
Московский государственный университет имени М.В.Ломоносова 

 

Физический факультет 

Кафедра физики частиц и космологии 

 

 

 

 

 

 

Курсовая работа 

 

Конформная гравитация вместо тёмной 

материи в галактиках 

 

 

 

 

 

 

 
Студент 207 группы 

Самодинов Мурат Алибекович 

 

Научный руководитель 

член-корр. РАН, доктор физ.-мат. наук,  

Горбунов Дмитрий Сергеевич 

 

 

 
Москва, 2021 



2 
 

Содержание 
 

1. Введение ............................................................................................................................ 3 

2. Общая теория относительности .......................................................................... 3 

3. Конформная гравитация .......................................................................................... 4 

3.1. Вакуумное решение ................................................................................................. 4 

3.2. Материальное решение ........................................................................................ 7 

3.3. Гравитационный потенциал .............................................................................. 9 

4. Кривые вращения галактик ................................................................................. 10 

4.1. Классическое описание ....................................................................................... 10 

4.2. Описание в конформной гравитации .......................................................... 12 

5. Шаровые скопления .................................................................................................. 15 

6. Результаты ..................................................................................................................... 18 

7. Заключение .................................................................................................................... 22 

Список литературы ........................................................................................................... 23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

1. Введение 

 

Наблюдения за движением звезд в галактиках показывают, что 

полученные зависимости скоростей вращения галактик от 

расстояния не согласуются с предсказаниями ньютоновско-

эйнштейновской теорией гравитации. В последней скорости 

вращения должны уменьшаться как 
1

√𝑅
 , 𝑅 – расстояние до центра 

галактики. Наблюдения же показывают, что при определенном 

расстоянии кривые вращения остаются постоянными.  

 

Наблюдения показывают, что в галактиках не хватает видимого 

барионного вещества, для создания необходимого потенциала. 

Наиболее популярное объяснение — введение т. н. темной материи – 

вещества, взаимодействующего с барионным веществом только 

гравитационно.  

 

Но это не единственное объяснение – существуют альтернативные 

теории гравитации. Одна из них – конформная гравитация – 

рассмотрена в данной работе.  

 

2. Общая теория относительности 
 

Главным уравнением ОТО является уравнение Эйнштейна, 

полученное им из принципа наименьшего действия. Действие 

Эйнштейна-Гилберта:  

 

𝐼𝐸𝐻 =
1

16𝜋𝐺
∫𝑑4𝑥√−𝑔 𝑅                                                  (1) 

 

где 𝑅 = 𝑅  𝜇
𝜇

 – свертка тензора Риччи.  

 

Из этого действия получается уравнение Эйнштейна для гравитационного 

поля: 

 

𝑅𝜇ν −
1

2
𝑔𝜇ν𝑅 = 8𝜋𝐺𝑇𝜇ν                                                         (2) 
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где 𝑇𝜇ν – тензор энергии-импульса материи, которая определяет 

гравитационное поле.  

𝑇𝜇ν = −
2

√−𝑔

𝛿𝐼𝑀

𝛿𝑔𝜇ν
                                                                (3) 

 

Шварцшильдом было получено следующее статическое сферически-

симметрическое решение этого уравнения в вакууме, т. е. в области 

пространства, где 𝑇𝜇ν = 0, а распределение материи – сферически-

симметричное:  

 

𝑑𝑠2 = (1 −
2𝐺𝑀

𝑟
)𝑑𝑡2 −

1

1−
2𝐺𝑀

𝑟

𝑑𝑟2 − 𝑟2(𝑠𝑖𝑛2𝜃𝑑𝜙2 + 𝑑𝜃2)            (4) 

 

В слабых гравитационных полях и при нерелятивистской материи 

𝑔00 = 1 + 2𝜑, где 𝜑 – гравитационный потенциал. В этом случае уравнения 

поля дают: 

 

∆𝜑 = 4𝜋𝐺𝜌                                                                        (5) 

 

где ρ – плотность распределения материи. Это классическое уравнение 

Пуассона. 

 

3. Конформная гравитация  

3.1. Вакуумное решение  

 

Действие Эйнштейна-Гилберта выбрано так, чтобы уравнения содержали в 

себе производные метрического тензора не выше второго порядка. Но это 

не является необходимым условием, то есть действие, вообще говоря, 

может быть выбрано другим образом.  

 

В основу теории конформной гравитации закладывается принцип 

локальной конформной инвариантности (по аналогии с локально 

калибровочным принципом инвариантности). Этот принцип требует, 

чтобы действие оставалось инвариантным при любых локальных 

растяжениях 𝑔𝜇ν(𝑥) → Ω2(𝑥)𝑔𝜇ν(𝑥).  
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Этому условию удовлетворяет действие, основанное на тензоре Вейля 

 

𝐶λµνκ = 𝑅λµνκ −
1

2
(𝑔𝜆𝜈𝑅𝜇𝜅 − 𝑔𝜆𝜅𝑅𝜇𝜈 − 𝑔𝜇𝜈𝑅𝜆𝜅 + 𝑔𝜇𝜅𝑅𝜆𝜈)+ 

+
1

6
𝑅(𝑔𝜆𝜈𝑔𝜇𝜅 − 𝑔𝜆𝜅𝑔𝜇𝜈)     (6)                                                                                

 

который остается инвариантным при конформном преобразовании 

𝑔𝜇ν(𝑥) → Ω2(𝑥)𝑔𝜇ν(𝑥). 

 

Таким образом действие будет следующим [1] 

 

𝐼𝑊 = −𝛼 ∫𝑑4𝑥√−𝑔𝐶𝜆𝜇𝜈𝜅𝐶𝜆𝜇𝜈𝜅 = −2𝛼 ∫𝑑4𝑥√−𝑔 [𝑅𝜇𝜅𝑅
𝜇𝜅 −

1

3
(𝑅  𝛼

𝛼 )2]       (7) 

 

где α – безразмерный коэффициент.  

 

Действие (7) приводит к следующему уравнению гравитационного поля: 

 
1

√−𝑔
𝑔𝜇𝛼𝑔𝜈𝛽

𝛿𝐼𝑤
𝛿𝑔𝛼𝛽

= −2𝛼𝑊𝜇𝜈 = −
1

2
𝑇𝜇𝜈 

 

где  𝑊𝜇𝜈 =
1

2
𝑔𝜇𝜈(𝑅   𝛼

𝛼 )    ;𝛽
;𝛽

+ 𝑅𝜇𝜈    ;𝛽
     ;𝛽

− 𝑅𝜇  ;𝜈;𝛽 
  𝛽

− 𝑅𝜈  ;𝜇𝛽
  𝛽

− 2𝑅𝜇𝛽𝑅𝜈
  𝛽

+
1

2
𝑔𝜇𝜈𝑅𝛼𝛽𝑅𝛼𝛽  −

−
1

3
[2𝑔𝜇𝜈(𝑅   𝛼

𝛼 )    ;𝛽
;𝛽

− 2(𝑅   𝛼
𝛼 );𝜇;𝜈 − 2𝑅  𝛼

𝛼 𝑅𝜇𝜈 +
1

2
𝑔𝜇𝜈(𝑅  𝛼

𝛼 )2]                                   (8) 

 

𝑇𝜇𝜈 – обычный тензор энергии-импульса. 

  

Таким образом, получаем уравнение конформной гравитации (уравнение 

Баха): 

 

4𝛼𝑊𝜇𝜈 = 𝑇𝜇𝜈                                                                 (9) 

  

Из уравнения (8) видно, что при обращении 𝑅𝜇𝜈 в нуль тензор 𝑊𝜇𝜈 также 

обращается в нуль. Поэтому любое вакуумное решение уравнения 

Эйнштейна является также решением уравнения Баха. Но 𝑊𝜇𝜈 может 

обращаться в нуль и при ненулевом тензоре Риччи. Это приводит к тому,  

что существует статическое сферически-симметричное вакуумное решение 

гравитационного поля, отличное от решения Шварцшильда. 
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Как показано в [1] общий, статический, сферически-симметричный элемент  

 

𝑑𝑠2 = 𝑏(𝜌)𝑑𝑡2 − 𝑎(𝜌)𝑑𝜌2 − 𝜌2(𝑑𝜃2 + 𝑠𝑖𝑛2(𝜃)𝑑𝜙2)                  (10) 

 

при преобразовании координат 

𝜌 = 𝑝(𝑟),          𝐵(𝑟) =
𝑟2𝑏(𝑟)

𝑝2(𝑟)
,         𝐴(𝑟) =

𝑟2𝑎(𝑟)𝑝′2(𝑟)

𝑝2(𝑟)
 

 

может быть переписан в виде   

 

𝑑𝑠2 =
𝑝2(𝑟)

𝑟2
[𝐵(𝑟)𝑑𝑡2 − 𝐴(𝑟)𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2(𝜃)𝑑𝜙2)]          (11) 

 

где функция 𝑝(𝑟) выбирается произвольно.  

 

Выбирая 𝑝(𝑟) в соответствии с  

 

−
1

𝑝(𝑟)
= ∫

𝑑𝑟

𝑟2[𝑎(𝑟)𝑏(𝑟)]1/2
 

получим  

 

𝑑𝑠2 =
𝑝2(𝑟)

𝑟2
[𝐵(𝑟)𝑑𝑡2 −

𝑑𝑟2

𝐵(𝑟)
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2(𝜃)𝑑𝜙2)]                  (12) 

 

Поскольку теория Вейля сама по себе конформна, тензор 𝑊𝜇𝜈(𝜌), связанный с 

уравнением (9) преобразуется как 𝑊𝜇𝜈(𝑥) → Ω−2(𝑥)𝑊𝜇𝜈(𝑥). То есть тензор 

𝑊𝜇𝜈(𝜌) конформен тензору 𝑊𝜇𝜈(𝑟), связанному с линейным элементом 

  

𝑑𝑠2 = 𝐵(𝑟)𝑑𝑡2 −
𝑑𝑟2

𝐵(𝑟)
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2(𝜃)𝑑𝜙2)                  (13) 

 

Таким образом, решение ищется в виде (13).  

 

Все компоненты 𝑊0𝑟  равны нулю. При этом оставшиеся четыре 

компоненты 𝑊𝜇𝜈 связаны между собой тождеством Бьянки и условием 

бесследности тензора, поэтому при решении используется одна 

независимая координата 𝑊𝑟𝑟. 
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Проделав соответствующие вычисления [1], получим решение для 

симметричного источника радиуса 𝑅 

 

𝐵(𝑟 > 𝑅) = 1 −
𝛽(2−3𝛽𝛾)

𝑟
− 3𝛽𝛾 + 𝛾𝑟 − 𝑘𝑟2                          (14) 

 

3.2. Материальное решение 

 

Для нахождения не вакуумного сферически-симметричного решения 

рассмотрим две компоненты 𝑊𝜇𝜈 для элемента (13)  

 

𝑊𝑟𝑟

𝐵(𝑟)
=

𝐵′𝐵′′′

6
−

𝐵′′2

12
−

𝐵𝐵′′′−𝐵′𝐵′′

3𝑟
−

𝐵𝐵′′+𝐵′2

3𝑟2
+

2𝐵𝐵′

3𝑟3
−

𝐵2

3𝑟4
+

1

3𝑟4
                     (15) 

 

𝑊00 = −
𝐵′′′′

3
+

𝐵′′2

12𝐵
−

𝐵′′′𝐵′

6𝐵
−

𝐵′′′

𝑟
−

𝐵′′𝐵′

3𝑟𝐵
+

𝐵′′

3𝑟2
+

𝐵′2

3𝑟2𝐵
−

2𝐵′

3𝑟3
−

1

3𝑟4𝐵
+

𝐵

3𝑟4
 (16)  

 

здесь 𝐵′ - производная по координате.  

 

Объединяя (15) и (16), получим [2] 

 
3(𝑊  0

0 −𝑊  𝑟
𝑟 )

𝐵(𝑟)
= 𝐵′′′′ +

4𝐵′′′

𝑟
=

(𝑟𝐵)′′′′

𝑟
= ∇4𝐵(𝑟)                                       (17) 

 

В случае статического, сферически-симметричного источника определим 

удобную функцию распределения материи 

 

𝑓(𝑟) =
3(𝑇   0

0 −𝑇   𝑟
𝑟 )

4𝛼𝐵(𝑟)
                                                                (18) 

 

Тогда с учетом уравнения Баха (9)  

 

∇4𝐵(𝑟) = 𝑓(𝑟)                                                                (19) 

 

Для жидкости в покое тензор энергии-импульса сводится к диагональной 

матрице 𝑑𝑖𝑎𝑔(𝜌𝑐2, 𝑝, 𝑝, 𝑝), где 𝜌 – есть плотность массы, а 𝑝 – гидростати-

ческое давление.  

 

В простом случае пылевидной материи 𝑇  𝜇
𝜇

= 𝜌. 
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Откуда получаем уравнение Пуассона 4-го порядка 

 

∇4𝐵(𝑟) =
3

4𝛼𝐵(𝑟)
𝜌(𝑟)                                                       (20)                               

 

Для решения данного уравнения будем использовать метод функции Грина. 

Для оператора ∇4 , при отсутствии граничных условий, она имеет вид [2]: 

 

𝐺(𝒓, 𝒓′) = −
1

8𝜋
|𝒓 − 𝒓′|                                                        (21)          

 

Считая граничную поверхность бесконечно большой, получаем решение 

уравнения (21): 

𝐵(𝒓) = −
1

8𝜋
∫𝑓(𝑟′)|𝒓 − 𝒓′|𝑑3𝒓′                                         (22)                                           

 

В случае сферически-симметричного распределения материи можно 

переписать в виде 

 

𝐵(𝑟 > 𝑅) = −
𝑟

2
∫ 𝑑𝑟′𝑓(𝑟′)𝑟′2 −

1

6𝑟
∫ 𝑑𝑟′𝑓(𝑟′)𝑟′4 

𝑅

0

𝑅

0

                                                 (23) 

𝐵(𝑟 < 𝑅) = −
𝑟

2
∫ 𝑑𝑟′𝑓(𝑟′)𝑟′2 −

1

6𝑟
∫ 𝑑𝑟′𝑓(𝑟′)𝑟′4 

𝑟

0

𝑟

0

−
1

2
∫ 𝑑𝑟′𝑓(𝑟′)𝑟′3 −

𝑟2

6
∫ 𝑑𝑟′𝑓(𝑟′)𝑟′

𝑅

𝑟

𝑅

𝑟

                                                     (24) 

 

Решения (14), (24) и (25) совпадают при 𝑟 = 𝑅. 

 

Что позволяет определить 

𝛾(𝑟) = −
1

2
∫ 𝑑𝑟′𝑟′2𝑓(𝑟′

𝑟

0

) 

𝛽(𝑟) =
1

12
∫ 𝑑𝑟′𝑟′4𝑓(𝑟′

𝑟

0

)                                             (25) 

 

∇4(𝑟2) равно нулю для всех 𝑟, где 𝑇𝜇𝜈(𝑟) = 0. Поэтому член 𝑘𝑟2 является 

тривиальным вакуумным решением и не связан с источником материи.  
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3.3. Гравитационный потенциал 

 

В слабых гравитационных полях и при нерелятивистской материи  

𝐵(𝑟) = 1 + 2𝜑. В этом случае 𝜑 ≪ 1, т. е. 𝐵(𝑟) ≈ 1.  

 

Тогда уравнение (20) примет вид 

 

∇4𝜑(𝑟) =
3

4𝛼
𝜌(𝑟) = 𝑓(𝑟)                                                       (26) 

 

Его решение аналогично решению уравнения (20)  

 

𝜑(𝑟) = −
𝑟

2
∫ 𝑑𝑟′𝑓(𝑟′)𝑟′2 −

1

6𝑟
∫ 𝑑𝑟′𝑓(𝑟′)𝑟′4  

𝑟

0

𝑟

0

−
1

2
∫ 𝑑𝑟′𝑓(𝑟′)𝑟′3 −

𝑟2

6
∫ 𝑑𝑟′𝑓(𝑟′)𝑟′

∞

𝑟

∞

𝑟

                                                  (27) 

 

Таким образом, видно, что хотя уравнения Пуассона 2-го порядка 

достаточно для генерации потенциала 1/𝑟, его можно получить и другим 

способом.  

 

Из (24) видно, что коэффициент перед ньютоновским потенциалом 

определяет не массу объекта, т. к. при подстановке функции 

распределения материи для точечного объекта 𝑓(𝑟) = 𝑚𝐺
𝛿𝑟

𝑟2
  возни-

кают проблемы, что означает, что для получения ньютоновского 

потенциала источник не может быть точечным.  

 

Мангейм предлагает следующее распределение материи [2]  

 

𝑓(𝑟) = −2𝛾(𝑟)
𝛿(𝑟)

𝑟2
−

3𝛽(2 − 3𝛽𝛾)

2
[∇2 −

𝑟2

12
∇4] [

𝛿(𝑟)

𝑟2
]                               (28) 

 

Подставив эту функцию в выражение для потенциала, получим  

 

𝜑(𝑟) = −
𝛽

𝑟
+

𝛾𝑟

2
                                                                      (29) 
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4. Кривые вращения галактик 

 
Проблема с кривыми вращения, заключается в том, что в соответствии с 
классическими представлениями скорости вращения должны зависеть от 

расстояния как 𝑣 = √
𝐺𝑀

𝑟
 , то есть скорости должны уменьшаться с 

увеличением расстояния. Согласно наблюдениям такого не происходит – 
скорости после определенного расстояния остаются постоянными.  

 

4.1. Классическое описание  

 
В классической теории потенциал уединенного объекта равен  
 

𝑉(𝑟) = −
𝐺𝑀

𝑟
                                                                  (30) 

  
Найдем потенциал всей галактики.  
 
Предположим, что гравитационный потенциал пропорционален 
светимости звездной поверхности спиральной галактики.  
 

Σ(𝑅) = Σ0𝑒
−

𝑅

𝑅0                                                                  (31) 
 
где Σ0 – светимость в центре галактики.  
 
Тогда полная светимость галактики будет равна интегралу  
 

𝐿 = 2𝜋 ∫ 𝑅Σ(𝑅)𝑑𝑅 =  2𝜋 ∫ 𝑅Σ0𝑒
−

𝑅

𝑅0𝑑𝑅 =
∞

0

∞

0
2𝜋Σ0𝑅0

2                         (32) 

 
Для упрощения задачи будем рассматривать галактики со звездами массы 

Солнца. Определим соотношение масса-светимость 𝛾 =
𝑀

𝐿
 . Тогда 𝑀 = 𝛾𝐿 =

𝑁𝑀⊙, где 𝑀⊙ – масса Солнца, 𝑁 – число звезд в галактике с такой массой.  
 
Предполагая, что поверхностная концентрация имеет такой же закон, как и 
светимость, получаем   

𝜃(𝑅) = 𝜃0𝑒
−

𝑅

𝑅0                                                             (33) 
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Поверхностный интеграл по концентрации дает  
 

𝑁 = 2𝜋𝜃0𝑅0
2                                                              (34) 

 

Потенциал Солнца в ОТО равен 𝑉(𝑟) = −
𝛽

𝑟
 , где 𝛽 = 𝐺𝑀⊙ . Проинтегрируем 

этот потенциал по диску спиральной галактики со звездами солнечной 
массы 
 

𝑉𝛽(𝑅, 𝑧) = −𝐺𝑀⊙ ∫ 𝑑𝑅′ ∫ 𝑑𝜑′ ∫ 𝑑𝑧′ 𝑅′𝜌(𝑅′,𝑧′)

|𝑅⃗ −𝑅′⃗⃗ ⃗⃗ |

∞

−∞

2𝜋

0

∞

0
                      (35) 

 
где 𝜌(𝑅, 𝑧) = 𝜃(𝑅)𝛿(𝑧) – объемная концентрация в полярных координатах.  
 
Используя соотношение [3] 
 

1

|𝑅⃗ − 𝑅′⃗⃗⃗⃗ |
= ∑ 𝑑𝑘𝐽𝑚(𝑘𝑅)

∞

𝑚=−∞

𝐽𝑚(𝑘𝑅′)𝑒−𝑖𝑚(𝜙−𝜙′)−𝑘|𝑧−𝑧′|                       (36) 

 
где 𝐽𝑚 – функция Бесселя с целым аргументом 
 
Перепишем (32) в виде 
 

−2𝜋𝐺𝑀⊙ ∫ 𝑑𝑅′ ∫ 𝑑𝑘 ∫ 𝑑𝑧′𝑅′𝜌(𝑅′, 𝑧′)𝐽0(𝑘𝑅)𝐽0(𝑘𝑅′)𝑒−𝑘|𝑧−𝑧′|           (37)
∞

−∞

∞

0

∞

0
  

 
В плоскости 𝑧 = 0 можно написать 
 

𝑉(𝑅) = −2𝜋𝐺𝑀⊙ ∫ 𝑑𝑘 ∫ 𝑑𝑅′𝑅′𝜃(𝑅′)𝐽0(𝑘𝑅)𝐽0(𝑘𝑅′)
∞

0

∞

0

                  (38) 

 
Используя следующие тождества  
 

∫ 𝑅𝐽0(𝑘𝑅)𝑒−𝛼𝑅𝑑𝑅 =
𝛼

(𝛼2 + 𝑘2)3/2

∞

0

                                     (39) 

 

∫
𝐽0(𝑘𝑅)

(𝛼2 + 𝑘2)3/2

∞

0

𝑑𝑘 =
𝑅

2𝛼
[𝐼0 (

𝑅𝛼

2
)𝐾1 (

𝑅𝛼

2
) − 𝐼1 (

𝑅𝛼

2
)𝐾0 (

𝑅𝛼

2
)]        (40) 

 
(здесь 𝐼𝑚 – функция Инфельда, а 𝐾𝑚 – функция Макдональда, являющиеся 
модифицированными функциями Бесселя) 
  

и выбирая 𝛼 =
1

𝑅0
 получим  
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𝑉(𝑅) = −𝜋𝐺𝑀⊙𝜃0𝑅 [𝐼0 (
𝑅

2𝑅0
)𝐾1 (

𝑅

2𝑅0
) − 𝐼1 (

𝑅

2𝑅0
)𝐾0 (

𝑅

2𝑅0
)]             (41) 

 
Далее, используя следующие соотношения  
 

𝐼0
′(𝑥) = 𝐼1(𝑥), 𝐼1

′(𝑥) = 𝐼0(𝑥) −
𝐼1(𝑥)

𝑥
, 𝐾0

′(𝑥) = −𝐾1(𝑥),                                       

𝐾1
′(𝑥) = −𝐾0(𝑥) −

𝐾1(𝑥)

𝑥
                                                                                   (42) 

 
и дифференцируя (38) получаем  
 

𝑉′(𝑅) =
𝑁𝐺𝑀⊙𝑅

2𝑅0
3 [𝐼0 (

𝑅

2𝑅0
)𝐾0 (

𝑅

2𝑅0
) − 𝐼1 (

𝑅

2𝑅0
)𝐾1 (

𝑅

2𝑅0
)]              (43) 

 
Для пробной частицы, движущейся по круговой орбите вокруг массивного 
объекта (т. к. движение финитное), можем использовать теорему вириала 
 

𝑣2 = 𝑅𝑉′(𝑅)                                                                (44) 
 
Откуда получаем зависимость скорости вращения от расстояния  
 

𝑣2 =
𝑁𝐺𝑀⊙𝑅2

2𝑅0
3 [𝐼0 (

𝑅

2𝑅0
)𝐾0 (

𝑅

2𝑅0
) − 𝐼1 (

𝑅

2𝑅0
)𝐾1 (

𝑅

2𝑅0
)]               (45) 

 

4.2. Описание в конформной гравитации 

 
Как было показано ранее потенциал уединенного объекта в конформной 

гравитации имеет вид 𝑉∗(𝑅) = −
𝛽∗

𝑅
+

𝛾∗𝑅

2
.  

 
где мы нормировали 
 

                                        𝛽∗ = (
𝑀⊙

𝑀
)𝛽(𝑟);    𝛾∗ = (

𝑀⊙

𝑀
)𝛾(𝑟) 

 
 
Применим аналогичный метод для нахождения потенциала всей 
галактики.  
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Линейный потенциал 
  

𝑉𝛾
∗(𝑅, 𝑧) =

𝛾∗

2
∫ 𝑑𝑟′ ∫ 𝑑𝜙′ ∫ 𝑑𝑧′𝑅′𝜌(𝑅′, 𝑧′)|𝑅⃗ − 𝑅′⃗⃗⃗⃗ |

∞

−∞

2𝜋

0

∞

0

= 𝜋𝛾∗ ∫ 𝑑𝑘 ∫ 𝑑𝑅′ ∫ 𝑑𝑧′𝑅′𝜌(𝑅′, 𝑧′)[(𝑅2 + 𝑅′2
∞

−∞

∞

0

∞

0

− (𝑧 − 𝑧′)2)𝐽0(𝑘𝑅)𝐽0(𝑘𝑅′) − 2𝑅𝑅′𝐽1(𝑘𝑅)𝐽1(𝑘𝑅′)] 𝑒−𝑘|𝑧1−𝑧2|          (46) 
 

где использовалось, что |𝑅⃗ − 𝑅′⃗⃗⃗⃗ | =
(𝑅−𝑅′)2

|𝑅⃗ −𝑅′⃗⃗ ⃗⃗ |
.  

 
В плоскости 𝑧 = 0 
 

𝑉𝛾
∗(𝑅) = 𝜋𝛾∗ ∫ 𝑑𝑘 ∫ 𝑑𝑅′ ∫ 𝑑𝑧′𝑅′𝜃(𝑅′)[𝑅2 + 𝑅′2

∞

−∞

∞

0

∞

0

− 2𝑅𝑅′𝐽1(𝑘𝑅)𝐽1(𝑘𝑅′)]                                                                                (47) 

 
Далее, используя соотношения (36), (37) и [3] 
 

∫ 𝑑𝑅′𝑅′2𝐽1(𝑘𝑅′)𝑒−𝛼𝑅
∞

0

=
3𝛼𝑘

(𝛼2 + 𝑘2)5/2
                                           (48) 

 
Получаем  

𝑉𝛾
∗(𝑅) = 𝜋𝛾∗𝜃0𝑅𝑅0

2 [𝐼0 (
𝑅

2𝑅0
)𝐾1 (

𝑅

2𝑅0
) − 𝐼1 (

𝑅

2𝑅0
)𝐾0 (

𝑅

2𝑅0
)]

+
𝜋𝛾∗𝜃0𝑅

2𝑅0

2
[𝐼0 (

𝑅

2𝑅0
)𝐾0 (

𝑅

2𝑅0
)

− 𝐼1 (
𝑅

2𝑅0
)𝐾1 (

𝑅

2𝑅0
)]                                                                                   (49) 

 
Дифференцируя и используя соотношения (39) получаем  
 

𝑅𝑉𝛾
′(𝑅) =

𝑁𝛾∗𝑅2

2𝑅0
𝐼1 (

𝑅

2𝑅0
)𝐾1 (

𝑅

2𝑅0
)                                     (50) 

 
В результате, объединяя (42) и (47) находим выражение зависимости 
скорости вращения от расстояния  
 

𝑣𝐿𝑂𝐶
2 =

𝑁𝛽∗𝑅2

2𝑅0
3 [𝐼0 (

𝑅

2𝑅0
)𝐾0 (

𝑅

2𝑅0
) − 𝐼1 (

𝑅

2𝑅0
)𝐾1 (

𝑅

2𝑅0
)] + 

+
𝑁𝛾∗𝑅2

2𝑅0
𝐼1 (

𝑅

2𝑅0
)𝐾1 (

𝑅

2𝑅0
)             (51) 
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В пределе при 𝑅 ≫ 𝑅0  
 

𝑣𝐿𝑂𝐶
2 →

𝑁𝛽∗

𝑅
+

𝑁𝛾∗𝑅

2
                                                          (52) 

 
Основное отличие ньютоновской гравитации от конформной состоит в 
следующем. В классической теории гравитационное влияние на объект 
оказывает только материя внутри объема, заданного сферой радиуса 𝑟. 
Остальная же Вселенная не вносит своего вклада. Но это поведение 
справедливо только для сферически симметричных потенциалов 1/𝑟, 
поэтому оно больше не сохраняется в конформной гравитации.  
 
Поэтому на вращение галактик будет оказывать влияние не только сама 
галактика, но и внешние факторы. Внешними факторами являются 
глобальный космологический фон и флуктуации относительно этого фона 
(в виде скоплений галактик и сверхскоплений).  
 
Для фоновой части Вселенной обычно предполагают метрику Робертсона-
Уокера (RW) 
 

𝑑𝑠2 = 𝑑𝑡2 −
𝑎2(𝜏)

(1 +
𝐾𝜌2

4 )
2
(𝑑𝜌2 + 𝜌2𝑑Ω2)                                   (53) 

 
Движение астрономических объектов, обусловленное расширением 
Вселенной, описывается координатами, задаваемыми уравнением (53).  
Но галактические скорости вращения измеряются в системе координат, 
привязанной к центру галактики, то есть галактика находится в состоянии 
покоя. Поэтому необходимо найти преобразование между этими двумя 
системами координат.  
 

𝑟 =
𝜌

(1 −
𝛾0𝑟
4 )

2 ;   𝜏 = ∫𝑅(𝑡)𝑑𝑡                                         (54) 

 

Ω2(𝜏, 𝜌)

[
 
 
 
 

𝑑𝜏2 −
𝑅2(𝜏)

[1 −
𝛾0

2𝜌2

16 ]
2
(𝑑𝜌2 + 𝜌2𝑑Ω2)

]
 
 
 
 

=

(
1 +

𝛾0𝑟
4

1 −
𝛾0𝑟
4

)

2

𝑅2(𝜏)

[
 
 
 
 

𝑑𝜏2 −
𝑅2(𝜏)

[1 −
𝛾0

2𝜌2

16 ]
2
(𝑑𝜌2 + 𝜌2𝑑Ω2)

]
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= (1 + 𝛾0𝑟)𝑑𝑡2 −
𝑑𝑟2

(1+𝛾0𝑟)
− 𝑟2𝑑Ω2                                     (55)  

 
Таким образом, после конформного преобразования метрика Робертсона-
Уокера, записанная в статической системе координат, эквивалентна 
статическому линейному элементу с универсальным линейным членом 
𝛾0𝑟.  
 
Следовательно, по аналогии с расчетом для линейного члена уравнения 
(30) получаем дополнительный вклад в уравнение (52). И в пределе при 
𝑅 ≫ 𝑅0  
 

𝑣2 →
𝑁𝛽∗

𝑅
+

𝑁𝛾∗𝑅

2
+

𝛾0𝑅

2
                                              (56) 

 
Как видно из уравнения (27) для потенциала, есть еще один фактор, 
который [3] отвечает за флуктуации относительно глобального фона.  
 
Из уравнения (27) находим, что коэффициент, стоящий перед −𝑟2 равен  
 

𝑘 =
1

6
∫ 𝑑𝑟′𝑟′𝑓(𝑟′)

∞

𝑟

 

  
В результате получаем зависимость скорости вращения галактик от 
радиуса [3] 
 

𝑣𝑇𝑂𝑇
2 =

𝑁𝛽∗

𝑟
+

𝑁𝛾∗𝑟

2
+

𝛾0𝑟

2
− 𝑘𝑟2                                         (57) 

 
Значения введенных констант следующие [3] 
 
𝛽∗ = 1,48 × 105 см; 𝛾∗ = 5,42 × 10−41см−1; 𝛾0 = 3,06 × 10−30см−1; 
𝑘 = 9,54 × 10−54см−2.  
 
 

5. Шаровые скопления 

 
Шаровое звёздное скопление — звёздное скопление, содержащее большое 
число звёзд, тесно связанное гравитацией и обращающееся вокруг 
галактического центра в качестве спутника. В отличие от рассеянных 
звёздных скоплений, которые располагаются в галактическом диске, 
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шаровые находятся в гало; они значительно старше, содержат гораздо 
больше звёзд, обладают симметричной сферической формой и 
характеризуются увеличением концентрации звёзд к центру скопления. 
 
Диаметры шаровых скоплений составляют 20–60 пк, массы —  
104-106солнечных. 
Для получения потенциала шаровых скоплений будем использовать 
модель Пламмера – закон распределения концентрации, впервые 
примененный им при изучении шаровых скоплений: 
 

𝜌(𝑟) =
3𝑀0

4𝜋𝑎3𝑀⊙
(1 +

𝑟2

𝑎2
)

−
5
2

                                               (58) 

 
где 𝑀0 – полная масса звездного скопления, 𝑎 ≈ 1,56𝑟я – радиус Пламмера, 
𝑟я – радиус ядра скопления - расстояние от центра, на котором видимая 
светимость скопления падает в два раза.  
 
Тогда общий потенциал всех звезд равен: 
 

𝑉(𝑟) = −𝛽 ∫ 𝑑𝜙′
2𝜋

0

∫ 𝑑𝜃′
𝜋

0

∫ 𝑑𝑟′𝑟′2 sin(𝜃)
𝜌(𝑟′)

|𝑟 − 𝑟′⃗⃗  ⃗|

∞

0

+ 𝛾 ∫ 𝑑𝜙′
2𝜋

0

∫ 𝑑𝜃′
𝜋

0

∫ 𝑑𝑟′𝑟′2 sin(𝜃) 𝜌(𝑟′)|𝑟 − 𝑟′⃗⃗  ⃗|
∞

0

                             (59) 

𝑉(𝑟) = −
4𝜋𝐺𝑀⊙

𝑟
∫ 𝜌(𝑟′)

𝑟

0

𝑟′2𝑑𝑟′ − 4𝜋𝐺𝑀⊙ ∫ 𝜌(𝑟′)𝑟′𝑑𝑟′
∞

𝑟

+
2𝜋𝛾

𝑟
∫ 𝜌(𝑟′)

𝑟

0

(3𝑟2𝑟′2 + 𝑟′4)𝑑𝑟′ + 2𝜋𝛾 ∫ 𝜌(𝑟′)
∞

𝑟

(3𝑟′3 + 𝑟2)𝑑𝑟′ (60) 

 
Для характеристики шаровых скоплений используют такое понятие как 
дисперсия скорости. Будем использовать уравнения Джинса, которые 
вытекают из бесстолкновительного уравнения Больцмана [4]: 
 

𝜕𝑓

𝜕𝑡
+

𝜕𝑓

𝜕𝑥
𝑣𝑖 −

𝜕φ

𝜕𝑥

𝜕𝑓

𝜕𝑣𝑖
= 0                                                       (61) 

 
где 𝑓 – функция распределения, 𝜑 – гравитационный потенциал, 𝑣𝑖 – 
скорость.  
 
Умножив это уравнение на 𝑣𝑗 и проинтегрировав, учитывая, что плотность 

распределения звезд в пространстве связана с функцией распределения 
соотношением 
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𝜌 = ∫𝑓(𝑥, 𝑣)𝑑3𝑣                                                          (62) 

получаем 
 

𝜌
𝜕𝑣𝑗̅

𝜕𝑡
+ 𝜌𝑣𝑖̅

𝜕𝑣𝑗̅

𝜕𝑥𝑖
+

𝜕(𝜌𝑣𝑖𝑣𝑗̅̅ ̅̅ ̅)

𝜕𝑥𝑖
= −𝜌

𝜕𝜑

𝜕𝑥𝑗
                                     (63) 

 
Используя определение дисперсии скорости  
 

𝜎𝑖𝑗
2 = 𝑣𝑖𝑣𝑗̅̅ ̅̅ ̅ − 𝑣𝑖̅𝑣𝑗̅                                                          (64) 

 
перепишем (56) в виде 
 

𝜌
𝜕𝑣𝑗̅

𝜕𝑡
+ 𝜌𝑣𝑖̅

𝜕𝑣𝑗̅

𝜕𝑥𝑖
= −𝜌

𝜕𝜑

𝜕𝑥𝑗
−

𝜕(𝜌𝜎𝑖𝑗
2)

𝜕𝑥𝑖
                                   (65) 

 
Это и есть искомое уравнение Джинса, которое в сферических координатах 
записывается в виде: 
 

𝜕(𝜌𝜎2)

𝜕𝑟
+

2𝜌(𝑟)𝛽𝜎2(𝑟)

𝑟
= −𝜌(𝑟)

𝜕𝜑

𝜕𝑟
                            (66) 

 

где 𝛽 ≝ 1 −
𝜎𝜃

2−𝜎𝜙
2

2𝜎𝑟
2  – параметр анизотропии. 

 
Считая шаровые скопления симметричными, изотропными системами, мы 
можем положить параметр анизотропии равным нулю.  
 
Тогда  
 

𝜕(𝜌𝜎2)

𝜕𝑟
= −𝜌(𝑟)

𝜕𝜑

𝜕𝑟
                                                           (67) 

Откуда 
 

𝜎2 =
1

𝜌
∫ 𝜌(𝑟)

𝜕𝜑

𝜕𝑟

∞

𝑟

𝑑𝑟                                                     (68) 
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6. Результаты 

 

Ниже представлены кривые вращения для четырех карликовых галактик (UGC 4459,  

UGC 7559, UGC 9211, UGC 7232, UGC 5423) и зависимости дисперсии скоростей от радиуса для 

трех шаровых звездных скоплений (NGC 1851, NGC 1904, NGC 5139). 

 

Исходя из следующих данных [5] 

 

Galaxy          Distance      𝐿𝐵           (𝑅0)𝑑𝑖𝑠𝑘    𝑅𝑙𝑎𝑠𝑡        𝑀𝐻𝐼             𝑀𝑑𝑖𝑠𝑘           (𝑀/ 𝐿𝐵)𝑑𝑖𝑠𝑘   (𝑣2/𝑐2𝑅)𝑙𝑎𝑠𝑡 

                       (Mpc)        (109𝐿⨀
𝐵 )   (kpc)        (kpc)   (109𝑀⨀)     (109𝑀⨀)    (𝑀⨀/𝐿⨀

𝐵 )       (10−30 𝑐𝑚−1) 

 
 
UGC 4459       3.06          0.03          0.60           2.47       0.04             0.01                0.20                    0.97  
 
UGC 7559       4.20          0.03          0.87           2.75       0.12             0.05                1.32                    1.43 
 
UGC 9211       14.7          0.33          1.54           9.62       1.43             1.23                3.69                    1.55 
 
UGC 7232       3.14          0.08          0.30           0.91       0.06             0.14                1.76                    7.64  
  
UGC 5423       7.14          0.14          0.61           1.97       0.05             0.28                2.01                    1.82   

   
 

 
 

 
 
 

Рис. 1. Зависимость скорости вращения галактики UGC 4459 (км/с)  
от радиуса (пк). 
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Рис. 2. Галактика UGC 7559. 
 

 
 

Рис. 3. Галактика UGC 9211.  

 
 

Рис. 4. Галактика UGC 7232.  
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Рис. 3. Галактика UGC 5423.  
 
 
 

 
 

Рис. 4. Зависимость дисперсии скорости (км/с) от радиуса (пк)  
для разных отношений масса-светимость для шарового  

скопления NGC 1851. 
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Рис.5. NGC 1904. 
 
 
 

 
 

Рис. 6. NGC 5139.  
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7. Заключение 

 
В данной работе изучалась альтернативная ОТО теория – теория 

конформной гравитации. Были построены кривые вращения для 

нескольких карликовых галактик и зависимости дисперсии скоростей от 

радиуса для шаровых скоплений. Как видно из построенных зависимостей, 

конформная теория довольно хорошо описывается наблюдаемые 

закономерности без введения темной материи.  
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