейные комбинации 𝜓𝑖𝑗, являющиеся 

компонентами тензора сдвига: 

 𝛾1(𝜃⃗) =
1

2
(𝜓11 − 𝜓22) ≡ 𝛾(𝜃⃗) cos (2𝜑(𝜃⃗))                   (5.8) 

𝛾2(𝜃⃗) = 𝜓12 = 𝜓21 𝛾(𝜃⃗) sin (2𝜑(𝜃⃗))                        (5.9) 
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 Учитывая определения только что введенных величин, можем записать 

матрицу Якоби в таком виде: 

𝐴 = (
1 − 𝜅 − 𝛾1 −𝛾2

𝛾2 1 − 𝜅 + 𝛾1
) = (1 − 𝜅) (

1 0
0 1

) − 𝛾 (
cos 2𝜑 sin 2𝜑
sin 2𝜑 −cos 2𝜑

)(5.10) 

 

Рис. 5.1. Вклад сходимости и сдвига в искажение изображения кругового 

источник.[4] 

 Сходимость отвечает за изотропное увеличение изображения, а сдвиг – за 

искажение [Рис.4.1.]. Величина 𝛾 = (𝛾1
2 + 𝛾2

2)
1

2 определяет модуль сдвига, а 𝜑 – 

ориентацию. Таким образом, источник круглой формы отображается 

гравитационной линзой в эллипс.  

6. Временные задержки. Принцип Ферма. Каустики. 

Принцип Ферма в геометрической оптике утверждает, что траектория, по 

которой движется световой луч, такова, что время прохождения света неизменно 

относительно соседних траекторий. Значит справедливо утверждение: 𝛻⃗⃗𝜃𝑡(𝜃⃗) =

0. Исходя из этого, можно сделать выводы о том, под какими углами можно 

наблюдать изображения и какими они будут. [2] 

Используя уравнение гравитационной линзы и равенство угла отклонения 

луча градиенту скалярного потенциала, произведем выкладки. 

(𝜃⃗ − 𝛽) − 𝛻⃗⃗𝜃𝜓 = 0 

𝛻⃗⃗𝜃 (
1

2
(𝜃⃗ − 𝛽)

2
− 𝜓(𝜃⃗)) = 0 

Выражение  во внешних скобках с точностью, до константы, описывает 

временную задержку, вызванную геометрическим увеличением пути и 

прохождением фотонов через потенциал [Рис.6.1.]. 
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𝑡(𝜃⃗) =
(1 + 𝑧𝑑)

𝑐

𝐷𝑑𝐷𝑑𝑠

𝐷𝑠
(

1

2
(𝜃⃗ − 𝛽)

2
− 𝜓(𝜃⃗)) 

 

 

Рис.6.1. Графики временных задержек, 

соответствующие сферически-

симметричному полю линзы. Точками 

обозначены положения изображений.[2] 

 

 

Для более сложных потенциалов нужно рассматривать всю плоскость 𝜃. 

Матрица 𝑇 описывает кривизну поверхности 𝑡(𝜃). Существует три типа 

стационарных точек двумерной поверхности: минимумы, седловые точки и 

максимумы. Тип можно определить по знакам собственных значений матрицы 

𝑇 ∝ 𝐴. Если оба собственных значения  положительны – это минимум 

(поверхность искривляется кверху), если разного знака – седловая точка, если 

отрицательны – максимум. Поскольку увеличение обратно 𝑑𝑒𝑡𝐴, изображения, 

соответствующие точкам минимума и максимума, получается увеличенными, а 

для седловидной точки характерно отрицательное увеличение.  

 

 

 

Рис.6.2. График полной временной задержки 

в зависимости от смещения источника 

относительно оси линза – наблюдатель.[2] 

 

 

 

Из рисунка 6.2. видно, что при смещении наблюдателя (источника) от оси, 

на которой расположены линза и источник (наблюдатель), количество, 
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положение и тип стационарных точек меняются. Причем при некотором 

значении 𝜃 два изображения сливаются и исчезают. При сближении 

изображений кривизна поверхности стремится к 0, а увеличение и яркость 

изображений сильно возрастают. Линии в 𝜃 пространстве называются 

критическими, а соответствующие линии в 𝛽 пространстве – каустиками. Они 

ограничивают области с различным количеством изображений. При пересечении 

источником каустики в сторону уменьшения угла 𝛽, количество изображений 

увеличивается в два раза. При большом значении 𝜃 присутствует одно 

изображение. Таким образом, количество изображений нечетно. 

 

Рис.6.3. Изображение точечного 

источника сферически-симметричной 

линзой. Слева – положения 

изображений и критические линии, 

справа – исходное положение 

источника и каустики.[2] 

 

 

 

Рис.6.4. Изображения протяженного 

источника, полученные с помощью 

эллиптической линзы. Наверху – 

большие дуги, состоящие из 

нескольких слившихся изображений. 

Внизу кольцеобразные изображения 

источника, покрывающего большую 

часть ромбовидной каустики.[2] 

 

 

7. Методы получения оценки и профиля массы по результатам сильного и 

слабого линзирования.  

Сильное линзирование.  
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При сильном линзировании мы получаем множественные изображения 

фоновых галактик, сильно искаженные дуги, гигантские дуги, кольца. С 

помощью этих данных можно судить о массе, сконцентрированной в 

центральной части линзы, внутри радиуса Эйнштейна. Гигантские дуги 

возникают вблизи критических кривых, которые соответствуют каустикам в 

пространстве фоновых источников. В первом приближении, предполагается 

сферически-симметричное распределение массы линзы. Средняя поверхностная 

плотность массы, ограниченной тангенциальной критической кривой, равна 

критической поверхностной плотности. Тогда для оценки массы можем 

использовать соотношение 〈𝛴(𝜃𝑎𝑟𝑐)〉 ≈ 𝛴(𝜃𝐸) = 𝛴𝑐𝑟 . Для массы имеем: 

𝑀(𝜃𝑎𝑟𝑐) ≈ 𝛴𝑐𝑟𝜋(𝐷𝑑𝜃𝑎𝑟𝑐)2 

Эта оценка дает точность порядка 30%, которая зависит от уровня 

ассиметрии в массовом распределении. 

Определение массы в центральной области линзы можно провести точнее, 

если имеется несколько искаженных изображений, потому что в этом случае 

можно использовать детальное моделирование. [5] Так вначале можно 

подобрать модель массового распределения, соответствующую наблюдаемым 

данным. Затем эта модель предсказывает наличие других дополнительных 

изображений. В случае подтверждения строится новая усложненная модель. 

Далее процесс повторяется. Точность таких оценок массы увеличивается на 

порядок.  

Для осуществления данного подхода используются Фурье преобразования 

и алгоритм FFT (Fast Fourier Transform). В данных рассуждениях исследуется 

область с конечной массой. Определим преобразования Фурье для 

интересующих нас величин. Обозначим через 𝒌 переменную трехмерного 

пространства Фурье, а через 𝒍 соответствующий угол.  

𝜅̂(𝒍) = ∫ 𝑑2𝜃
 

𝑅2 𝜅(𝜃)exp (𝑖𝒍, 𝜽)                                (7.1) 

𝜅(𝜽) =
1

(2𝜋)2 ∫ 𝑑2𝑙
 

𝑅2 𝜅̂(𝑙)exp (−𝑖𝒍, 𝜽)                          (7.2) 

В пространстве Фурье образов взятие градиента заменяется умножением: 

−|𝒍|2𝜓̂(𝑙) = 2𝜅̂(𝒍) 

При 𝒍 = 𝟎 потенциал не определен, однако этот случай соответствует 

константе, и мы можем ее занулить.  
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𝜶̂(𝒍) = −𝑖𝒍𝜓̂(𝒍) 

𝛾(𝒍) = − (
𝑙1

2 − 𝑙2
2

2
+ 𝑖𝑙1𝑙2) 𝜓̂(𝒍) 

При достаточно малых 𝜅 интеграл 6.2 может быть аппроксимирован 

суммой над точками равномерной сетки. Дискретное преобразование Фурье 

использует значения 𝜅 на 𝜃-сетке для вычисления 𝜅̂ на 𝑙-сетке. [6] Затем можно 

найти 𝜓̂(𝑙), 𝜶̂(𝒍), 𝛾(𝒍) и вернуться с помощью обратных преобразований Фурье в 

пространство объектов. Для других точек эти характеристики могут быть 

получены путем интерполяции. По полученным данным можно уточнить модель 

распределения массы.  

Слабое линзирование. Алгоритм Кайзера- Сквайерса.  

Для восстановления профиля массы в большем телесном угле имеет смысл 

прибегнуть к слабому линзированию, для которого характерно формирование 

одного слабо деформированного изображения. Искажения изображения за счет 

прохождения света сквозь гравитационное поле массивного объекта 

наблюдаются в тангенциальном направлении. Искажения, вызванные шумами, 

деформируют изображение во всех направлениях с равной вероятностью.[8] В 

то время как реальные размеры источника не известны, есть возможность 

сделать выводы о распределении массы в значительной области пространства, 

анализируя эллиптичность “дужек”. Здесь возникает проблема, связанная с тем, 

что мы видим галактики, спроецированные на плоскость, перпендикулярную 

лучу зрения. Однако если предположить, что в пространстве нет 

предпочтительного направления для ориентации галактик, то в среднем при 

хорошей статистике неискаженное изображение будет иметь форму круга. При 

слабом линзировании изображение круглого источника выглядит 

эллиптическим с осями: 𝑎 =
𝑟

1−𝜅−𝛾
 , 𝑏 =

𝑟

1−𝜅+𝛾
, где r-радиус неискаженного 

объекта. Тогда эллиптичность задается соотношением 6.3, в котором учтено, что 

для слабого линзирования 𝜅, 𝛾 ≪ 1. 

𝜖 =
𝑎−𝑏

𝑎+𝑏
=

𝛾

1−𝜅
≈ 𝛾                                                 (7.3) 

Таким образом, при слабом линзировании эллиптичность непосредственно 

измеряет сдвиг. Вообще говоря, эллиптичность как и сдвиг имеет две 

компоненты: 𝜖1 = 𝜖 cos 2𝜑,  𝜖2 = 𝜖 sin 2𝜑. Результирующая эллиптичность 
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складывается из внутренней и внешней, но при хорошей статистике значение 

эллиптичности опять же стремится к сдвигу, который нам и нужен.  

𝜖𝑖 = 𝜖𝑖
(𝑠)

+ 𝛾𝑖 = 𝜖(𝑠) (
cos 2𝜑
sin 2𝜑

) + (
𝛾1

𝛾2
) 

〈𝜖〉 ≈ 〈𝛾〉                                                    (7.4) 

Теперь перейдем непосредственно к алгоритму, позволяющему 

определить распределение плотности массы.[7] Метод Кайзера-Сквайерса 

основан на том, что сдвиг и сходимость являются линейными комбинациями 

скалярного потенциала и как следствие могут выражаться друг через друга. 

Подразумевается, что компоненты сдвига измеряются экспериментально 

[Рис.7.1.].  

  

 

Рис.7.1. Экспериментально 

полученная зависимость сдвига от 

расстояния от центра линзы.[4] 

 

 

После чего вычисляется зависимость сходимости от угла, что сразу же 

дает возможность перейти к плотности.  

𝜅(𝜽) =
1

𝜋
∫ 𝑑2(𝜽′)𝑅𝑒[𝐷∗(𝜽 − 𝜽′)𝛾(𝜃′)]

  

𝑅2                         (7.5) 

 𝐷-комплексное ядро свертки. 

𝐷(𝜃) =
(𝜃2

2 − 𝜃1
2) − 2𝑖𝜃1𝜃2

𝜃4  

𝛴(𝜽) = 𝛴𝑐𝑟 𝜅(𝜽) 

Таким образом восстанавливается профиль массы в достаточно большом 

телесном угле. 
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Рис.7.2. Изображение 

скопления, наложенное 

слева на поле сдвига, 

полученное в результате 

наблюдения дужек, а 

справа на поверхностное 

распределение массы.[7] 

 

Реконструкция , изображенная на рисунке 7.2. была выполнена с 

использованием метода конечного поля, с помощью которого сходимость в 

любой точке 𝜃 получается через величину сходимости в точке 𝜃0. В этом методе 

берется криволинейный интеграл 7.6., и подобрав в качестве нижнего предела 

точку с пренебрежимо малой сходимостью, можно избежать неоднозначности в 

зависимости 𝜅(𝜽). В этом заключается преимущество данного метода над 

алгоритмом Кайзера-Сквайерса, в котором необходимо считать свертку на всей 

𝜃- плоскости. 

𝜅(𝜽) = 𝜅(𝜽0) + ∫ 𝑑𝒍 𝛻
𝜽

𝜽0
𝜅(𝜽(𝒍))                                (7.6)[7] 

8. Использования гравитационного линзирования для обнаружения и 

исследования темной материи. 

Физика гравитационного линзирования зависит только от массового 

распределения вещества в пространстве, поэтому эффекты слабого и сильного 

линцирования используют для обнаружения и изучения темной материи.    

 Результаты сильного линзирования показали, что наблюдаемой барионной 

массы галактик не хватает, чтобы формировать значительно смещенные друг от 

друга изображения. Таким образом, если бы не было темных гало вокруг 

галактик и кластеров, то не было бы достаточно сильного искривления 

пространства, и не наблюдались бы изображения на угловых расстояниях более 

2′′ друг от друга, однако, такие случаи были зафиксированы.  

 Если для сильного линзирования можно делать оценки массы только 

внутри радиуса Эйнштейна(~10 кПк), то слабое линзирование позволяет 

исследовать значительно большее пространство вокруг линзы. Анализируя 

слабо искривленные дужки фоновых галактик, были получены оценки радиуса 

темного гало ~ 100кпк. [9] 
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 Метод Кайзера-Сквайерса был применен к ряду кластеров, также масса 

этих объектов была вычислена другими методами: рентгеновские наблюдения, 

динамика удаленных от центра звезд. Эти подходы согласуются и дополняют 

друг друга.  

Данные, накапливаемые в течение нескольких десятилетий, и 

проанализированные с помощью различных методов, приводят к выводу о том, 

что темной материи в 5-6 раз больше, чем барионной. Количество темного 

вещества относительно барионного и его распределение важно для понимания 

формирования вселенной. В частности зависимость доли темной материи от 

расстояния до центра галактики (кластера галактик) дает важную информацию о 

механизмах формирования галактик и взаимодействии темной и барионной 

материи. Исследования показали, что распределение плотности массы 

согласуются с профилями Наварро-Фрэнка-Вайта и Эйнасто [Рис.8.1.]. [7] Надо 

заметить, что внутренние области гораздо сложнее поддаются моделированию, 

поскольку надо учитывать роль барионного вещества. Общая оценка массы 

внутри радиуса Эйнштейна не сильно зависит от выбора профиля.  

  

 

Рис.8.1. Зависимость приведенной 

плотности вещества от 

приведенного расстояния до центра 

линзы в логарифмическом 

масштабе. 

 

 

 

Возникает проблема, связанная со сложностью определения барионной 

массы. Однако фотометрия позволяет получить отношение 
𝑀

𝐿
, что может 

использоваться для оценки распределения массы звезд. Таким образом, зная 

распределение всей материи и барионной отдельно, можно оценить долю 

темной материи. 



24 
 

 

Таблица. Отношения масса-

светимость некоторых 

скоплений.[7] 

 

 

Современные проекты, такие как Гайа и Чандра, позволяют увеличить 

отношение сигнал/шум, и получать наиболее правдивые данные для анализа 

распределения массы.  

9. Заключение 

 Итак, для поиска темной материи необходимо собрать данные о 

распределении интенсивности в каком-либо диапазоне частот в некотором 

телесном угле. Лучшие данные можно получить с помощью космических 

телескопов с большой разрешающей способностью и малой астигматической 

аберрацией. Область для исследования можно выбрать по результатам сильного 

линзирования. Полученные данные визуализируются, и по характеру искажений 

изображений выбирается центр масс, от которого ведется отсчет угловых 

расстояний. Далее область разбивается на ячейки, по которым производится 

усреднение эллиптичности, которая для удаленных от центра изображений 

фактически равна сдвигу. По получены данным проводится фитирование, и 

строится зависимость сдвига от расстояния до центра. Далее применяется 

алгоритм Кайзера- Сквайерса (вычисляется интеграл 6.5.) и восстанавливается 

распределение плотности. Поскольку анализируются данные по конечной 

области пространства, стоит использовать метод конечного поля (вычисляется 

интеграл 7.6.). Затем можно создать математическую модель, удовлетворяющую 

полученным данным. Она может выделить области, в которых могут находиться 

изображения, необходимые для улучшения модели. Эти области стоит изучить в 

других частотных диапазонах, и если удастся найти новые изображения, 

массовая модель приблизится к истинному распределению массы. После 

нескольких таких итераций можно достаточно точно определить полную массу в 

этой области пространства. Если в линзе есть барионное вещество, то интересно 

сравнить массу темной материи и излучающей. Но стоит отметить, что сейчас в 

Млечном Пути удается найти и полностью темные клампы.[10] Таким образом, 

можно детектировать темную материю и делать выводы о ее распределении в 

пространстве.  
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