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Введение
В работе изучается конденсат Бозе-Эйнштейна, состоящий из нереляти-

вистских частиц с ненулевым угловым моментом l. Поведение конденсата вне
электромагнитной ловушки активно исследуются экспериментально [1]. По-
добные системы также возникают в моделях сверхлегкой темной материи, в
которых конденсат Бозе-Эйнштейна может сформироваться в процессе обра-
зования крупномасштабной структуры Вселенной в центре каждой галактики
[2], а также в компактных структурах в результате релаксационных процес-
сов, вызванных гравитационным взаимодействием между частицами [3]. Кон-
денсат формируется в виде гравитационно-связанных «капель» – Бозе-звезд.
Во вращающихся галактиках и других компактных структурах ожидается
появление Бозе-звезд с ненулевым угловым моментом. При этом вопрос об
их существовании и стабильности остается открытым.

В работе мы аналитически доказываем, что такие объекты неустойчивы
при произвольном l 6= 0. Мы вычисляем профили и доминирующие моды
неустойчивости вращающихся звезд: численно при 1 ≤ l ≤ 15, а также при-
водим аналитические формулы при l � 1. В попытках поиска возможного
способа стабилизировать систему, мы дополнительно её модифицируем двумя
способами. Во-первых, мы добавим в систему потенциал самодействия вида
λ|ψ|2
8m2 . В работе рассматриваются все три случая отталкивающих, притягиваю-
щих и пренебрежимо малых взаимодействий: λ > 0, λ < 0 и λ = 0. Последние
два особенно интересны, так как они актуальны для популярных моделей тем-
ной материи с КХД аксионами [4] и ультралегкими аксион-подобными части-
цами [5, 6]. Во-вторых, будет рассмотрено поведение Бозе-звезды во внешнем
гравитационном потенциале вида Uext = −GMext

r .
Однако, в случае наличия внешнего гравитационного потенциала или его

отсутствия мы аналитически доказываем неустойчивость таких объектов, ес-
ли параметр самодействия λ отрицательный или пренебрежимо мал. Также в
работе численно показывается, что в моделях с достаточно сильным отталки-
вающим самодействием и отсутствием внешнего гравитационного потенциала
Бозе-звезда с l = 1 устойчива.

Всюду в работе используется система h̄ = c = k = 1.
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1.Вращающиеся Бозе-звезды.
Система самогравитирующих нерелятивистских бозонов с массой m опи-

сывается при больших числах заполнения волновой функцией ψ(t,x) и гра-
витационным потенциалом U(t,x), удовлетворяющим уравнениям Гросса-
Питаевского и Пуассона,

i∂tψ = −∆ψ

2m
+

(
m(U + Uext) +

λ|ψ|2
8m2

)
ψ , (1)

∆U = 4πmG|ψ|2 , (2)

где Uext = −GMext/r описывает внешнее гравитационное поле, а потенциал
λ|ψ|2/8m2 описывает самодействие бозонов. Ниже мы рассмотрим все три
случая отталкивающих, притягивающих и пренебрежимо малых взаимодей-
ствий: λ > 0, λ < 0 и λ = 0.

Важно отметить, что нерелятивистская эволюция (1), (2) сохраняет ряд
величин: общую массу M (число бозонов N),

M ≡ mN = m

∫
d3x |ψ|2 , (3)

полную энергию

E =

∫
d3x

[|∇ψ|2
2m

+m

(
U

2
+ Uext

)
|ψ|2 +

λ|ψ|4
16m2

]
, (4)

и компоненты углового момента,

Jz = −i
∫
d3xψ∗∂ϕψ , (5)

где ϕ = arctan(y/x) - угловая цилиндрическая координата.
Вращающуюся Бозе-звезду с угловым моментом l можно определить как

стационарное и осесимметричное решение системы (1), (2) в цилиндрической
системе координат (ρ, z, ϕ)

ψs(x) = ψs(ρ, z) e−iωst+ilϕ , (6)

где ws - энергия связи бозонов. Это означает, что его волновая функция
ψs(ρ, z) подчиняется стационарному уравнению Шредингера

ωs ψs = −∆ψs
2m

+

(
m(Us + Uext) +

λ|ψs|2
8m2

)
ψs , (7)
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с учетом условий спадания волновой функции на пространственных бесконеч-
ностях и регулярности функции на оси симметрии ψs(0, z) = 0. В то время как
U = Us(ρ, z) удовлетворяет уравнению (2). Здесь и далее мы пометим все ве-
личины Бозе-звезды нижним индексом s и будем иметь в виду, что аксиально-
симметричный лапласиан ∆ψs ≡ ∂2

zψs + ρ−1∂ρ(ρ∂ρψs)− l2ψs/ρ2 содержит
центробежный барьер в последнем члене. Уравнение (7) описывает нере-
лятивистские частицы, занимающие нижний уровень потенциальной ямы
mUs + mUext + λ|ψs|2/(8m2). Частицы обладают энергией ωs и угловым мо-
ментом l.
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Рис. 1: Профиль Бозе-звезды, вращающейся с l = 1 вокруг оси z, в случае
λ = 0, Mext = 0. Левый и правый график показывают сечения профиля
плотности |ψs(x)|2 при y = 0 и z = 0 соответственно. Тильды над буквами
обозначают безразмерные единицы измерения (введенные в основном тексте)

Заметим, что m и G исчезают из всех уравнений после замены координат
и полей с произвольным параметром v0:

x = x̃/mv0, t = t̃/mv2
0, ωs = mv2

0ω̃s, ψ = v2
0(m/G)1/2ψ̃, U = v2

0Ũ (8)

Тогда выражение (3) можно переписать в следующем виде:

M =
v0

mG

∫
d3x̃ |ψ̃|2 =

v0

mG
M̃ . (9)

Для удобства выберем v0 = mGM , чтобы сделать общую масштабирован-
ную массу равной единице: M̃ = 1. В результате уравнения содержат только
две константы: 1) параметр самодействия λ̃ = λGM 2 и M̃ext = Mext/M . Ана-
логично, используя замену координат, выражение (4) принимает вид:
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Es = Ẽsm
2G2M 3

s . (10)

Введенная систем единиц M = G = 1 очень удобна для численных расче-
тов, поэтому все данные на графиках и таблицах мы будем приводить в этих
единицах.
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Рис. 2: Вращающаяся Бозе-звезда с l = 10, λ = 0 и Uext = 0. Используются
безразмерные единицы измерения.

Мы вычисляем стационарные профили ψs(ρ, z), Us(ρ, z) Бозе-звезд при
больших l, решая численно осесимметричную систему (1), (2) с учетом (8).
С этой целью мы используем метод Евклидовой эволюции для поля ψ и алго-
ритм SOR для гравитационного потенциала U , подробнее см. Приложение B.
Численная процедура сходится к конфигурациям с минимальной энергией –
вращающимся Бозе-звездам с заданным l. На практике мы используем этот
алгоритм при достаточно больших l = 1÷15. Все полученные решения имеют
характерные тороидальные формы, см. Рис. 1. и Рис. 2.

Значения энергии Бозе-звезд с различными l перечислены в таблице 1 и
изображены на Рис. 3 (точки). При больших l они приближаются к аналити-
ческому выражению (линии), полученному в пределе l� 1, cм. Приложение
A.

Важно заметить что Бозе-звезды, вращающиеся или нет, экстремизируют
полную энергию E при данной массе M = Ms. Другими словами, они явля-
ются экстремумами функционала F ≡ E − ωsN , где множитель Лагранджа
ωs фиксирует N = M/m. Чтобы это показать явно, заменим энергию E в F
на следующий функционал:
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Рис. 3: Энергия Es вращающихся бозе-звезд в отсутствии самодействия λ = 0
и внешнего гравитационного потенциала Uext = 0. Точки представляют собой
численные данные, а сплошная линия является аналитическим результатом
при большом l, см. Приложение A.

l Ẽs · 103 l Ẽs · 103 l Ẽs · 103

0 −54.2 1 −19.0 2 −10.3
3 −6.57 4 −4.64 5 −3.49
6 −2.74 7 −2.24 10 −1.34

15 −0.736 � 1 Ẽs ≈ −αl(αl + 1)/(8π2l2)

Таблица 1: Энергия вращающихся Бозе-звезд при различных l в случае λ = 0
иMext = 0; физические единицы могут быть восстановлены с помощью урав-
нения (10). Данные с l ≤ 15 получены численно, в то время как последний
элемент описывает асимптотику при больших l, см. Приложение A (уравне-
ние (A.7)). Параметры αl определяются уравнением. (A.8).
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E =

∫
d3x

[
|∇ψ|2

2m
+
(
m(U + Uext) + λu

)
|ψ|2 +

(∇U)2

8πG
− 4λm2u2

]
(11)

где гравитационный потенциал U(x) и потенциал самодействия u(x) будем
считать новыми независимыми полями. Функционал F достигает экстремума
при U = Us и u = us, удовлетворяющих

∆U = 4πGm|ψ|2 и u = |ψ|2/8m2 . (12)

Подставляя это решение обратно в выражение (11) мы приходим к изначаль-
ному виду энергии (4). Дальнейшая вариация F по отношению к ψ∗(x) дает
уравнение Гросса-Питаевского (7), которое вместе с уравнениями (12) обра-
зует ту же стационарную систему для профиля Бозе-звезды, что и раньше.
Таким образом, вращающиеся Бозе-звезды действительно являются экстре-
мумами F , с фиксированными l и Ms.

Вопрос в том, являются ли эти объекты локальными минимумами энергии
при фиксированной массе Ms и полным угловым моментом Jz, s. В следую-
щем разделе мы покажем, что при l ≥ 1, λ ≤ 0 и Mext > 0 они не являются
таковыми. Скорее, это энергетические седловые точки, которые могут быть
разрушены сколь угодно малыми возмущениями, растущими экспоненциаль-
но со временем.

Стоит отметить, что приведенный выше аргумент определяет ωs, как энер-
гию связи частиц внутри Бозе-звезды, см. уравнение (2). Действительно, бес-
конечно малое количество дополнительных частиц изменяет энергию Es и
число Ns бозонов, но не значение F , которое является экстремальным. Та-
ким образом,

dEs = ωsdNs , (13)

то есть каждая новая частица добавляет Бозе-звезде энергию ωs. В случае
λ = 0 и Uext = 0 последнее выражение может быть объединено с уравнени-
ем (10),откуда получим

ωs = 3Ẽsm
3G2M 2

s = 3mEs/Ms . (14)

Данное равенство получено для проверки численных результатов.
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2. Запрещающая теорема
Докажем, что вращающиеся Бозе-звезды (6) неустойчивы при l 6= 0 , если

самодействие пренебрежимо мало или λ < 0, а также при наличии внешнего
потенциала или его отсутствии. Эти случаи особенные, так как при λ ≤ 0
новый энергетический функционал (11) ограничен снизу по отношению к U
и u, а потому достигает минимума при их физических значениях (12). Та-
ким образом, мы можем рассмотреть общую независимую вариацию ψ(x),
зафиксировав при этом U(x) и u(x). Бозе-звезда окажется неустойчивой, ес-
ли найдется такое изменение ψ(x), которое уменьшит энергию (11), так как
дальнейшая минимизация функционала по U и u, определяемая уравнения-
ми (12), уменьшит энергию еще больше.

Введем вспомогательный инструмент: набор волновых функций ΨL(x) ∝
eiLϕ с угловыми моментами L, удовлетворяющих уравнению Шредингера в
потенциале Бозе-звезды (12) и внешнем гравитационном потенциале (если он
есть),

ωLΨL = −∆ΨL

2m
+

(
m(Us + Uext) + λus

)
ΨL . (15)

Для каждого L выбираем собственную функцию с минимальным ωL и нор-
мируем ее на единицу:

∫
d3x |ΨL|2 = 1.

Отметим, что ΨL не являются колебательными модами Бозе-звезды: по-
следние включают связанные возмущения ψ, U , и u. Но уравнение (15) дает
простую квантово-механическую аналогию, которая будет полезна в даль-
нейшем. Во-первых, при L = l оно совпадает с уравнением (7) для профиля
конденсата. В этом случае wl = ws. Во-вторых, и как следствие первого, соб-
ственные значения ωL с L < l меньше, чем ωs, потому что они имеют более
слабые центробежные барьеры L2/2mr2. В частности, уравнение (15) с L = l
и L = 0 дает,

ωs − ω0 ≥
∫
d3x

l2 |Ψl|2
2mr2

> 0 , (16)

где мы видим, что ω0 является минимальным собственным значением гамиль-
тониана уравнения (15). В-третьих, в пределе L → ∞ собственные функции
ΨL становятся большими по размеру и поэтому взаимодействуют при боль-
ших x с асимптотикой потенциала (Us + Uext) → −G(M + Mext)/|x|. Соот-
ветствующие собственные значения напоминают значения атома водорода:
ωL ≈ −m3G2(M +Mext)

2(L+ 1)−2/2 ∼ O(L−2) при L� 1.
Построим бесконечно малое изменение, которое уменьшает энергию (11)

исходной конфигурации Бозе-звезды {ψ′s, U ′s, u′s} с числом частиц N ′s и уг-
ловым моментом l ≥ 1. Сначала мы извлечем dNs частиц из конденсата,
получая таким образом звезду {ψs, Us, us} с Ns = N ′s − dNs частиц. Затем
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мы добавляем обратно dN0 частиц в невращающемся состоянии Ψ0 и dNL

частиц в состоянии ΨL с L� 1, которые удовлетворяют уравнению (15) с по-
тенциалами Us и us. Потребуем, чтобы результирующая конфигурация имела
те же самые полную массу и полный угловой момент, тогда

dNs = dN0 + dNL и l dNs = LdNL . (17)

Физически такая деформация соответствует одновременному переходу dNs

частиц конденсата из состояния с угловым моментом l в состояния с L = 0 и
L� 1.

В результате волновая функция будет иметь вид:

ψ′s → ψ = ψs(x) + dN
1/2
0 Ψ0(x) + dN

1/2
L ΨL(x) . (18)

Подставляя уравнение (18) в выражение (11), получаем энергию Ef ≡
E[ψ, Us, us] этого конечного состояния:

Ef = Es + ω0dN0 + ωLdNL , (19)

где Es - энергия Бозе-звезды с частицами Ns, и мы использовали уравне-
ние (15). Перекрестные члены между ψs, Ψ0, и ΨL исчезнут из-за различных
зависимостей от ϕ. Напомним, что ψl ∝ eiLϕ и ΨL ∝ eilϕ, в то время как Ψ0,
Us и us не зависят от ϕ.

С другой стороны, изначальная Бозе-звезды содержала Ns + dNs частиц
и обладала энергией

E ′s = Es + ωsdNs +O(dN 2
s ) , (20)

см. уравнение (13). Таким образом, изменение энергии в приведенном выше
переходе равно

Ef − E ′s = (ω0 − ωs)dNs +O(L−1) dNs < 0 , (21)

где dN0 и dNL были выражены из уравнения (17), а также учтено, что
ωL = O(L−2) стремится к нулю при L� 0. Последнее неравенство вытекает
из уравнения (16). Мы приходим к выводу, что конфигурация (18) действи-
тельно обладает меньшей энергией, чем вращающаяся Бозе-звезда.

Приведенный выше аргумент доказывает, что все вращающиеся Бозе-
звезды неустойчивы при λ ≤ 0 и произвольном l ≥ 1 во внешнем гравитацион-
ном потенциале. Он также качественно описывает механизм нестабильности.
А именно, энергия вращающейся Бозе-звезды уменьшается, если некоторые
частицы совершают переходы в невращающиеся состояния и передают свои
угловые импульсы другим частицам, двигающимся к периферии системы.
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ωl

ωl+∆l

ωl−∆l

mΦ
x, y, z

Рис. 4: (Не масштабированно) Неустойчивость вращающейся звезды Бозе.

Предположительно конечным состоянием этого процесса является сатурно-
подобная конфигурация: одна или несколько Бозе-звезд с нулевым угловым
моментом, окруженных вращающимся облаком диффузных частиц.

Однако отметим, что до сих пор мы рассматривали явный, но очень
неоптимальный способ уменьшения энергии Бозе-звезды. В частности, мы
не учитывали изменения потенцмалов Us, us и зафиксировали угловые мо-
менты конечных состояний частиц. Ниже мы увидим, что моды, отвечающие
парным переходам частиц в состояния с угловыми моментами l±∆l (см. Рис.
4), растут наиболее быстро.

11



3. Линейный анализ нестабильностей при произ-
вольном l

3.1. Случай λ = 0, Uext = 0.
Ранее в 1 части работы мы получили стационарные профили Бозе-звезд

ψs(ρ, z), Us(ρ, z) для больших l, как решение системы уравнений (1), (2).
Рассмотрим поведение возмущений над Бозе-звездой. Общее возмущение

ψ имеет произвольную зависимость от ϕ и поэтому включает моды с произ-
вольными угловыми моментами l′. Однако можно заметить, что на линейном
уровне моды с l′ = l+ ∆l и l′ = l−∆l пермешиваются друг с другом, но не с
другими модами. Таким образом, каждая такая пара может рассматриваться
независимо. Тогда рассмотрим возмущение следующего вида:

ψ =
[
ψs(r, z) + δψ1 ei∆lϕ + δψ2 e−i∆lϕ

]
e−iωst+ilϕ ,

U = Us(r, z) + δU ei∆lϕ + δU ∗e−i∆lϕ , (22)

где δψ1, δψ2 и δU зависят только от ρ, z и t.
Подставляя равенства (22) в систему Шредингера-Пуассона (1), (2) мы

приходим к уравнениям,

(ωs + i∂t)δψ1 = −∆r,zδψ1

2m
+mψsδU +

[
(l + ∆l)2

2mr2
+mUs

]
δψ1 ,

(ωs + i∂t)δψ2 = −∆r,zδψ2

2m
+mψsδU

∗ +

[
(l −∆l)2

2mr2
+mUs

]
δψ2 , (23)

∆r,zδU −
∆l2

r2
δU = 4πmG (ψ∗sδψ1 + ψsδψ

∗
2) ,

где нелинейные члены по δψ1, δψ2, δU опущены, а ∆r, z ≡ ∂2
r + r−1∂r + ∂2

z -
радиальная часть лапласиана. Последняя строка в уравнении (23) включает
в себя как δψ1, так и δψ2, так что они действительно не являются независи-
мыми.

Для поиска экспоненциально растущих мод

δψ1, δψ
∗
2, δU ∝ eµt c Reµ > 0 , (24)

мы эволюционируем осесимметричные уравнения (23) в реальном времени
t, используя численный метод приложения B. Нормы Ml±∆l(t) ≡

∫
d3x|δψ|2

12



возмущений на фоне звезды l = 2 показаны на Рис. 5. Они действительно
растут экспоненциально1, как предсказано нашей запрещающей теоремой.

1

1010

1020

0 5 · 103 104

M̃
l±

∆
l

t̃

∆
l =

1

∆
l =

3

∆l = 0

∆l = 2

Рис. 5: Нормы Ml±∆l (логарифмическая шкала) линейного возмущения, раз-
вивающиеся со временем на фоне Бозе-звезды с l = 2 при λ = 0.

В численных расчетах удобнее держать возмущения конечными. Для это-
го мы умножаем δψ1, δψ2 и δU на некоторый комплексный коэффициент
∆N после каждого шага по времени. Полученное перенормированное реше-
ние приближается к профилю наиболее быстро растущей моды неустойчиво-
сти при больших t, в то время как соответствующий показатель роста равен
µ = ∆t−1 ln ∆N .

В соответствии с масштабированием показатель роста µ можно пересчи-
тать в физические единицы

µ = µ̃m3G2M 2
s , (25)

На рис. 6 мы демонстрируем доминирующие моды неустойчивости Бозе-
звезд с l = 1, 2 и 10. Как и фоновые звезды, они имеют тороидальную форму.
Экспоненты µ̃ и изменения углового момента ∆l этих возмущений перечис-
лены в таблице 2 и показаны на рис. 7, 8. Эти данные приближаются к ана-
литическим выражениям приложения A (сплошная линия) при l� 1.

1Экспоненты графиков с ∆l = 1 и 3 заметно близки, но возмущение с ∆l = 1 растет быстрее.
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(b) l = 2
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(c) l = 10

|δψ̃|2 · 107

Рис. 6: Доминирующие моды неустойчивости δψ(r, z) вращающихся Бозе-
звезд: (a) l = 1, ∆l = 2; (b) l = 2, ∆l = 1; и (c) l = 10, ∆l = 6. Рассматрива-
ется модель с λ = 0 и Uext = 0.

l ∆l Re µ̃ · 103 Im µ̃ · 103 l ∆l Re µ̃ · 103 Im µ̃ · 103

1 2 7.73 −16.2 2 1 3.05 −9.64
3 3 2.42 −6.82 5 4 1.41 −3.45
7 5 0.91 −2.12 10 6 0.55 −1.13
15 8 0.29 −0.58 � 1 Ур. A.11 ; A.12 ; A.13

Таблица 2: Параметры доминирующих мод неустойчивости во вращающихся
Бозе-звездах с различными l: изменение углового момента ∆l и комплекс-
ные показатели роста µ̃, см. уравнения приложения A (A.13), (A.12),(A.11).
Данные приведены для случая λ = 0 и Uext = 0.
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Рис. 7: Параметры доминирующих мод неустойчивости на фоне Бозе-звезд с
различными l: а) изменение углового момента ∆l и (b) показатель экспонен-
ты роста Re µ̃ в единицах уравнения (25). Мы рассматриваем пренебрежимо
малое само-взаимодействие частиц (λ = 0) в отсутствии внешнего гравита-
ционного потенциала. Численные данные (круги) быстро приближаются к
асимптотике при больших l см. приложение A (A.11, A.13) (линии).
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Im
µ̃
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Рис. 8: Мнимые части доминирующих показателей неустойчивости Imµ вы-
числяются на фоне вращающихся Бозе-звезд с различными l. Рассмотрива-
ется пренебрежимо малое самодействие λ = 0 в отсутствии внешнего грави-
тационного потенциала. Численные данные (круги) приближаются к анали-
тической асимптотике см. приложение A (A.12) (линия) при больших l

3.2. Случай λ 6= 0, Uext = 0.
Используя процедуру первой части, мы вычисляем Бозе-звезды при раз-

ных ненулевых λ в отсутствии внешнего гравитационного потенциала Uext =

0. Здесь мы рассмотрим подробно случай с l = 1. Восстанавливая член λ|ψ|2
8m2 ψ в

уравнении (1), здесь мы снова чередуем шаги евклидовой эволюции ∆τ = i∆t
с перенормировками ψ и алгоритм SOR для U в уравнении (2). Это дает кон-
фигурации с M̃s = 1.

Отметим, что итерации сходятся только при λ > λcr, где критический па-
раметр самодействия λcr < 0 равен

λcr = (−738± 4)/(GM 2
s ) . (26)

Это означает, что решения с фиксированной массой не существуют при па-
раметре самодействия меньше λcr (более сильное притяжение) или, наоборот,
при данном отрицательном λ и массами больше критической Ms > M

(l=1)
cr ,

где

M (l=1)
cr ≈ 27.2/(−Gλ)1/2 . (27)
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Действительно, можно численно видеть, что при фиксированном λ < 0
масса Ms увеличивается при увеличении |ωs| до достижения максимум M =

M
(l=1)
cr при dMs/dωs ≈ 0 [7, 8]. За пределами этой критической массы наш

метод перестает работать.
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Рис. 9: Показатель неустойчивости Reµ самой быстрой растущей моды Бозе-
звезды с l = 1, как функция параметра самодействия бозонов λ при Ms =
const. Единицы измерения µ вводятся в уравнении (25). Затененные области
соответствуют коллапсирующим звездам при больших отрицательных λ и
абсолютно стабильным звездам при λ > λ0.

Рассмотренное выше поведение при M > M
(l=1)
cr такое же, как и в слу-

чае невращающихся Бозе-звезд [9]. Физически это вызвано доминирующим в
плотном конденсате Бозе-Эйнштейна самодействием, заставляющее объекты
с большой массой коллапсировать, то есть сжиматься самоподобным образом
[7, 10]. Коллапс заканчивается потоками релятивистских бозонов, покидаю-
щих конденсат [10]. Благодаря этому процессу при λ < λcr не существует
стационарных Бозе-звезд с заданной массой.

В противоположном случае λ > λcr мы изучаем устойчивость Бозе-
звезды, добавляя члены самодействия к уравнениям (23) и эволюционируя
возмущения в реальном времени. Нормы δψ1, δψ2 и δU растут экспоненци-
ально, если λ < λ0, где λ0

λ0 ≈ (672± 2)/(GM 2
s ) . (28)

Их экспоненты Re µ̃ показаны на Рис. 9. Таким образом, во всей области
λcr < λ < λ0 Бозе-звезда с l = 1 распадается, теряя свой угловой момент.
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При λ > λ0 возмущения остаются ограниченными в течение всей эволю-
ции в реальном времени. Несмотря на это, мы используем описанный ранее
метод для определения показателя экспоненты роста и получаем точки в пра-
вой части Рис. 9, которые согласуются с Reµ ≈ 0. Мы приходим к выводу,
что Бозе-звезды с l = 1 абсолютно стабильны при λ > λ0 или

M > M
(l=1)
0 ≈ 25.9/(Gλ)1/2 , (29)

где было переписано уравнение (28) в терминах массы при фиксированном
параметре самодействия.

3.3. Случай λ = 0, Uext 6= 0.
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0 0.05 0.1 0.15 0.2

R
eµ̃
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Рис. 10: Показатели неустойчивости Re µ̃ мод с ∆l = 1 и 2 Бозе-звезды с
l = 1, как функция внешней массы Mext. Единицы измерения µ̃ вводятся в
уравнении (25).

Снова используя процедуру первой части, мы вычисляем Бозе-звезды при
разных ненулевых Mext используя пренебрежимо малый параметр самодей-
ствия λ = 0. Здесь мы остановимся на рассмотрении случая с l = 1. Вос-
станавливая вклад слагаемого mUextψ в уравнении (1) с учетом масштабиро-
вания (8), мы снова численно решаем уравнения, чередуя шаги евклидовой
эволюции ∆τ = i∆t с перенормировками ψ и алгоритм SOR для U в уравне-
нии (2). И снова получаем конфигурации с M̃s = 1.
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Здесь важно отметить, что внешний гравитационный потенциал
−GMext/r имеет сингулярность при r = 0, что не влияет на наш численный
метод для поиска вращающейся Бозе-звезды с l 6= 0, но создает проблемы
при поиске возмущений, если l ± ∆l = 0. Поэтому мы модифицируем его
(в цилиндрических координатах) − GMext√

ρ2+z2+a2
, вводя параметр a. Выбор этого

параметра и точность в связи с его введением рассмотрена в проложении B.
Мы изучаем устойчивость Бозе-звезды, добавляя слагаемые учитываю-

щие наличие внешнего гравитационного потенциала к уравнениям (23) и эво-
люционируя возмущения в реальном времени. В зависимости отMext некото-
рые δψ1, δψ2 и δU (мы расмотрели моды с ∆l = 1 и 2) растут экспоненциаль-
но, что свидетельствует о нестабильности Бозе-звезды. Их показатели экспо-
нент Re µ̃ изображены на Рис. 10. Отметим, что в этом случае Бозе-звезда
всегда не стабильна, несмотря на то, что одна из мод, начиная с некоторого
значени Mext всеже стабилизируется.

Проведенный здесь численный расчет воспроизводит результат запреща-
ющей теоремы, рассмотренной во второй части.
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Заключение.
В данной работе мы аналитически доказали, что вращающиеся нереля-

тивистские Бозе-звезды неустойчивы при любом угловом моменте, если па-
раметр самодействия λ ≤ 0 или они находятся во внешнем гравитацион-
ном поле. Этот результат актуален для популярных моделей с аксионнной
(КХД) темной материей. Мы также показали, что в моделях с отталкиваю-
щим самодействием (λ > 0), звезды с l = 1 нестабильны с массами ниже
Ms, 0 ≈ 25.9/(λG)1/2 и абсолютно стабильны, если Ms > Ms, 0.

Мы вычислили показатели роста возмущений неустойчивых вращающих-
ся звезд в уравнения (11) – (17) и в таблице 2, что позволяет вычислить
время жизни. Можно показать, что вращающиеся Бозе-звезды (1) не могут
зародиться в реалистичных сценариях формирования [9] – [15] и на самом
деле не могут даже рассматриваться как долго живущие квазистационарные
состояния. Это наблюдение имеет ряд феноменологических следствий.

Хотя Бозе-звезда l = 1 становится стабильной при достаточно сильном
отталкивающем самодействием λ > λ0, уравнение (26), судьба объектов с
большим l гораздо менее тривиальна. В моделях с доминирующим самоот-
талкиванием вихри l ≥ 2 распадаются [17] на элементарные с l = 1, и послед-
ние равномерно распределяются по имеющемуся объему. Это говорит о том,
что осесимметричные конфигурации l ≥ 2 (6) неустойчивы при любом λ, и
реальный вопрос заключается в том, распадаются ли они в гравитационном
поле на связанные объекты с l элементарными вихрями внутри или большая
часть вихрей мигрируют на периферию системы.

Наконец, заметим, что хотя формирование вращающихся Бозе-звезд тре-
бует тонкой настройки исходных данных или специального механизма, рас-
пады этих объектов настолько сложны, что их исследования могут иметь на-
учную ценность сами по себе. Действительно, мы ожидаем, что Бозе-звезды
с большим l разобьются на ∆l ∝ l не вращающихся компонент, колеблющих-
ся и вращающихся вокруг взаимного центра. Это состояние должно суще-
ствовать в течение некоторого времени, пока, возможно, не нарушится из-
за субдоминантной нестабильность. В случае притягивающего самодействия
компонентные объекты могут коллапсировать, разрываясь на релятивистские
аксионы [10] или фотоны [16], поскольку они больше не защищены центро-
бежными барьерами.
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Приложение

Приложение A: Аналитическое решение при l� 1

При больших l профили вращающихся Бозе-звезд и их моды неустойчи-
вости могут быть оценены аналитически. Поясним идею аппроксимации с
помощью грубых оценок. В этом приложении мы рассмотрим случай прене-
брежимо малого самодействия, λ = 0 и отсутствия внешнего гравитационного
потенциала Uext = 0.

Размер Rs быстро вращающейся Бозе-звезды велик. Действительно, он
определяется балансом между гравитационными и центробежными силами,
|Φs| ∼ GMs/Rs ∼ (l/mRs)

2, и которые растут как

Rs = 2πl2/(m2GMsαl) ∝ l2 (A.1)

при l→ +∞, где мы ввели параметр αl. С другой стороны, типичный им-
пульс конденсированных бозонов связан с глубиной потенциальной ямы звез-
ды: ∆r,zψs/ψs ∼ m2Φs ∝ l−2 и , следовательно, ∂r, zψs/ψs ∝ l−1. Это сразу же
наводит на мысль, что звезда с большим l имеет форму кольца с радиусом и
толщиной, пропорциональными l2 и l соответственно.

Это свойство явно выражено в численных профилях, полученных в первой
части основной работы. Действительно, объект с l = 10 на рисунке 2 напо-
минает тор с двумя существенно различными радиусами. Естественно, мы
хотим описать такие кольцеобразные объекты в координатах x2 = (x2, y2),

r = Rs + lx2 , z = ly2 , (A.2)

которые не зависят от l. Напомним также, что размер кольца Rs ∝ l2 опре-
деляется новым параметром αl, который будет указан впоследствии.

Приведенное выше наблюдение фиксирует зависимость от l энергии связи
ωs ≡ ω2/l

2 и полей,

ψs = l−2 ψ2(x2) , Φs = l−2Φ2(x2)−
l2

2m2R2
s

, (A.3)

где мы снова предположили, что масса Бозе-звезды (3) не зависит от l. Под-
ставляя анзац (A.3) в в уравнения (1), (2) и игнорируя вклады, подавленные
l−1, мы приходим к уравнениям для профиля кольца,

ω2ψ2 = −∆2ψ2

2m
+mΦ2ψ2 , (A.4)

∆2Φ2 = 4πmG|ψ2|2 . (A.5)
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Здесь и далее ∆2 ≡ ∂2
x2

+ ∂2
y2

– двумерный лапласиан.
По-видимому, уравнения (A.4),(A.5) повторяют оригинальнаю задачу

Шредингера-Ньютона (1), (2), но в двух измерениях. Таким образом, сечение
ϕ = const нашей Бозе-звезды при большом l имеет тот же профиль, что и
ее невращающийся низкоразмерный аналог. Дополнительный фактор eilϕ в
уравнении (6) обеспечивает вращение.

Естественно ожидать, что решение уравнений (А.4), (A.5) имеет круговую
симметрию в плоскости x2 , т. е. зависит от r2

2 ≡ x2
2 + y2

2. Как следствие, ис-
ходная трехмерная звезда также симметрична. Мы используем это свойство
для вычисления звездного профиля: ψ2 = ψ2(r2) и Φ2(r2) в уравнениях (A.4),
(A.5) и решаем полученные обыкновенные дифференциальные уравнения ме-
тодом стрельбы. Заметим, что результирующая функция ψ2(r2) вещественна.

0

0.5

1

0 1 2 3

|ψ
′ 2
|

r′2

l = 15

l = 2

asymptotics l� 1

Рис. 11: Двумерная Бозе-звезда |ψ2(r2)| (сплошная линия) сравнивается с
сечениями вращающихся трехмерных звезд |l2ψs(Rs + lr2, 0)| (точки). В по-
следнем случае мы определяем радиус Бозе-звезды Rs как положение мак-
симума |ψs| при z = ϕ = 0, а затем используем безразмерные единицы из-
мерения с параметром v′0, полученным из уравнения (A.6). Рассматривается
случай λ = 0.

Численно снова удобно использовать безразмерные единицы с G = m = 1
и впоследствии восстанавливать физические термины. Для этого мы масшта-
бируем x2 = x′2/mv′0 и ψ2 = v′20 (m/G)1/2ψ′2, Φ2 = v′20 Φ′2 как в трех измерениях,
но с новым параметром v′0, выбранным для создания ψ′2(0) = 1. Двумерный
профиль ψ′2(r′2) показан на рис. 11 (сплошная линия). Примечательно, что
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сечения ϕ = const трехмерных вращающихся звезд (точек) приближаются к
этому графику при l→ +∞.

Учитывая ψ2, мы вычисляем параметры Бозе-звезды. Переписывая ин-
теграл (3) при больших Rs в двумерных терминах (A.2), (A.3) и выполняя
масштабирование, мы приходим к изначальной массе Бозе-звезды,

Ms =
4π2(v′0)

2M ′
2

m2G2Msαl
, (A.6)

где мы использовали уравнение (A.1) и вычислили оставшийся безразмерный
интеграл M ′

2 ≡
∫
d2x′2 |ψ′2|2 ≈ 1.70. На практике это соотношение можно ис-

пользовать для выражения параметра масштабирования v′0 в терминах общей
массы Ms. Аналогично, энергия (4) Бозе-звезды равна,

Es =
m2G2M 3

s

8π2l2
αl

[
αl +

1

2
+ ln(βαl/l

2)

]
. (A.7)

На этот раз мы выразили, v′0 из уравнения. (A.6) и ввели еще один чис-
ловой коэффициент β ≈ 2.86 · 10−2.

Наконец, мы экстремизируем энергию (A.7) относительно параметра αl,
характеризующего радиус Бозе-звезды Rs ∝ l2/αl. Это дает нелинейное урав-
нение 2

2αl + 3/2 + ln(βαl/l
2) = 0 где β ≈ 2.86 · 10−2 . (A.8)

и завершает построение Бозе-звезды при большом l. Напомним, что мы уже
расссматривали энергетическую асимптотику (A.7) в последнем элементе таб-
лицы 1 и на рис. 3. Последний график примерно согласуется с численными
данными даже при l ∼ 1, становясь более точным при больших l. Как все-
гда, энергия связи бозе-частиц внутри Бозе-звезды равна ωs = 3mEs/Ms, см.
Ур. (14).

Теперь мы оцениваем экспоненциально растущие моды, разрушающие
быстро вращающиеся Бозе-звезды.

Для этого мы снова масштабируем координаты и фоновые поля в линей-
ных уравнениях (21) с помощью уравнений (A.2), (A.3). Затем, подставляя
δψ ≡ δψ1, δψ̄ ≡ δψ∗2, δΦ ≡ δU ∝ exp(µt), мы приходим в главном порядке к
задаче на собственные значения

−µ2 η =
p2
ϕ −∆2

2m
ρ+mψ2 δΦ + (mΦ2 − ω2) ρ

µ2 ρ =
p2
ϕ −∆2

2m
η + (mΦ2 − ω2) η , (A.9)

2С численными значениями αl ≈ {1.02, 1.51, 1.82, 2.05, 2.23, 2.38, 2.51, 2.62, 2.72, 2.81} для l =
{1, . . . , 10} и асимптотика при больших l αl = ln l +O(ln ln l).
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∆2δΦ = p2
ϕ δΦ + 8πGmψ2 ρ .

Здесь мы вспомнили, что ψ2(x2) является вещественным и ввели "ве-
щественные"и "мнимые"возмущения ρ(x2) ≡ (δψ + δψ̄)/2 и η(x2) ≡ (δψ −
δψ̄)/2i. Кроме того, в уравнениях (A.9) мы заменяем передачу углового мо-
мента ∆l и комплексный показатель степени µ на параметры

pϕ = l∆l/Rs , µ2 = l2(µ+ ipϕ/mRs) . (A.10)

Решая задачу на собственные значения (A.9), можно найти все колеба-
тельные моды Бозе-звезды при заданном ∆l и определить их показатели µ.
Примечательно, что та же проблема с pϕ = 0 описывает колебания двумер-
ной звезды ψ2(r2), которая устойчива. Поэтому мы сосредоточимся на модах
нестабильности с Reµ > 0 при pϕ 6= 0.

Мы явно вычисляем профили экспоненциально растущих возмуще-
ний, используя ту же стратегию, что и раньше. Подставим вращательно-
инвариантный анзац ρ(r2), η(r2), δΦ(r2) в уравнения (A.9) и выполним мас-
штабирование с параметром v′0, например ρ = v′20 (m/G)1/2ρ′(r′2). Это дает
систему обыкновенных дифференциальных уравнений с двумя безразмерны-
ми константами: собственным значением µ′2 = µ2/(mv

′2
0 ) и масштабирован-

ным безразмерным импульсом p′ϕ = pϕ/(mv
′
0). После этого применяем метод

стрельбы для решения уравнения с условиями регулярности в начале коор-
динат и условиями спадания возмущений на бесконечности.

Наиболее быстро растущее возмущение достигается при µ′2 ≈ 1.49 и
p′ϕ ≈ 1.23. Масштабируя обратно в физические единицы и используя уравне-
ния (A.10), (A.1), мы получаем действительную и мнимую части показателя
роста µ в уравнении (25) с коэффициентами

Re µ̃ =
µ′2 αl

(2πl)2M ′
2

≈ 2.22 · 10−2 αl
l2
, (A.11)

Im µ̃ = − p′ϕ α
3/2
l

(2πl)2(M ′
2)

1/2
≈ −2.39 · 10−2 α

3/2
l

l2
(A.12)

Кроме того, первый из уравнений. (A.10) фиксирует передачу углового мо-
мента, приводящую к нестабильности,

∆l =

[
l p′ϕ

α
1/2
l (M ′

2)
1/2

]
≈
[

0.944 · l
α

1/2
l

]
, (A.13)

где [·] обозначает ближайшее целое число. Напомним, что αl удовлетворяет
уравнению (A.8). Мы предварительно использовали этот результат в основ-
ной части работы для асимптотических выражений и визуализировали их на
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рис. 7, 8. Повторим , что численные результаты третьей части приближаются
к асимптотическим выражениям при больших l на всех рисунках.

Приложение B: Аксиально–симметричный код
Чтобы вычислить звезды c l ≥ 1 численно, введем решетку Nr ×Nz с рав-

номерными отрезками δr, δz в цилиндрических координатах r, z. Узлы этой
решетки (rj, zk) ≡ (jδr, kδz) заполняют большую цилиндрическую область
0 ≤ rj ≤ Lr и 0 ≤ zk ≤ Lz в положительной половине трехмерного простран-
ства по z. Мы сохраняем значения поля ψj, k ≡ ψ(rj, zk) в узлах решетки
и восстановливаем их на z < 0, используя симметрию ψ(r, −z) = ψ(r, z),
U(r, −z) = U(r, z). Мы используем безразмерные единицы с m̃ = G̃ = M̃s =
1 , введенными в первой части основной работы.

Лапласианы в уравнениях (1), (2) дискретизируются стандартным спосо-
бом до второго порядка:

∆ψj, k = (ψj, k+1 + ψj, k−1 − 2ψj, k)/δ
2
z+

+(ψj+1, k + ψj−1, k − 2ψj, k)/δ
2
r+ (B.1)

+(ψj+1, k − ψj−1, k)/(2δrrj)− l2ψj, k/r2
j ,

где аналогичное выражение для ∆Uj,k не имеет последнего члена. Мы предо-
ставляем уравнения решетки с условиями регулярности на оси симметрии3

r = 0: ψ = ∂rΦ = 0 или

ψ0, k = 0 , U−1, k = U1, k . (B.2)

Граничные условия при z = z0 = 0 следуют из z → −z симметрии:

ψj,−1 = ψj, 1 , Uj,−1 = Uj, 1 . (B.3)

Наконец, мы вводим соответствующие условия cпадения на "бесконеч-
ных"пределах решетки r = Lr и z = Lz. Там волновая функция зануляется,

ψj, k = 0 при j = Nr − 1 or k = Nz − 1 , (B.4)

и потенциал близок к асимптотике U ≈ −GM/(r2 + z2)1/2. Последнее условие
может быть записано в независимой от массы форме:

UNr−1, k = UNr−2, k

(
r2
Nr−2 + z2

k

r2
Nr−1 + z2

k

)1/2

, (B.5)

3При l = 0 мы используем ψ−1, k = ψ1, k.
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и аналогично при z = Lz и произвольном rj. Подводя итог, приведенная вы-
ше дискретизация дает набор уравнений эволюции и уравнений Пуассона на
внутренних узлах решетки с граничными значениями полей, фиксированны-
ми уравнениями. (B.2) — (B.5).

Мы решаем уравнение (2) для Uj, k стандартным red-black методом
SOR [18]. После каждого шага релаксации мы эволюционируем4 волновую
функцию в евклидовом времени на ∆τ = i∆t,

ψ
(n+1)
j,k = ψ

(n)
j,k −∆τ Ĥψ

(n)
j,k , (B.6)

где n индексирует шаги, а Ĥ обозначает дискретизированный оператор в пра-
вой части уравнепния (1). Эволюция (B.6) убивает все уровни возбужденной
энергии в ψ при заданном l. Наконец, мы масштабируем ψj,k ∈ ∆N ψj,k для
сохранения общей массы M̃s = 1, а затем переходим к следующему шагу ре-
лаксации. Мы уменьшаем временные шаги с ∆τ ∝ δr, z в начале релаксации
до ∝ δ2

r, z в конце вычислений.
Итерации сходятся, строя Бозе-звезды с точностью до поправок O(δ2

r,z)

от шагах решетки и5 O(L−3
r,z) от размера ящика. Изменяя параметры, мы

численно подтвердили масштабирование численных ошибок с помощью δr,z
и Lr,z. Энергия Бозе-звезды задается дискретизированным интегралом (4), в
то время как ω̃s = 3Ẽs при λ = 0 и Uext = 0 см. уравнение (14).

В практических вычислениях мы используем решетки в диапазоне от
Nr × Nz = 101× 101 и 1501 × 1501. Мы увеличиваем их в два раза, что-
бы контролировать ошибки дискретизации, которые никогда не превышают
δψs/ψs < 10−2. Наши размеры ящиков Lr, z ∝ l2 сильно изменяются с l, чтобы
вместить Бозе-звезды: от L̃r = L̃z = 100 при l = 1 до 22500 при l = 15. Это
сохраняет относительные погрешности конечного объема меньше 10−6. Нако-
нец, мы устанавливаем, что осесимметричные профили Бозе-звезд l = 0, 1
совпадают с теми, что получены с помощью трехмерного кода в пределах
ожидаемой точности 1%.

Как только Бозе-звезда получена, мы эволюционируем уравнения (21) в
реальном времени, извлекая таким образом наиболее быстро растущую мо-
ду линейной нестабильности. Мы используем ту же дискретизацию второго
порядка, что и раньше, и аналогичные граничные условия, что и в уравне-
ниях (B.1) — (B.4). Поскольку эволюция в реальном времени более требо-
вательна к вычислительным ресурсам, мы используем меньшие решетки в
меньших ящиках за счет более низкой точности. Теперь Nr ×Nz колеблется

4Поскольку формула Эйлера (B.6) нестабильна, мы улучшаем ее до полуявного метода: заменяем
ψ
(n)
j, k → ψ

(n+1)
j, k во всех диагональных вкладах оператора Ĥ и выражаем ψ

(n+1)
j, k из полученного уравне-

ния.
5Потому что уравнение B.5 игнорирует дипольную часть гравитационного потенциала Бозе-звезды.
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между 101×101 и 1001×1001, в то время как размеры коробки варьируются
в интервале 102 ≤ L̃r, L̃z ≤ 103. Наша эволюция времени использует шаги
Крэнка–Николсона [18] с ∆t̃ = 0.2 δ̃2

r, z/l
′2. После каждого шага мы выполня-

ем одну итерацию SOR для уравнения δU . Затем мы нормируем6 δψ, δψ̄ и δΦ
константой ∆N и переходим к следующему временному шагу. Мы останавли-
ваем процедуру, когда масштабированные возмущения стабилизируются на
относительном уровене 10−13. На последнем шаге мы вычисляем комплекс-
ный показатель возмущения: µ̃ = ∆t̃−1 ln ∆N . Изменяя ∆l, мы выбираем
доминирующий режим с максимальным Re µ̃.

Как и раньше, мы оцениваем численную точность, изменяяNr, z, Lr, z и ∆t.
Все относительные неточности остаются ниже 1%, самые большие ошибки
связаны с эффектами конечного объема и дискретизации, которые являются
сопостовимыми.

0.007

0.0075

0.008

0 1 2 3 4 5

R
e
µ̃

a2

Рис. 12: Зависимость показателя экспоненты Reµ от параметра a2. График
построен при выборе M̃ext = 0.1 и δr при этом = 1. График зафитирован
линейной по a2 начиная с 1.

Описанный выше численный метод легко обобщается при наличии само-
действия и внешнего гравитационного потенциала. Однако, как мы отмеча-
ли в основной части работы, внешний гравитационный потенциал −GMext/r
имеет сингулярность при r = 0, что не влияет на наш численный метод для
поиска вращающейся Бозе-звезды с l 6= 0, но создает проблемы при поис-
ке возмущений, если l ± ∆l = 0. Поэтому мы модифицируем его (в цилин-

6Эта перенормировка отключена на рис. 6.
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дрических координатах) − GMext√
ρ2+z2+a2

, вводя параметр a. Этот параметр мы

выбираем так, чтобы зависимость полей от него была квадратичной, и мы
кладем его равным δr см. рисунок 12. Относительные неточности связанные
с изменением a также остаются <1%.
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