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1 Введение
Известно, что Вселенная расширяется, т.е увеличивается расстояние между

двумя отдалёнными ее частями с течением времени. Расширение является основным
элементом теории горячего Большого взрыва. В работе будет рассматриваться од-
на из моделей такой Вселенной - Вселенная Фридмана-Робертсона-Уокера. Интересно
изучать поведение различных полей и их физических явлений, таких как темп релак-
сации за счет гравитационного взаимодействия, в расширяющейся Вселенной.

Целью данной работы является опровержение результата полученного в рабо-
те O. Erken, P. Sikivie, H. Tam, Q. Yang - "Cosmic axion thermalization"для скорости
релаксации масивного комплексного скалярного поля за счет гравитационного взаи-
модействия на ЬВ стадии в случае слабых неоднородностей, а так же обощение полу-
ченного результата на RD стадию при дополнительных условиях.

3



2 Комплексное скалярное поле в возмущенной мет-
рике
Фридмана-Робертсона-Уокера
Рассмотрим возмущенную метрику Фридмана-Робертсона-Уокера вида:

gµν = diag((1 + 2Ψ),−a2(1− 2Φ),−a2(1− 2Φ),−a2(1− 2Φ)) (2.1)

где a=a(t),Ψ = Ψ(~x, t),Φ = Φ(~x, t).Стоит отметить, что мы будем пользоваться стан-
дартной системой едениц ~ = c = 1.

Далее рассмотрим лагранжиан комплексного скалярного поля вида:

£ =
1

2
gµν(∂µφ∂νφ

∗ + ∂µφ
∗∂νφ)− m2

2
φφ∗ (2.2)

Будем всегда считать что греческие индексы ν, µ принимают значения (0,1,2,3), а ла-
тинские i,j,k - (1,2,3).

Получим уравнение движения для нашего скалярного поля.Для этого прирав-
няем вариацию действия нулю

gµν∂µ∂νφ− gµνΓλµν∂λφ−m2φ = 0 (2.3)

где Γλµν - символы Кристоффеля, соответсвующие метрике gµν .
Для метрики Фридмана-Робертсона-Уокера можно получить следущие ненуле-

вые символы Кристоффеля

Γ0
00 =

Ψ̇

1 + 2Φ
; Γ0

i0 =
∂iΨ

1 + 2Ψ

Γ0
ii =
−a(aΦ̇− ȧ(1− 2Φ))

1 + 2Ψ
; Γi00 =

∂iΨ

a2(1− 2Φ)

Γii0 =
−a(aΦ̇− ȧ(1− 2Φ))

a2(1− 2Φ)
; Γk 6=iii =

∂iΦ

1− 2Φ

Γiii =
−∂iΦ

1− 2Φ
; Γiik =

−∂kΦ
1− 2Φ

(2.4)

Подставляя выражения для символов Кристоффеля (2.4) в уравнение движе-
ния (2.3) получим

− φ̈

1 + 2Ψ
+

4φ
a2(1− 2Φ)

+
∂iΨ∂iφ

(1 + 2Ψ)a2(1− 2Φ)
+

φ̇Ψ̇

(1 + 2Ψ)(1 + 2Ψ)
+

+
3

a2(1− 2Φ)
×a(aΦ̇− ȧ(1− 2Φ))φ̇

1 + 2Ψ
− 2

a2(1− 2Φ)
× ∂kΨ∂kφ

(1− 2Φ)
+

1

a2(1− 2Φ)
× ∂kΦ∂kφ

(1− 2Φ)
−m2φ = 0

(2.5)

Умножая выражение (2.5) на −(1 + 2Ψ)(1 − 2Φ) и учитывая выражение для
постоянной Хаббла H = ȧ/a, получаем

(1− 2Φ)φ̈− 1 + 2Ψ

a2
4φ− 1

a2

(
∂iΨ−

1 + 2Ψ

1− 2Φ
∂iΦ

)
∂iφ−

−
(

1− 2Φ

1 + 2Ψ
Ψ̇ + Φ̇− 3H(1− 2Φ)

)
φ̇+ (1− 2Φ)(1 + 2Ψ)m2φ = 0

(2.6)

4



Рассматривая приблежение малых,слабонеоднородных гравитационных потен-
циалов |Φ|, |Ψ|, |l∂iΨ|, |l∂iΦ|, |τΨ̇|, |τ Φ̇|≪ 1, где τ характерное время изменения неод-
нородностей, l характерный пространственный масштаб неоднородностей.Раскроем
выражение (2.6) с первым порядком по ним:

(1−2Φ)φ̈− 1 + 2Ψ

a2
4φ− 1

a2
(∂iΨ− ∂iΦ) ∂iφ+

(
3H − 6HΦ− 3Φ̇− Ψ̇

)
φ̇+m2φ = 0 (2.7)

Далее рассмотрим уравнения Эйнштейна

Rµν −
1

2
Rgµν = 8πGTµν (2.8)

для "00"компоненты можно получить уравнение типа Пуассона[4]

4Φ− 3Ha2(Φ̇ +HΨ) = 4πGa2δρ (2.9)

где δρ = ρ − ρ̄ - неоднородность плотности энергии, ρ - плотность энергии скалярно-
го поля, ρ̄ - однородная плотность энергии,которая согласно уравнениям Фридмана
равна: ρ̄ = 3H2/(8πG).

3 Уравнение Шредингера-Пуассона на MD стадии
Зная Лагранжиан скалярного поля можно построить тензор энергии импульса

и далее найти плотность энергии.

Tµν =
2δ£

δgµν
−£gµν =

1

2
(∂µφ∂νφ

∗ + ∂µφ
∗∂νφ)− 1

2
gµν(∂

λφ∂λφ
∗ −m2φφ∗) (3.1)

Стоит отметить, что основной вклад в неоднородности плотности энергии на
МD стадии вносит скалярное поле. Пользуясь "00"компонентой найденного ранее тен-
зора энергии импульса получаем:

ρφ = T00g
00 =

1

1 + 2Ψ
(φ̇φ̇∗ − 1 + 2Ψ

2
(
φ̇φ̇∗

1 + 2Ψ
− OφO∗

a2(1− 2Φ)
−m2φφ∗)) (3.2)

Далее разложим гравитационные потенциаалы до первого порядка[2]

1

1 + 2Ψ
≈ 1− 2Ψ ;

1

1− 2Φ
≈ 1 + 2Φ (3.3)

и подставим их в (3.2):

ρφ =
1− 2Ψ

2
φ̇φ̇∗ +

1 + 2Φ

2a2
OφOφ∗ +

1

2
m2φφ∗ (3.4)

Однородная плотность энергии равна:

ρ̄φ =
1

2
(| ˙̄φ|2 +m2|φ̄|2) (3.5)

Пользуясь (3.4) и (3.5) мы легко можем найти неоднородность плотности энер-
гии δρ = ρ− ρ̄.

Будем считать, что на MD стадии Φ = Ψ. Это равенство выполнено в том слу-
чае,если тензор анизотропных напряжений равен 0, что верно в нашем случае[4].Тогда
уравнения (2.7) и (2.9) преобретают вид

(1− 2Φ)φ̈+
(

3H − 6HΦ− 4Φ̇
)
φ̇− 1 + 2Φ

a2
4φ+m2φ = 0 (3.6)
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4Φ− 3Ha2(Φ̇ +HΦ) = 4πGa2δρ (3.7)

Будем искать решение в виде

φ =
e−imt

a3/2
ψ (3.8)

где ψ - медленно меняющаяся функция по сравнению с фактором e−imt

Для дальнейших преобразований нам понядобятся следущие формулы:

φ̇ =
e−imt

a3/2

(
−imψ + ψ̇ − 3

2
Hψ

)
(3.9)

φ̈ =
e−imt

a3/2

(
−imψ̇ + ψ̈ − 3

2
Hψ̇ − 3

2
ψḢ

)
+
e−imt

a3/2

(
−im− 3

2
H

)(
−imψ + ψ̇ − 3

2
Hψ

)
(3.10)

Тогда, подставляя выражения (3.8)-(3.10) в уравнение движения скалярного
поля (3.6) и уравнение для плотности энергии скалярного поля(3.4), они преобразо-
вываются к виду

(1−2Φ)(ψ̈−2imψ̇)−4Φ̇(ψ̇− imψ) =
1 + 2Φ

a2
4ψ−2(m2Φ− 3

4
(Ḣ+

3

2
H2)(1−2Φ)+3HΦ̇)ψ

(3.11)

a3ρφ =
1− 2Φ

2
(|ψ̇|2 − 3HRe(ψ̇ψ∗)− 2mIm(ψ̇ψ∗)) +

1 + 2Φ

2a2
|Oψ|2+

+m2|ψ|2(1 +
9H2

8m2
− Φ[1 +

9H2

4m2
)]

(3.12)

Так же следует получить выражение для однородной плотности энергии с уче-
том нашего решения

φ̄ =
e−imt

a3/2
ψ̄, ψ̄ = const. (3.13)

Подставим (3.13) в выражение для плотности ρ̄φ = 1
2
(| ˙̄φ|2 +m2|φ̄|2)

ρ̄φ =
1

2a3
|ψ̄|2

(
−(im)2 +

9

4
H2 +m2

)
=

1

a3
|ψ̄|2

(
9

8
H2 +m2

)
(3.14)

Теперь, зная неоднородность плотности энергии δρ = ρ − ρ̄ можно написать
уравнение типа Пуассона (3.7) в безразмерных координатах:

4Φ− 3Ha2(Φ̇ +HΦ) =
4πG

a
(
1− 2Φ

2
[|ψ̇|2 − 3HRe(ψ̇ψ∗)− 2mIm(ψ̇ψ∗)]+

+
1 + 2Φ

2a2
|Oψ|2 +m2(|ψ|2 − |ψ̄|2)(1 +

9H2

8m2
)−m2|ψ|2Φ[1 +

9H2

4m2
])

(3.15)
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Чтобы провести анализ полученных уравнений необходимо сдлеать некоторые
приближения.
•Для начала рассматриваем скалярное поле холодной темной материи(CDM),т.е как
предел быстрых осциляций:

H/m� 1 , Ḣ ∼ H2 (Con.1)

•Рассматриваем характерные размеры неоднородностей l c масштабом

1

m
� l� 1

H
, l ∼ 1√

Hm
(Con.2)

•Введем малый параметр ε = 1/ml.

Произведем оценку влечины H/m,функции ψ и ее пространственных м времен-
ных производных, а так же велечину малости производных гравитационного потен-
циала Φ.Получим соотношение между характерным временем изменения τ и харак-
терным масштабом l неоднородностей.

Из (Con.2) можно получить оценку величиныH/m:

l ∼ 1√
Hm

⇒ m2l2 ∼ m

H
⇒ H

m
= O(ε2)

Как уже отмечалось ранее, из уравнений Фридмана, однородная плотность
энергии равна

ρ̄φ =
3H2

8πG
= 3H2Mpl

2 (3.16)

Тогда из (3.14) и (3.16) получаем:

3H2Mpl =
m2

a3
(1 +

9H2

8m2
)

Учитывая (Сon.1) оценим велечину ψ:

ψ ∼ ψ̇ ∼ HMpl

m
= MplO(ε2)

Отсюда и (Con.1) сразу следует соотношение для ψ̇

ψ̇

m
∼

˙̄ψ

m
∼ ḢMpl

m2
=
H2Mpl

m2
= MplO(ε4)

С другой стороны
ψ̇

m
∼ ψ

mτ
∼ MplO(ε2)

mτ

В соответсвии с двумя различными оценками можно найти соотношение между
τ и малым параметром ε, а как следствие между τ и l :

1

mτ
∼ O(ε2)⇒ ε =

1√
mτ
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Продолжим оценивать малости производных функции ψ

ψ̈

m2
∼

¨̄ψ

m2
∼ ḢHMpl

m3
∼ H3Mpl

m3
= MplO(ε6)

4ψ
m2
∼ 4ψ̄

m2
∼ ψ̄

m2l2
= MplO(ε2)ε2 = MplO(ε4)

Теперь оценим велечину малости производных потенциала Φ Естественно поло-
жить Φ = O(ε2)(нерелятивистский предел для гравитационного потенциалда), тогда

4Φ

m2
∼ Φ

m2l2
∼ O(ε4)

Φ̇

m
∼ Φ

mτ
∼ O(ε4)

На этом закончим с оценками велечин и перейдем непосредственно к преобразо-
ванию уравнений(3.11) и (3.15) с учетом полученных приближений.Предварительно
поделив оба уравнения на m2 и оставляя только величины по порядку малости не
превосходящие O(ε4) получим:

−2iψ̇

m
=
4ψ
a2m2

− 2Φψ (3.17)

4Φ

m2
=

4πG

a
(|ψ|2 − |ψ̄|2) (3.18)

Производя замену Φ = Φ0/a получаем систему уравнений Шредингера-Пуассона:

iψ̇ = − 4ψ
2a2m

+
mΦ0ψ

a
(3.19)

4Φ0 = 4πGm2(|ψ|2 − |ψ̄|2) (3.20)

Такая система имеет решение:

Φ0(t, ~r) = −Gm
2

a

∫
d3y
|ψ(t, ~y)|2 − ψ̄(t)|2

|~r − ~y|
(3.21)

Из (3.19) и (3.21) можно получить гамильтониан системы

H(t, ~r) = − 4
2ma2

− Gm3

a2

∫
d3y
|ψ(t, ~y)|2 − ψ̄(t)|2

|~r − ~y|
(3.22)

А следовательно гамильтониан отвечающий за гравитационное взаимодействие:

Hg(t, ~r) = −Gm
3

a2

∫
d3y
|ψ(t, ~y)|2 − ψ̄(t)|2

|~r − ~y|
(3.23)

Исходя из уравнений (3.12) и (3.14), а так же из полученных приближений,
можно получить

δρ = ρ− ρ̄ = |ψ|2 − |ψ̄|2

Из гамильтониана (3.23) видно что темп релаксации комплексного скалярного
поля пропорционален плотности неоднородности неоднородности

Γ ∝ δρ, (3.24)

что опровергает результат полученный в работе [3].
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4 Уравнение Шредингера-Пуассона на RD стадии
На RD стадииосновной в клад в неоднородность метрики вносит релятивист-

ское вещество, однако интересно изучить поведение неоднородностей поля в такой
ситуации

В этом разделе мы будем пользоваться конфорными координатами. В таких
координатах метрика пространственно-плоской однородной и изотропной Вселенной
записывается в виде

ds2 = a2(η)[dη2 − dxidxi] = a2(η)ηµνdx
µdxν (4.1)

где ηµν - метрика Минковского.
Конфорное время η связано с космологическим временем t следующим образом

a(η)dη = dt

В дальнейшем будем обозначать производную по конформному времени штри-
хом, а по космологическому, как и до этого, точкой. Таким образом для параметра
Хаббла имеем

H =
ȧ

a
=
a′

a2
(4.2)

Учитывая, что на RD стадии a ∝ η получаем

H =
1

aη
(4.3)

Так же мы будем пользоваться конформным импульсом k, который связан с
физическим импульсом q соотношением

q =
k

a
(4.4)

Уравнения Эйнштейна, учитывающие неоднородность ультрарелятивистского
вещества и скалярного поля, в возмущенной метрике имеют вид

k2Φ + 3
a′

a
Φ′ + 3

a′2

a2
Φ = −4πGa2(δργ + δρφ) (4.5)

Φ′′ + 3
a′

a
Φ′ +

(
2
a′′

a
− a′2

a2

)
Φ = 4πGa2δpγ (4.6)

где δργ - неоднородность плотности энергии радиации, δpγ - неоднородность давления
радиации, δρφ - неоднородность плотности энергии скалярного поля.

Дополним систему уравнений связью между неоднородностью плотности энер-
гии и неоднородностью давления для ультрарелятивистской компоненты среды

δpγ = u2γδργ

где u2γ - скорость распространения звука в среде.
Прибавляя к уравнению (4.6) уравнение (4.5), умноженное на u2γ и учитывая

выше представленную связь, придем к уравнению

Φ′′ + 3
a′

a
(1 + u2γ)Φ

′ +

[
2
a′′

a
− a′2

a2
(1− 3u2γ)

]
Φ + u2γk

2Φ = −4πGa2u2γδρφ (4.7)
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Далее рассмотрим уравнение Фридмана и ’ij’ компоненты уравнения Эйнштей-
на для однородного случая в пространственно плоской модели

a′2

a4
=

8

3
πGρ (4.8)

2
a′′

a3
− a′2

a4
= −8πGp (4.9)

где ρ и p - плотность энергии и давление однородной материи
Прибавляя к уравнению (4.9) уравнение (4.8), умноженное на u2s, получим

2
a′′

a3
− a′2

a4
(1− 3u2s) = 8πG(ρu2s − p) (4.10)

Cчитая u2s = ω, где ω - параметр связывающий плотность энергии с давлением:
ps = ωρs, из (4.10) получим следующее соотношение

2
a′′

a
− a′2

a2
(1− 3u2γ) = 0 (4.11)

Стоит отметить что для радиации параметр ω = 1
3

Учитывая все выше перечисленное уравнение (4.7) на RD стадии преобразо-
вывается к следующему виду

Φ′′ +
4

η
Φ′ +

1

3
k2Φ = −4

3
πGa2δρφ (4.12)

Решение данного уравнения под звуковым горизонтом,т.е uγkη ≫ 1, без неод-
нородности плотности энергии скалярного поля известно[4]

Ψ0 = −3Φ(i)
1

(uγkη)2
cos (uγkη) = −9Φ(i)

H2

q2
cos(

q√
3H

) (4.13)

где Φ(i) - амплитуда моды.

Под звуковым горизонтом главную роль играет третье слагаемое в левой части
(4.12), и мы получаем

Φ1 = −4πGa2

k2
δρφ = −4πGa2

k2
δCDMρφ =

36Φ(i)πGa
2

k2
ln(

kη√
3

)ρφ (4.14)

где δCDM =
δρφ
ρφ

= −9Φ(i)ln( kη√
3
), Φ(i) - амплитуда моды.

Для дальнейшего преобразования полученного решения нам потребуются неко-
торые соотношения.

•Рассмотрим выражениедля плотности энтропии закон сохранения полной эн-
тропии Вселенной в сопутствующем объеме

sa3 = const = seqa
3
eq ; s = g∗(T )

4π2

90
T 3 ; seq = g∗(Teq)

4π2

90
T 3
eq

где g∗(T ) - число эффективных степенй свободы.Здесь и везде далее параметры с
пометкой (eq) отностяся к моменту перехода от RD к MD стадии.

Тогда очевидно соотношение(aeq
a

)
=

(
g∗(T )T 3

g∗(Teq)T 3
eq

)
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•Рассмотрим параметр Хаббла на RD и equation стадии

H =
a′

a2
; H =

a′

a2

Как уже отмечалось ранее на RD стадии a = const · η , а сдедовательно a′ = const , и
мы приходим к равенству

H

Heq

=
(aeq
a

)2
•В момент η = ηeq выполняются следующие равенства[4]

8π

3
Gρeqφ =

8π

3
Gρeqrad =

1

2
H2
eq

ρφ ∝
1

a3
→ ρφ = ρeqφ

(aeq
a

)3
С учетом вышеперечисленных соотношений (4.14) принимает следующий вид

Φ1 ==
36Φ(i)πGa

2

k2
ln(

kη√
3

)ρeqφ

(aeq
a

)3
=

36Φ(i)πG

q2
ln(

q√
3H

)ρeqφ

(
g∗(T )1/3T

g∗(Teq)1/3Teq

)3

=

=
27Φ(i)H

2
eq

4q2
ln(

q√
3H

)

(
g∗(T )1/3T

g∗(Teq)1/3Teq

)3

(4.15)

Общее решение уравнения (4.12) можно записать в виде

Φ = Φ0 + Φ1 = −9Φ(i)cos(
q√
3H

)

(
g∗(T )1/3T

g∗(Teq)1/3Teq

)4

+
27Φ(i)H

2
eq

4q2
ln(

q√
3H

)

(
g∗(T )1/3T

g∗(Teq)1/3Teq

)3

(4.16)
Первое слагаемое представленного выражения отвечает за неоднородности радиации,
а соответсвенно второе за неоднородности скалярного поля.
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