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1.  Введение 

 Стандартные свечи – астрономические объекты с известной светимостью. Их 

красное смещение определяется по смещению их спектральных линий, по сравнению с 

неподвижными источниками. Наблюдение за такими объектами позволяет понять, как 

расширяется вселенная, и узнать больше о природе тёмной энергии. Для анализа 

зависимости расстояния от красного смещения (диаграммы Хаббла) строят кривую, 

которая аппроксимирует эту зависимость для стандартных свеч. При этом 

используется модельно независимый подход: выражение для этой кривой не 

постулирует какую-либо космологическую модель. После этого, анализируются 

полученные в ходе аппроксимации параметры кривой и делаются выводы о 

состоятельности той или иной космологической модели. Так в [2-4] для анализа 

совокупности квазаров и сверхновых в большом диапазоне z использовалось 

разложение фотометрического расстояния по степеням log⁡(1 + 𝑧): 

𝑑𝐿
log𝑝𝑜𝑙𝑦

= ln(10)
𝑐

𝐻0
∑𝑎𝑛[log⁡(1 + 𝑧)]𝑛
5

𝑛=1

 

Аппроксимация этой формулой показывает, что диаграмма Хаббла для квазаров 

хорошо объясняется стандартной космологической моделью ΛCDM при z < 2, но при 

больших z данные наблюдений сильно отклоняются от стандартной модели. Позже 

([1], [5]), было показано, что разложение по логарифмам не является модельно 

независимым: для z>2 оно работает лишь для некоторых значений космологических 

параметров. Поэтому результатам, полученным на основе этого разложения, нельзя 

доверять, так как ошибка, вызванная самими разложением, может быть неверно 

интерпретирована как отклонение от ΛCDM. Цель этой курсовой работы – 

предложить новое приближение для формулы фотометрического расстояния, и 

проверить его на модельную независимость. 
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2. Новый подход 

 Так как использование ряда Тейлора работает только в окрестности точки, в 

которой проводят разложение, при работе с широкими диапазонами z более 

целесообразно использовать такие аппроксимации, которые дают хорошее на всём 

рассматриваемом промежутке. Например, можно использовать аппроксимацию рядом 

многочленов Чебышева. 

 Параметр Хаббла и фотометрическое расстояние связанны соотношением 

𝑑𝐿 = (1 + 𝑧)∫
1

𝐻(𝑧′)
𝑑𝑧′

𝑧

0

 

Эту величину можно аппроксимировать многочленами Чебышева. 

𝑑𝐿 ≈ ∑ 𝑐𝑖𝑇𝑖

𝑛

𝑖=0

 

Многочлены Чебышева – ортогональны на сегменте [−1; 1] с весовой функцией  

𝑤(𝑥) =
1

√1 − 𝑥2
 

Скалярное произведение: 

〈𝑓, 𝑔〉 = ∫
𝑓𝑔

√1 − 𝑥2
𝑑𝑥

1

−1

 

 

Для того, чтобы аппроксимировать функцию на сегменте [0; 𝑢], нужно отобразить 

[−1; 1] на этот сегмент при помощи функции 

𝑦(𝑥) =
𝑢

2
(𝑥 + 1) 

Тогда коэффициенты 𝑐𝑖 определяются следующим образом: 

𝑐0 = 〈𝑑𝐿(𝑦(𝑥)), 𝑇0(𝑥)〉
1

𝜋
 

𝑐𝑘 = 〈𝑑𝐿(𝑦(𝑥)), 𝑇𝑖(𝑥)〉
2

𝜋
, 𝑘 > 0 

Коэффициенты 𝑐𝑖 это и есть новые космографические параметры, их значения 

зависят от рассматриваемой модели и рассматриваемого интервала z.  

 Так как при вычислении коэффициентов интеграл брался для 𝑓(𝑦(𝑥)), где 

𝑦(𝑥) ∈ [−1,1], необходимо использовать многочлены Чебышева относительно 

функции: 
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𝑥(𝑦) =
2𝑥 − 𝑢

𝑢
 

 Таким образом, 𝑑𝐿можно аппроксимировать рядом  

𝑑𝐿
𝑎𝑝𝑝𝑟𝑜𝑥

=∑ 𝑐𝑖𝑇𝑖 (
2𝑧 − 𝑢

𝑢
)

𝑛

𝑖=0

 

Чтобы проверить точность этой аппроксимации, можно составить график 

относительной ошибки для ΛCDM: 

𝑑𝐿
𝑎𝑝𝑝𝑟𝑜𝑥

− 𝑑𝐿
𝑑𝐿

 

 

Параметр Хаббла в ΛCDM: 𝐻(𝑧) = 𝐻0√𝛺𝑚(1 + 𝑧)3 + 1 − 𝛺𝑚 

Для сегмента [0; 5] при n=5 график будет иметь вид: 

 

Рисунок 1. Относительная ошибка 𝑑𝐿 и разложения по полиномам в ΛCDM 

В случае ωCDM при 𝛺𝑚 = 0.7

 

Рисунок 2. Относительная ошибка 𝑑𝐿 и разложения по полиномам в ωCDM 
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3. Проверка аппроксимации фиктивной диаграммой Хаббла 

Чтобы убедится в том, что эту аппроксимацию можно использовать для 

космографического анализа, я использую такой-же подход, как и в [1]. Сначала я 

составлю фиктивные зависимости модуля расстояния от z, которые будет 

воспроизводить плоскую ΛCDM с 𝐻0 = 70 км/с/Мпк в двух случаях: при  𝛺𝑚 = 0.1 и 

𝛺𝑚 = 0.5 (последнее значение выбрано таким потому, что моя аппроксимация при нём 

ведёт себя хуже всего). После этого я аппроксимирую получившуюся зависимость 

модуля расстояния от z используя 𝑑𝐿
𝑎𝑝𝑝𝑟𝑜𝑥

 при n = 5 (n выбрано таким потому, что это 

наименьшее число членов ряда, при котором относительная ошибка меньше 1% везде 

кроме окрестности точки z=0) и сравню получившиеся коэффициенты с теми, которые 

должны быть в плоской ΛCDM при тех-же параметрах. 

Зависимость модуля расстояния от фотометрического расстояния: 

µ = 25 + 5 log (
𝑑𝑙
Мпк

) 

Квазары будут распределены в промежутке 𝑧 ∈ [0.04; 5.098] (из-за этого 𝑢 =

5.098) с шагом 0.003, относительная погрешность ∆µ/µ = 1%. Сверхновые будут 

распределены в промежутке 𝑧 ∈ [0.01; 2.254] с шагом 0.004, относительная 

погрешность ∆µ/µ = 0.5%. Значения µ - случайные числа сгенерированные по закону 

нормального распределения с математическим ожиданием µ(𝑧𝑖) и стандартным 

отклонением ∆µ. 

Чтобы убедится в том, что фиктивные данные согласуются с ΛCDM, я 

восстановлю значения космологических параметров путём аппроксимации данных 

формулой фотометрического расстояния в ΛCDM:  

𝑑𝐿(𝑧, 𝛺𝑚 , 𝐻0) = (1 + 𝑧)
𝑐

𝐻0
∫

1

√𝛺𝑚(1 + 𝑧′)3 + 1 − 𝛺𝑚
𝑑𝑧′

𝑧

0

 

 

        

Рисунок 3. Фиктивные данные для ΛCDM при 𝛺𝑚 = 0.1 (слева) и 𝛺𝑚 = 0.5 (справа) 
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Фиктивные данные 𝐻0⁡(⁡км/с/Мпк) 𝛺𝑚 

𝛺𝑚 = 0.1 70.2 ± 0.7 0.099 ± 0.005 

𝛺𝑚 = 0.5 70.0 ± 1.0 0.495 ± 0.026 
Таблица 1 - результат аппроксимации диаграммы Хаббла 

Как и ожидалось, данные хорошо согласуются с ΛCDM. Далее, эти же наборы 

данных будут аппроксимироваться 𝑑𝐿
𝑎𝑝𝑝𝑟𝑜𝑥

.  

 

 ΛCDM:⁡𝛺𝑚 = 0.1; 𝐻0 = 70⁡км/с/Мпк Аппроксимация 

с0 0.1005 0.1005 ± 0.0008 

с1 0.1141 0.1141 ± 0.0014 

с2 0.0101 0.0102 ± 0.0012 

с3 −0.0026 −0.0024 ± 0.0011 

с4 0.00068 0.0007 ± 0.0008 

с5 −0.00013 −0.00020 ± 0.00028 
Таблица 2 коэффициенты ряда Чебышева при 𝛺𝑚 = 0.1 

 

 ΛCDM:⁡𝛺𝑚 = 0.5; 𝐻0 = 70⁡км/с/Мпк Аппроксимация 

с0 0.0631 0.0633 ± 0.0005 

с1 0.0679 0.0680 ± 0.0009 

с2 0.0035 0.0035 ± 0.0008 

с3 −0.00088 −0.0006 ± 0.0007 

с4 0.00029 0.0005 ± 0.0005 

с5 −0.00010 −0.00011 ± 0.00020 
Таблица 3 коэффициенты ряда Чебышева при 𝛺𝑚 = 0.5 

 

Полученные коэффициенты совпадают с теми, которые соответствуют ΛCDM с 

заданными параметрами, это говорит о том, что предложенное мною приближение – 

модельно независимо.  

По этим коэффициентам можно оценить значения космологических параметров, 

для этого надо найти минимум функции: 

𝑓(𝛺̂𝑚, 𝐻̂0) =∑
(𝑐̂𝑖 − 𝑐𝑖(𝛺̂𝑚, 𝐻̂0))

2

𝜎𝑖
2

5

𝑖=0

 

Где 𝑐̂𝑖  – статистическая оценка космографического коэффициента с𝑖, 𝜎𝑖
2– дисперсия, 

𝑐𝑖(𝛺𝑚,𝐻0) – космографический коэффициент как функция космологических 

параметров.  
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𝑐𝑖(𝛺𝑚, 𝐻0) = ∫
𝑇𝑖(𝑥)⁡𝑑𝐿 (

5.098
2

(1 + 𝑧), 𝛺𝑚 , 𝐻0)

√1 − 𝑧2
𝑑𝑧 ∗ {

1

𝜋
; ⁡⁡⁡𝑖 = 0

2

𝜋
; ⁡⁡⁡𝑖 > 0

1

−1

 

Минимум 𝑓(𝛺̂𝑚, 𝐻̂0) при 𝛺𝑚 = 0.1 достигается при:  

𝛺̂𝑚 = 0.0985⁡⁡⁡⁡⁡𝐻̂0 = 70.3142⁡км/с/Мпк 

 

Для случая 𝛺𝑚 = 0.5: 

𝛺̂𝑚 = 0.5020⁡⁡⁡⁡⁡𝐻̂0 = 69.7245⁡км/с/Мпк 

 Для того, чтобы нагляднее показать точность в определении этих 

коэффициентов, можно изобразить на плоскости (𝑐𝑖 , 𝑐𝑗) доверительные интервалы 

статистических оценок первых трех коэффициентов ряда. 

   

Рисунок 4. Доверительные интервалы в 1σ, соответствующие аппроксимации фиктивных данных 

при⁡𝛺𝑚 = 0.1. Черная кривая – параметрическая кривая связывающая коэффициенты 𝑐𝑖, 𝑐𝑗 в ΛCDM 

при значении постоянной Хаббла из таблицы 1.Черная точка соответствует значениям 

коэффициентов при космологических параметрах из таблицы 1. 

   

Рисунок 5. Доверительные интервалы в 1σ, соответствующие аппроксимации фиктивных данных 

при⁡𝛺𝑚 = 0.5. 
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4. Сравнение с разложением в ряд Тейлора по логарифмам 

 Для более честного сравнения можно сделать проверку на модельную 

независимость для разложения по логарифмам, используя те-же наборы данных 

которые использовались для проверки ряда Чебышева. 

 В этом случае, фотометрическое расстояние аппроксимируется рядом: 

𝑑𝐿
log𝑝𝑜𝑙𝑦

= ln(10)
𝑐

𝐻0
∑𝑎𝑛[log⁡(1 + 𝑧)]𝑛
5

𝑛=1

 

В котором 𝑎1 = 1, чтобы воспроизводить закон Хаббла в окрестности 𝑧 = 0, а 

коэффициенты 𝑎2…𝑎5 – космографические коэффициенты. В ΛCDM они зависят от 

𝛺𝑚 следующим образом: 

𝑎2 = ln(10) (
3

2
−
3

4
𝛺𝑚),⁡⁡⁡𝑎3 = ln(10)2 (

9

8
𝛺𝑚
2 − 2𝛺𝑚 +

7

6
),⁡⁡ 

⁡𝑎4 = ln(10)3 (−
135

64
𝛺𝑚
3 +

9

2
𝛺𝑚
2 −

47

16
𝛺𝑚 +

5

8
), 

𝑎5 = ln(10)4 (
31

120
−
25

8
𝛺𝑚 +

315

32
𝛺𝑚
2 −

729

64
𝛺𝑚
3 +

567

128
𝛺𝑚
4 ) 

 ΛCDM:⁡𝛺𝑚 = 0.1; 𝐻0 = 70⁡км/с/Мпк Аппроксимация 

𝐻0 70 68.2 ± 2.8 

𝑎2 3.28 2.1 ± 0.9 

𝑎3 5.18 13 ± 5 

𝑎4 4.57 −13 ± 7 

𝑎5 0.94 10 ± 7 

Таблица 4. Коэффициенты ряда Тейлора и постоянная Хаббла при 𝛺𝑚 = 0.1 

 

 

 ΛCDM:⁡𝛺𝑚 = 0.5; 𝐻0 = 70⁡км/с/Мпк Аппроксимация 

𝐻0 70 69.3 ± 2.7 

𝑎2 1.90 2.3 ± 0.8 

𝑎3 1.47 4 ± 4 

𝑎4 1.08 −3 ± 9 

𝑎5 0.61 3 ± 6 

Таблица 5. Коэффициенты ряда Тейлора и постоянная Хаббла при 𝛺𝑚 = 0.1 
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Минимум функции: 

𝑓(𝛺̂𝑚) =∑
(𝑎̂𝑖 − 𝑎𝑖(𝛺̂𝑚))

2

𝜎𝑖
2

5

𝑖=2

 

для 𝛺𝑚 = 0.1 достигается при 𝛺̂𝑚 = 0.0164, а для 𝛺𝑚 = 0.5 при 𝛺̂𝑚 = 0.6. Используя 

разложение по логарифмам, нельзя определить космологические параметры даже в 

том случае, когда данные полностью соответствуют им. 
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5. Заключение 

В работе было предложено новое приближение для космографического анализа. 

Выполнена проверка на модельную независимость путём аппроксимации фиктивной 

диаграммы Хаббла. Полученные значения коэффициентов и оценки параметров 

совпадают с теми, которые должны получится теоретически даже в том случае, когда 

разложение ведёт себя хуже всего (𝛺𝑚 = 0.5). Следовательно, это приближение лучше 

используемого ранее разложения по логарифмам. 
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