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Постановка задачи

• Целью настоящей работы является изучение явлений 
классического и квантового хаоса, неустойчивости. Рассмотрение 
различных моделей, в которых проявляется классический и 
квантовый хаос, сопоставление классических неустойчивых 
моделей с их квантовыми аналогами.  



Устойчивость

• ሷ𝑥 = −𝑥 − гармонический осциллятор устойчивый
𝑥 𝑡 = 𝐴 cos 𝑡 + 𝐵 sin 𝑡

• ሷ𝑥 = 𝑥 −
гармонический осциллятор с обратным знаком неустойчивый

𝑥 𝑡 = 𝐴 cosh 𝑡 + 𝐵 sinh 𝑡

Начальное возмущение возрастает экспоненциально 
𝛿𝑥(𝑡)

𝛿𝑥(0)
~𝑒𝑡



Примеры хаоса

Модель Э. Лоренца (1970):

ቐ

ሶ𝑥 = 𝑎(𝑥 − 𝑦)
ሶ𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧

ሶ𝑧 = 𝑥𝑦 − 𝑏𝑧

• Частица в потенциале с двумя ямами под действием 
периодической внешней силы:

ሷ𝑥 + 𝛾
ሶ

𝑥 −
1

2
𝑥 1 − 𝑥2 = cos(νt)

• 𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛) пример дискретной динамической системы в 
которой обнаруживается переход к хаосу путём бифуркаций 
удвоения периода



Свойства и характеристики хаоса

• Эргодичность 

Пусть траектория динамической системы лежит в некоторой 
ограниченной области 𝑈 фазового пространства. Система 
называется эргодической если её фазовая траектория образует в 𝑈
всюду плотное множество

• Показатель Ляпунова  λ = lim
𝑡→∞ 𝛿𝑋(0) →0

1

𝑡
ln

||𝛿𝑋 𝑡 ||

| 𝛿𝑋 0 |

• Автокорреляционная функция С 𝜏 = lim
𝑇→∞

0׬

𝑇
ො𝑥(𝑡) ො𝑥(𝑡 + 𝜏)dt



Квантовый хаос. OTOC

• В классической механике 
𝜕𝑥(𝑡)

𝜕𝑥(0)
~𝑒λ𝑡

• Используя скобку Пуассона 
𝜕𝑥(𝑡)

𝜕𝑥(0)
= − 𝑥 𝑡 , 𝑝 0

• Каноническое квантование 𝑥 𝑡 , 𝑝 0 → 𝑖 ො𝑥 𝑡 , Ƹ𝑝 0

• Некоторый матричный элемент < 𝑓 ො𝑥 𝑡 , Ƹ𝑝 0 𝑖 >

• Суммирование по конечным состояниям 

с𝑖 𝑡 = |< 𝑖 ො𝑥 𝑡 , Ƹ𝑝 0 2 𝑖 > | с𝑖 𝑡 ~ 𝑒2λ𝑡

Усреднение по ансамблю Гиббса:

𝐶𝑇(𝑡) = ෍

𝑖

𝑒 ൗ−𝐸𝑖
𝑇

𝑍
𝑐𝑖(𝑡)



-Гармонический осциллятор

𝑐𝑖 𝑡 = 𝑐𝑜𝑠2 𝑡

-Гармонический осциллятор с обратным знаком
𝑐𝑖 𝑡 = 𝑐𝑜𝑠ℎ2 𝑡



с𝑖 =−< 𝑖 𝑥, 𝑝 2 𝑖 > =

= ෍

𝑓

< 𝑖 𝑥, 𝑝 + 𝑓 >< 𝑓|[𝑥, 𝑝]|𝑖| > = ෍
𝑓

< 𝑓 [𝑥, 𝑝]|𝑖 > |2

[𝑥, 𝑝]2= 𝑥𝑝𝑥𝑝 − 𝑥𝑝2𝑥 − 𝑝𝑥2𝑝 + 𝑝𝑥𝑝𝑥



Квантовый хаос. Сложность

• В теории информации под сложностью понимается количество 
операций, которое нужно совершить над исходными данными 
для получения требуемого результата

• ψ𝑇 = ෡𝑈 ψ𝑅 ψ𝑅 − исходное ψ𝑇 − целевое состояния

• В некоторых задачах ෡𝑈 принадлежит унитарному представлению 
некоторой группы (здесь SL(2,R)) тогда сложностью является 
расстояние на группе от единичного элемента до ෡𝑈



Задача о маятнике с колеблющейся точкой 
подвеса
• Малые отклонения маятника от верхнего положения равновесия:

ሷ𝜑 + 𝜔2 sin 𝜑 = 0 → 𝜑 = 𝜋 + 𝑥 ሷ𝑥 − 𝜔2𝑥 = 0

• При ω=const, верхнее положение неустойчиво

• Если точка подвеса совершает вертикальные колебания (ξ(t)-
смещение по вертикали), то 𝜔2 зависит от времени:

• 𝜔2 𝑡 = 𝜔0
2 − ሷξ 𝜔0 − собственная частота маятника

• Если ξ = ξ0 sin ν𝑡, при достаточно больших ν верхнее положение
может стать устойчивым



Квантовый аналог

• Пусть в начальный момент времени частица находится в основном 
состоянии гармонического осциллятора с собственной частотой 𝜔0 = 1

ψ 0, 𝑥 = 𝑁(0)𝑒−𝑥2/2

• Далее частицу помещают во внешнее поле, её гамильтониан принимает вид

෡𝐻 =
ො𝑝2

2
+ Ω2 ො𝑥2

2

• Состояние эволюционирует согласно уравнению: 𝑖 ሶψ= ෡𝐻ψ

• Решение представимо в виде (см. [3])

ψ 𝑡, 𝑥 = 𝑁(𝑡)𝑒−𝜔(𝑡)𝑥2/2



Сложность состояния

• Для функций вида ψ 𝑡 = 𝑁(𝑡)𝑒−𝜔(𝑡)𝑥2/2

Сложность вычислена в [3] 𝐶 𝑡 =
1

2
cosh−1 1+|𝜔(𝑡)|2

2𝑅𝑒𝜔(𝑡)

𝜔 𝑡 является решением задачи Коши:
ሶ𝜔 = 𝑖 Ω2 − 𝜔2 𝜔 0 = 1

С помощью замены переменных можно свести выражение для
сложности к виду

𝐶 𝑡 =
1

2
cosh−1

|𝑥|2 + |𝑝|2

2



• 𝑥 , 𝑝 удовлетворяют системе уравнений 

• ቊ
ሶ𝑥 = 𝑝

ሶ𝑝 = −Ω2𝑥

• Сложность возрастает только в том случае, когда неустойчиво 
решение классической задачи



Численные результаты

• Для перевёрнутого маятника с зависимостью частоты от времени
𝜔2 𝑡 = 1 + f sin(ν𝑡)

• При различных значениях f и ν вычислялась величина

с𝑛 𝑡 = | < 𝑛 ො𝑥 𝑡 , Ƹ𝑝 0 2 𝑛 >|

• В качестве начального состояния |𝑛 > выбиралось n-e состояние 
гармонического осциллятора.

• В классической задаче для устойчивости верхнего положения
равновесия необходимо f > 2 ν







Заключение

• Была рассмотрена задача об устойчивости верхнего положения 
математического маятника, установлена связь между 
неустойчивостью в классической системе и ростом сложности в 
соответствующей квантовой системе

• Численно исследовано поведение OTOC для квантовой системы, 
аналогичной тому же маятнику, рассмотрен случай, когда точка 
подвеса колеблется по гармоническому закону. Результаты
сопоставлены с устойчивостью в классическом случае.
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