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ВВЕДЕНИЕ

Асимптотические симметрии в гравитации были известны по крайней
мере с 60-ых годов прошлого века [6] [7], и в последнее время наблюдается
значительный всплеск интереса к этой теме. Современные исследования
асимптотических симметрий ведутся в основном по двум направлениям:
для асимптотически плоских пространств и для асимптотически AdS
пространств. C первым направлением во многом связан интерес к
"эффекту памяти" в гравитации [9] [8] . Интерес ко второму направлению
послужил толчком для активной разработки голографического принципа
[10].

В общем случае произвольного числа измерений вопрос изучения
асимптотических симметрий является довольно сложным. Поэтому
для упрощения зачастую рассматриваются специальные случаи. Таким
специальным случаем является случай d=3. В трёх измерениях и
при отсутствии границы гравитация становится топологической теорией.
Этот случай во многом исследован в классических работах [1] [14],
где в качестве многообразия было взято асимптотическое AdS3. Стоит
отметить, что изучение асимптотических степеней свободы в данном
случае позволяет лучше понять AdS3/CFT2 соответсвие. Действительно,
в работе [11] было показано, что Эйнштейновская гравитации с
асимптотической AdS границей, при подходящим образом поставленных
граничных условиях, полностью характеризуется действием Весс-Зумино-
Виттена, определённом на границе. Cтоит также отметить, что это
соответствие было открыто задолго до того, как был сформулирован
принцип голографии.

Довольно удобным формализмом для описание калибровочных
теорий являтся формализм Баталина-Вилковыского [15] [4]. Его более
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геометрической формой является так называемы AKSZ-BV подход [5] [26].
Хотя AKSZ-BV подход изначально был разработан для топологических
теорий поля, но в дальнейшем он был обобщён на нетопологические
теории [31] [32]. Геометричность AKSZ-BV формализма позволяет лучше
понимать поведение теорий с границей. Это происходит за счёт того, что
в таком подходе определяющие объекты теории: БРСТ дифференциал и
пространство полей-антиполей, могут быть естественно сужены на любое
подмногообразие пространства времени. Успешный пример применения
AKSZ-BV формализма для теорий с границами можно найти в работах [29]
[30]. Перспективной является задача описания асимптотических симметрий
в рамках AKSZ-BV подхода. Стоит отметить, что в этом направлении
ведется активная работа [33] [34]

В данной работе исследуются асимптотические симметрии в
теории гравитации в трёх измерениях с отрицательной космологической
постоянной на многообразии с топологией цилиндра. В разделе 1.1 даётся
описание того, как возможен переход от теории гравитации к теории Черна-
Саймонса. В разделе 1.2 обсуждается постановка граничных условий и
связанная с этим дифференцируемость исходного действия. Далее следует
небольшое введение в теорию Весс-Зумино-Виттена (раздел 2.1) для
того, чтобы в дальнейшем (раздел 2.3) показать, как связаны между
собой теория Черна-Саймонса с граничной теорией Весс-Зумино-Виттена.
Раздел 3 посвящен возникновению асимптотических симметрий в исходной
теории и исследованию алгебры генераторов. Разделы 4.1 и 4.2 посвящены
введению в BFV и BV формализмы, для дальнейшего их применения к
исходной теории. В разделе 4.3 даётся описание AKSZ конструкции, для
построения BV формулировки гравитации.
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1. Гравитация в трёх измерениях при наличии границы

1.1. Гравитация в трёх измерениях как теория Черна-Саймонса

Для начала рассмотрим теорию гравитации Эйнштейна в (2+1)
измерениях c отрицательной космологической постоянной, и покажем
что такая теория эквивалентна теории с действием Черна-Саймонса.
Данная теория определяется действием Эйнштейна-Гильберта, которое
записывается в терминах метрики gµν.

S[gµν] =
1

16πG

∫
d3x
√
−g(R− 2Λ) (1..1)

Обобщением данного действия на вырожденный случай является
действие Картана, записанное в терминах тетрады ea и спин связности
ωab .

S[ea, ωab ] =
1

16πG

∫
(Rab ∧ ec − Λ

3
ea ∧ eb ∧ ec)εabc (1..2)

где величины, входящие в действие, определяются следующим
образом:

Rab = dωab + ωac ∧ ωcb (1..3)

ηab = diag(−+ +) (1..4)

ε012 = 1 (1..5)

Далее пользуясь тем, что теория задана в (2+1) измерениях, введём
следующие дуальные величины:

ωa =
1

2
εabcωbc (1..6)
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Ra =
1

2
εabcR

bc (1..7)

В таком случае, действие (1..2) с учётом отрицательности

космологиеческой постоянной Λ = − 1

l2
перепишется в виде:

S[e, ω] =
1

8πG

∫
ea ∧Rbηab +

1

6l2
(ea ∧ eb ∧ ec)εabc (1..8)

Теперь будем работать с данным действием (1..8) и покажем, что
оно сводится к разности двух действий Черна-Саймонса. Действительно,
пусть x - комплексное число. Введём два новых поля Aa = ωa + xea и
Aa = ωa − xea. Тогда непосредственной подстановкой можно убедиться в
справедливости равенства:

2ea ∧Ra +
x2

3
εabce

a ∧ eb ∧ ec =
1

2x
(Aa ∧ dAa +

1

3
εabcA

a ∧ Ab ∧ Ac)−

− 1

2x
(Aa ∧ dAa +

1

3
εabcAa ∧ Ab ∧ Ac) + dB (1..9)

где B = ωa ∧ ea.
Выбирая в качестве x =

1

l
, получаем полное соответсвие с

подынтегральным выражением для действия (1..8). Далее выберем
следующее стандартное представление алгебры sl(2,R)

j0 =
1√
2

(
0 1

0 0

)
j1 =

1√
2

(
0 0

1 0

)
j2 =

1

2

(
1 0

0 −1

)
(1..10)

Для этих матриц справедливо:

Tr(ja, jb) =
1

2
ηab ηab =


0 1 0

1 0 0

0 0 1

 [ja, jb] = εabcj
c

Вводя A = Aaja и A = A
a
ja, а также выбирая тетрады связанные со

световым конусом, действие перепишется в виде:

S[e, ω] = S[A,A] = SCS(A)− SCS(A) + C (1..11)
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SCS =
k

4π

∫
d3xTr(A ∧ dA+

2

3
A ∧ A ∧ A) (1..12)

где C - это кусок связанный с граничным членом dB

k =
l

4G

Заметим то что sl(2, R) ⊕ sl(2, R) = so(2, 2), что совпадает с алгеброй
группы изометрий пространства Анти-де-Ситтера. Вместо двух полей A

и A можно думать об одном поле, которое принимает значение в алгебре
so(2,2), а билинейная форма есть разность билинейных форм по каждой
компоненте sl(2,R)

1.2. Описание граничных условий модели и дифференцируемость
действия

Давайте теперь будем явно учитывать границу в нашей теории
гравитации. Будем считать, что многообразие M на котором задана теория
имеет топологию цилиндра. В координатах (ρ, φ, t) граница находится на
ρ → ∞ а координата φ - циклическая. Введём координаты светового
конуса:

x+ = t+ φ (1..13)

x− = t− φ (1..14)

И в этих координатах наложим следующие граничные условия на поля A
и A:

A−|∂M = 0 (1..15)

A+|∂M = 0 (1..16)

Такой выбор граничных условий позволит в дальнейшем свести
рассматриваемую теорию Черна-Саймонса к другой известной теории -
теории Весс-Зумино-Виттена, но уже определённой на ∂M . Ограничение
на границу |∂M в данных формулах означает pullback один формы A на
∂M . Также эта запись будет трактоваться и далее.

Теперь обсудим дифференцируемость действия (1..11). Под
дифференцируемостью мы будем понимать отстутствие граничных кусков
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при варьировании. Как можно видеть, граничный член в формуле (1..11)
присутствует. Чтобы избавиться от него, выберем координаты (ρ, φ, t),
запишем SCS[A] в этих координатах и приведём SCS[A] к гамильтонову
виду, просто перекидывая члены типа ∂ρAt и ∂φAt по теореме Стокса,
тогда:

SCS[Aρ, Aφ, At] = κ

∫
M
dρdtdφTr[AρȦφ − AφȦρ + 2AtFφρ]−κ

∫
∂M

dtdφTr[AtAφ]

(1..17)
где

κ =
k

4π
(1..18)

F = dA+ A ∧ A (1..19)

Проделывая те же действия с SCS[A], в полной аналогии получаем:

SCS[Aρ, Aφ, At] = κ

∫
M
dρdtdφTr[AρȦφ − AφȦρ + 2AtF φρ]−κ

∫
∂M

dtdφTr[AtAφ]

(1..20)
Если подставить (1..20) и (1..17) в (1..11), то окажется, что граничные

члены от (1..20) и (1..17) сократят граничный член C в (1..11), то есть в
итоге мы имеем:

S[e, ω] := SHCS(A)− SHCS(A) (1..21)

SHCS(A) = κ

∫
M
dρdtdφTr[AρȦφ − AφȦρ + 2AtFφρ] (1..22)

SHCS(A) = κ

∫
M
dρdtdφTr[AρȦφ − AφȦρ + 2AtF φρ] (1..23)

На первый взгляд кажется, что проблема с дифференцируемостью
исходного действия решена, то есть при заданных граничных условиях при
вариации не возникнет граничных членов, посмотрим так ли это.

δS[e, ω] = κ

∫
M

(FδA)− κ
∫
M

(FδA)− 2κ

∫
∂M

dtdφTr[AtδAφ − AtδAφ]

(1..24)
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Как мы можем видеть, граничные условия на A− и A+ не делают
действие дифференцируемым, чтобы это исправить, нам ничего не остается
кроме того, чтобы переопределить действие, добавив дополнительный
граничный член I.

I = κ

∫
∂M

dtdφTr[A2
φ + A

2
φ] (1..25)

Тут учтены граничные условия At = Aφ и At = −Aφ на ∂M . В итоге будем
рассматривать теорию следующего вида:

S[A,A] = SHCS(A)− SHCS(A) + I (1..26)

A−|∂M = 0 (1..27)

A+|∂M = 0 (1..28)
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2. Переход от теории гравитации к теории Весс-Зумино-Виттена

2.1. Введение в теорию WZW

2.1.1. Нелинейная сигма модель

В квантовой теории поля нелинейная сигма модель описывает поля φi

где i = 1...n, которые являются отображениями из плоского пространства
времени в таргет многообразие. Таргет многообразие должно обладать
метрикой g(φ), которая зависит от полей. Действие такой теории:

Sσ[φ] =
1

4a2

∫
ddxgij(φ)ηµν∂µφ

i∂νφ
j (2..1)

где a2 > 0 безразмерная константа. Так называемая модель Весс-Зумино-
Виттена - это двумерная нелинейная сигма модель, в которой таргет
многообразием служит полупростая группа Ли G, сами поля обозначаются
g(x), а действие устроено следующим образом:

Sσ[g] =
1

4a2

∫
Σ
d2xTr[ηµν∂µg∂νg

−1] (2..2)

Уравнения движения такой теории в координатах светового конуса x+ =

t+ φ и x− = t− φ
∂+J− + ∂−J+ = 0 (2..3)

J+ = g−1∂+g (2..4)

J− = g−1∂−g (2..5)

Отсюда видно, что токи не сохраняются независимо, что является
мотивацией для изменения исходного действия.
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2.1.2. Добавление члена Весс-Зумино

Чтобы получить теорию в которой токи будут сохраняться
независимо, к сигма модели добавляют дополнительный член, который
называется членом Весс-Зумино:

S[g] = Sσ[g] + kΓ[G] (2..6)

Γ[G] =
1

3

∫
V
Tr(G−1dG)3 (2..7)

где ∂V = Σ, а G - это продолжение g на многообразие V. Уравнения
движения данной теории:

(1− 2a2k)∂+(g−1∂−g) + (1 + 2a2k)∂−(g−1∂+g) = 0 (2..8)

Подробный вывод в [20]. Выбирая a2 = − 1

2k
получаем уравнения ∂+J− = 0,

а выбирая a2 =
1

2k
получаем уравнения ∂−J+ = 0, где:

J− = g−1∂−g (2..9)

J+ = −∂+gg
−1 (2..10)

При любом выборе параметра сохранятся будут оба тока независимо.

Выбирая a2 = −k
2
получим действие Весс-Зумино-Виттена-Новикова:

S[g] =
k

2

∫
d2xTr[ηµνg−1∂µgg

−1∂νg] + kΓ[G] (2..11)

2.2. Переход от теории Черна-Саймонса к WZW

Давайте теперь покажем в каком смысле можно перейти от
теории Черна-Саймонса к теории Весс-Зумино-Виттена. Будем исследовать
действие (1..26). Начнём для начала с части, которая зависит только от A,
то есть:

S[A] = SHCS(A) + κ

∫
∂M

dtdφTr[A2
φ] (2..12)
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Если варьировать по At, то получим следующее уравнение:

Fφ,ρ = 0 (2..13)

Давайте решим это уравнение, при том условии, что наложена следующая
калибровка:

Aρ = h−1(ρ)∂ρh(ρ) (2..14)

Обсуждение того, что такая калибровка всегда достижима смотрите в
Приложении А. Тогда общее решение этих уравнений:

Aρ = G−1∂ρG (2..15)

Aφ = G−1∂φG (2..16)

где G - это отображение из M в группу Ли SL(2,R). Стоит также отметить,
что из-за условия калибровки, G факторизуется G = g(φ, t)h(ρ). Давайте
теперь посмотрим, как устроено действие на своих решениях в данной
калибровке, то есть:

S[A]|sol = SHCS[A]|sol + κ

∫
∂M

dtdφ(g−1∂φg)2 (2..17)

SHCS[A]|sol = −κ
∫
M
dρdtdφTr[∂ρhh

−1ḣh−1g−1g′ + ∂ρhh
−1g−1ġg−1g′−

-∂ρhh−1g−1ġ
′ − h−1∂ρhh

−1g−1g
′
ḣ− h−1g−1gḣh−1∂ρh+

+h−1g−1g′∂ρḣ]

(2..18)
С другой стороны можно заметить:

κ

3

∫
M
Tr[(G−1dG)3] = κ

∫
M
dρdtdφTr[∂ρhh

−1ḣh−1g−1g′ + ∂ρhh
−1g−1ġg−1g′−

-∂ρhh−1g−1g
′
g−1ġ − h−1∂ρhh

−1g−1g
′
ḣ]

(2..19)
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Совмещая эти уравнения:

SHCS[A]|sol = −κ
3

∫
M
Tr[(G−1dG)3]− κ

∫
M
dρdtdφTr[−h−1g−1g

′
ḣh−1∂ρh+

+h−1g−1g
′
∂ρḣ]

(2..20)
Стоит также обратить внимание на тождества:

∂ρ(G
−1∂φGG

−1∂tG) = ∂ρ(h
−1g−1g

′
h(h−1g−1ġh+ h−1ḣ)) (2..21)

ḣ|∂M = 0 (2..22)

Учитывая все это:

SHCS[A]|sol = −κ
∫
∂M

dtdφTr[g−1∂φgg
−1∂tg]− κ

3

∫
M
Tr[(G−1dG)3] (2..23)

S[A]|sol = −κ
∫
∂M

dtdφTr[g−1∂φgg
−1(∂tg − ∂φg)]− κΓ[G] (2..24)

Переходя в координаты, связанные со световым конусом x+ и x−, получим:

S[A]|sol = −2κ

∫
∂M

dtdφTr[g−1∂φgg
−1∂−g]− κΓ[G] = SRWZW [g] (2..25)

Получившееся действие называют правокиральным действием Весс-
Зумино-Виттена.

Вспомним, что в действии (1..26) присутствуют также члены с A.
Проделывая всё по аналогии с A, получаем:

S[A]|sol = −κ
∫
∂M

dtdφTr[g−1∂φgg
−1(∂tg + ∂φg)]− κΓ[G] (2..26)
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S[A]|sol = −2κ

∫
∂M

dtdφTr[g−1∂φgg
−1(∂+g)]− κΓ[G] = SLWZW [g] (2..27)

Получившееся действие называют левокиральным действием Весс-
Зумино-Виттена. В итоге, объединяя два куска с A и A:

S[A,A] = SRWZW [g]− SLWZW [g] (2..28)

Учтём, что G и G принадлежат одной и той же группе SL(2,R),
можно воспользоваться этим для того, чтобы перейти от право-киральных
и левого киральных действий Весс-Зумино-Виттена к некиральному
обычному действию Весс-Зумино-Виттена. Действительно, давайте введём
новые переменные:

k = g−1g (2..29)

K = G−1G (2..30)

W = −g−1∂φgg
−1g − g−1∂φg (2..31)

Заметим также, что верно следующее равенство:

Γ[K] = −Γ[G] + Γ[G]−
∫
∂M

Tr[g−1dgg−1dg] (2..32)

Тогда простой подстановкой можно убедиться в справедливости равенства:

S[A,A]|solution = S[k,W ] = −κ
∫
∂M

dτdφTr[Wk−1k̇ − 1

2
(W 2 + (k−1∂φk)2)]+

+
κ

3

∫
M
Tr[(K−1dK)3]

(2..33)

Теперь исключим одно из двух варьируемых полей, а именно импульс
W. Уравнение движения:
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k−1k̇ −W = 0

W = k−1k̇
(2..34)

Подставляя W в действие, получим стандартное некиральное
действие Весс-Зумино-Виттена:

S[k]WZW = −2κ

∫
∂M

dτdφTr[k−1∂+kk
−1∂−k] +

κ

3

∫
M
Tr[(K−1dK)3] (2..35)

Обратим внимание на то, как тут устроены токи. Из сказанного в
разделе 1.3 понятно:

J− = −k−1a−k + a− (2..36)

J+ = a+ − k−1a+k

a = g−1dg

a = g−1dg

(2..37)

С учётом граничных условий, получаем токи:

J− = a−

∂+J− = ∂+a− = 0

(2..38)

J+ = a+

∂−J+ = ∂−a+ = 0

(2..39)

То есть мы получили,что сохраняющиеся токи на границе - это есть
не что иное, как значения полей на границе многообразия M.
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3. Асимптотические симметрии

Давайте подробнее разберемся с интересными эффектами,
возникающими вследствии того, что мы явно учитываем граничные
условия в теории. Заранее стоит отметить, что в этом разделе мы будем
часто пользоваться (2+1) разбиением, в связи с чем примем следующие
обозначения: M = R × Σ где Σ = (ρ, φ) ∂Σ = (φ). В теории гравитации
в трёх измерениях отстутсвуют локальные стемени свободы, и если не
учитывать границу никоим образом, то все решения эквивалентны друг
другу. Но оказывается, если ввести в теорию границу, то возникнет
бесконечное число неэквивалентных друг другу решений, которые
определяются значением поля A на границе многообразия Σ. Помним о
том, что исследуемая теория определяется разностью двух независимых
друг от дргу действий:

S[A,A] = S[A]− S[A] (3..1)

Достаточно исследовать одно из этих действий, так как поля A и A
независимы. Пусть это будет S[A]. Симметриями этого действия являются
преобразования следующего вида:

δAa
µ = Dµλ

a

D=d+[A,•]

(3..2)

Так как в теории есть граничные условия, от преобразования симметрии
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естественно требовать сохранения этих граничных условий, то есть:

δA−|∂M = D−λ = ∂−λ = 0→ λ|∂M = λ(x+) (3..3)

Тут весьма важен получившийся результат. Часто в литературе
говорят, что действие Черна-Саймонса инвариантно относительно
преобразования δA = Dλ только при условии, что λ = 0 на границе,
как мы видим в нашем случае это оказалось неправдой. Правильное
утверждение следующее - параметр λ не может быть произвольным,
но он вполне может быть отличен от нуля на границе. В нашем случае
параметр оказался киральным. Более того, именно благодаря тому, что
λ 6= 0 на гарнице в системе возникает бесконечное число неэквивалентных
решений, которые будут характеризоваться значениями полей на границе.
Рассмотри подробнее как так получается.

S[A] = κ

∫
M
dρdtdφTr[AρȦφ − AφȦρ + 2AtFφρ] + (bnd.term) (3..4)

У это действия 2N динамических полей Ai (где N размерность
калибровочной группы G) и N Лагранжевых множетилей A0. Полевые
уравнения на лагранжевы множителям приводят к связям первого рода.
Естественная скобка Пуассона в теории:

{F,G} =
2

κ

∫
Σ
dxi ∧ dxjTr( δF

δAi

δG

δAj
) (3..5)

Введём следующий функции G(λ) и назовём их генераторами
преобразований:

G(λ) = κ

∫
Σ
dxi ∧ dxjTr(λFij) +Q(λ) (3..6)

Q(λ) = −2κ

∫
∂Σ
dxiTr(λAi) (3..7)

Результат вычисления скобки Пуассона для функций G(λ) объясняет
название функций G(λ). Они называтся генераторами преобразований,
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потому что для них верно следующее соотношение:

Diλ = {Ai, G(λ)} (3..8)

Весь смысл граничного члена Q заключается в том, чтобы сократить
граничный член, который возникает при варьировании первого члена в
G(λ).

Данные генераторы удовлетворяют следующей алгебре:

{Q(λ), Q(γ)} = Q([λ, γ]) + 2κ

∫
∂Σ
dxiTr(λ∂iγ) (3..9)

Определение: Преобразование поля A будем называть
калибровочным, если порождающий его генератор не содержит члена с Q.

Определение: Преобразования поля A будем называть глобальной
симметрией, если порождающий его генератор, содержит член с Q.

Фундаментальное различие между калибровочной и глобальной
симметрией состоит в том, что в первом случае преобразование
порождается связью Fij , а во втором случае нет. Это соответствует
тому, что в первом случае генераторы образуют замкнутую алгебру,
а во втором случае нет. Две конфигурации поля, которые отличаются
на преобразование глобальной симметрии представляют собой разные
физические состояния. Прямым следствием из этого является тот факт,
что если есть две плоские связности A и A

′
, такие что их значения

на ∂Σ отличаются, то они не могут быть переведены друг в друга
преобразованием, порожденным связью. Таким образом значения A на
границе представляют собой физические степени свободы.

Глобальные преобразования переводят одно физическое решение в
другое, подтверждение чему мы увидим далее. Давайте непосредственно
покажем это:

Для начала решим уравнения движения.

F = 0 (3..10)
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Не забываем также про то, что у нас есть граничные условия и условия
калиброки:

A−|∂M = 0 (3..11)

Aρ = h−1(ρ)∂ρh(ρ) (3..12)

Условия калибровки фиксируют функцию h(ρ). Но стоит только
учесть то, что эту функцию не нужно класть равной нулю, это приведёт к
тому, что тетрада в теории гравитации будет вырождена.

Решение уравнений движений при заданной калибровке и заданных
граничных условиях устроено следующим образом:

A+ = h−1g(x+)−1∂+g(x+)h = h−1a+(x+)h,

A− = 0,

Aρ = h−1∂ρh

(3..13)

Как мы видим отсюда, решение уравнений полностью
характеризуется функцией a+ определённой на границе. Эта функция есть
не что иное, как ток J+ в полученной нами ранее теории Весс-Зумино-
Виттена. Так как функция a+ произвольна, то пространство решений
бесконечномерно.

Покажем теперь, что делая преобразования глобальной симметрии,
сохраняющее калибровку и граничные условия, можно получить из одного
решения любое другое. Действительно, делая преобразование с λ =

h−1η(x+)h, получим снова решение:
A+ = h−1(a+(x+) +D+η)h = h−1(ã+(x+))h,

A− = 0,

Aρ = h−1∂ρh

(3..14)

В случае с полем A ситуация будет схожей, с тем лишь
отличием, что решения будут характеризоваться функцией a−, а параметр
преобразований должен удовлетворять равенству λ|∂M = λ(x−)
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4. AKSZ-BV формулировка

4.1. BFV формализм

Изначально BV и BFV формализмы былы придуманы для того,
чтобы квантовать системы с калибровочными симметриями. Но мы
не будем рассматривать квантование и опишем эти формализмы на
классическом уровне. Начнём с BFV формализма. Для простоты будем
смотреть на механическую систему.

Пусть имеется механическая система со связями первого рода.

S =

∫
dt(σaż

a −H0(z)− λαTα(z)) . (4..1)

Идея заключается в том, чтобы встроить заданную систему
в специальную расширенную систему с помощью дополнительных
переменных, называемых гостами, и гостовыми импульсами. Дело в том,
что расширенная система является естественной отправной точкой для
квантования, анализа взаимодействия, симметрий, аномалий и т.д.

Для системы 1-го рода со связями Tα вводятся гостовые переменные
cα и гостовые импульсы Pα. Грассмановская четность cα и Pα

противоположна четности Tα, так что в простейшем случае, когда
в исходной системе не участвуют фермионы, то cα, Pα являются
фермионными, то есть |cα| = |Pα| = 1. В дальнейшем мы ограничимся
этим упрощенным случаем.

Супералгебра A функций на расширенном фазовом пространстве
является тензорным произведением функций исходного фазового
пространства C∞(M) и полиномов C[cα, Pβ]. Это градуированная
суперкоммутативная алгебра. Градуировка обозначается символом gh.

gh(cα) = 1 , gh(Pα) = −1 , gh(za) = 0 , (4..2)
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Расширенное фазовое пространство имеет естественную скобку Пуассона,
определяемую исходной скобкой Пуассона на M . Более конкретно, скобка
Пуассона определяется как

{f, g} = f
∂R

∂za
ωab(z)

∂L

∂zb
g + f

∂R

∂cα
∂L

∂α
g + f

∂R

∂α

∂L

∂cα
g , (4..3)

где ωab(z) = {za, zb} - компоненты бивектора Пуассона исходного фазового
пространства. Заметим, что

|{f, g}| = |f |+ |g|mod 2 , gh({f, g}) = gh(f) + gh(g) . (4..4)

По определению BRST заряд - это элемент Ω в A, удовлетворяющий:

|Ω| = 1 , gh(Ω) = 1 , Ω∗ = Ω
1

2
{Ω,Ω} = 0 . (4..5)

Последнее соотношение часто называют мастер уравнением. BRST заряд
кодирует в себя связи первого рода.

Другой компонентой BFV формулировки является BRST-
инвариантный гамильтониан H. По определению это элемент A
удовлетворяющий

|H| = 0 , gh(H) = 0 , H∗ = H {Ω, H} = 0 . (4..6)

Процедура построения Ω и H по изначальному гамильтониану и связям
первого рода Tα известна. Смотрите [26].

Для заданной системы рассмотрим следующее гамильтоново
векторное поле:

sf = {Ω, f} (4..7)

Легко проверить, что gh(s) = |s| = 1 s2 = 0. Для данного
гомологического оператора, определйнного на расширенной алгебре
функций можно посчитать когомологии H•(s). Тогда оказывается, что
H0(s)={наблюдаемые исходной гамильтоновой системы}. Подробности
смотрите в [26]. На классическом уровне этот факт объясняет важность
BFV формализма.
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Теперь сформулируем всё таки определение того чем, является BFV
система.

Определение: BFV система - это супермногообразие, оснащённое
градуировкой, симплектической структурой, BRST зарядом Ω,
который подчиняется мастер уравнению, а также BRST инвариантным
Гамильтонианом.

4.2. BV формализм

При построении BFV формализма мы никак не затронули действие
(4..1). BV формулировка гамильтоновой системы, является обощённой
теорией, действие которой записывается в терминах BRST заряда Ω и
инвариантного гамильтониана H(z).

Действительно, обозначим за ZA все переменные расширенного
фазового пространства (z, c, P ) и введём сопряженные им переменные Z∗A
удовлетворяющие соотношениям

gh(Z∗A) = −gh(ZA)− 1 , |Z∗A| = |ZA|+ 1mod 2 . (4..8)

Обозначим за σext = σextA (Z)dZA потенциал для симплектической
структуры расширенного фазового пространства и запишем следующее
действие.

SBV [Z,Z∗] =

∫
dt
(
σextA ŻA −H − Z∗A{ZA,Ω}

)
. (4..9)

Это действие является частным случаем так называемого BV мастер
действия. Заметим, чтобы перейти от этого действия к исходному действию
(4..1) нужно положить все переменные с gh() 6= 0 в нуль. Также
справделиво gh(SBV ) = |SBV | = 0.

Структура переменных, от которых зависит SBV , предполагает,
что Z∗A можно интерпретировать как импульсы, сопряженные с ZA.
Точнее, можно ввести нечетную скобку Пуассона, постулируя следующие
соотношения:

(ZA(t), Z∗B(t′)) = δABδ(t− t′) . (4..10)
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Для произвольных функций можно записать:

(F,G) =

∫
dt

(
δRF

ZA(t)

δLG

Z∗A(t)
− δRF

Z∗A(t)

δLG

ZA(t)

)
. (4..11)

Нетрудно увидеть, что справедливы соотношения:

(F,G) = −(−1)(|F |+1)(|G|+1)(G,F ) ,

(F,GH) = (F,G)H + (−1)(|F |+1)|G|F (F,H) ,

(F, (G,H)) = ((F,G), H) + (−1)(|F |+1)(|G|+1)(G, (F,H)) .

(4..12)

gh((F,G)) = gh(F ) + gh(G) + 1 , |(F,G)| = |F |+ |G|+ 1mod 2 . (4..13)

Вводят BRST дифференциал s:

s = (•, SBV ) (4..14)

С точностью до граничных членов справедливо:

(SBV , SBV ) = 0 (4..15)

Последнее уравнение называется мастер уравнением BV теории.Так
что же такое BV система в общем случае? Давайте определим базовые
объекты и аксиомы для них:

• Пространство полей-антиполей ( в рассмотренном выше случае это
бесконечномерное многообразие с координатами ZA(t), Z∗A(t)).

• Градуировка и чётность .

• Нечётная скобка Пуассона градуировки 1, называемая также
антискобкой. Она удовлетворяет градуированной версии обычных
аксиом для скобки Пуассона. Она должна быть невырожденной и
допускать приведение себя к каноническим координатам.

• Мастер действие SBV , gh(SBV ) = |SBV | = 0, которое удовлетворяет
классическому мастер уравнению.

• Если положить в нуль все переменные с ненулевой градуировкой, то
SBV редуцируется до классического действия.
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4.3. AKSZ конструкция

AKSZ конструкция - это простой способ генерировать различные
теории поля, имеющие калибровочные симметрии. Причём эта
конструкция так устроена, что конечная теория формулируется сразу в
BV формализме. Рассмотрим подробнее её устройство.

Пусть имеется расслоение E с базой ПTX (dim X=n) и слоем M. База -
градуированное многообразие (градуировку обозначаем ghX ) с нечётным
нильпотентным векторным полем dX .От этого поля мы будем требовать
следующее:

• ghX(dX)=1

• dX согласованн с формой объема на X

• dx = θµ
∂

∂xµ
где (xµ, θµ) -координаты на базе

Слой M также является градуированным многообразием со своей
градуировкой ghM . От M будем требовать наличия следующих структур и
аксиом для них:

• α - градуированная симплектическая структура - 2 форма степени n-1

• α - невырождена

• α - точна, то есть α = dφ для некоторой φ = φa(Ψ)dΨa где Ψa -
локальные координаты на слое M.

• функция H, такая что gh(H)=n

• { H,H} = 0 где скобка порождена соответсвующей симплектической
структурой α.

Рассмотрим теперь сечения данного расслоения, то есть отображения

σ : T [1]X → E (4..16)

А также суперотображения σ∗, записываемые в локальных
координатах следующим образом:

σ∗(Ψa) = Ψa(x, θ) =
0

Ψa(x) + θµ
1

Ψµ(x) +
1

2
θνθµ

2

Ψνµ(x) + ... (4..17)
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Тогда имея заданные выше структуры, можно построить мастер
действие Баталина-Вилковыского для AKSZ модели:

SBV [σ] =

∫
T [1]X

dθdx(σ∗(φ)(dX) + σ∗(H)) (4..18)

SBV [Ψ(x, θ)] =

∫
T [1]X

dθdx(φa(Ψ(x, θ))dΨa(x, θ) +H(Ψ(x, θ))) (4..19)

Причём S удовлетворяет мастер уравнению c точностью до граничных
членов:

(SBV , SBV ) = 0 (4..20)

Данная антискобка на пространстве отображений порождена с помощью
симплектической структруры на таргет пространстве следуюдим образом:

(F,G) = (−1)(|G|+n)n

∫
T [1]X

dθdx
δRF

δΨa(x, θ)
Eab(Ψ(x, θ))

δLG

δΨb(x, θ)
(4..21)

Eab = {Ψa,Ψb} (4..22)

БРСТ дифференциал в таком случае:

sΨa(x, θ) = (−1)n(Ψa, SBV ) = dXΨa(x, θ) +Qa(Ψ(x, θ)) (4..23)

где:
Qa(Ψ) = {Ψa, H} (4..24)

Уравнения движения - это условие на плоскость сейчения для связности
Q:

dX ◦ σ∗ = σ∗ ◦Q (4..25)

dXΨa(x, θ)−Qa(Ψ(x, θ)) = 0 (4..26)

Общая степень в пространстве полей вводится следующим образом:

gh(A) = ghX(A) + ghM(A) (4..27)
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Тогда несложно заметить, что :

gh(SBV ) = 0

gh(s) = 1
(4..28)

Поля с gh=0 считаются физическими, с числами gh>0 - духами, с
gh<0 - антиполями Интересный факт - если размерность пространства
времени X больше 1, а размерность слоя M конечна, то получаемая
теория всегда будет топологической. Для построения теории с локальными
степенями свободы, нужно рассматривать бесконечномерные пространства
отображений.

4.3.1. AKSZ формулировка для теории Черна-Саймонса

Оказывается, что теорию Черна-Саймонса можно получить с
помощью AKSZ конструкции. Действительно, Пусть g - полупростая
алгебра, а dim X= 3. X - пространство время. В алгебре есть инвариантная
метрика Киллинга η. Возьмём в качестве таргет пространства
g[1]. Обозначим за (ca) нечётные координаты на таргете. На этом
супермногообразии возникает естественная 2 форма:

α = dca ∧ dcbηab (4..29)

Она невырождена и как можно увидеть, точна:

α = dφ = d(ηabc
adcb) (4..30)

Порождённая скобка Пуассона:

{f, g} =
∂Rf

∂ca
ηab

∂Lg

∂cb
(4..31)

Также на g[1] присутствует такая естественная структура, как
дифференциал Шевалье-Эйнберга:

Q = {H, } =
1

2
cacbf cab

∂

∂cc
(4..32)
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который порождается гамильтонианом следующего вида:

H =
1

6
fabcc

acbcc (4..33)

Теперь понятно, что у нас есть все для AKSZ конструкции.

ca(x, θ) =
0

ca(x) + θµ
1

Aµ(x) +
1

2
θµθν

2

A∗µν +
1

6
θµθνθλ

3

c∗µνλ(x) (4..34)

Тогда само действие SBV :

SBV [A,A∗, c, c∗] =

∫
X
Tr[

1

2
A ∧ dA+

1

6
A ∧ [A,A] +

1

2
A∗ ∧ dc+

+
1

2
c ∧ dA∗ +

1

2
c∗ ∧ [c ∧ c]]

(4..35)

4.3.2. AKSZ формулировка для 3х мерной гравитации

Гравитация в трёх измерениях эквивалентна двум теориям Черна-
Саймонса, что заранее говорит нам о том, что гравитацию можно
получить при помощи AKSZ конструкции. Пусть g[1] so(2,2) алгебра со
сдвинутой на единичку градуировкой. Стандартные координаты (ξaρab)
несут градуировку 1. На g[1] есть естественный диффренциал Шевалье-
Эйнберга Q. Его действие:

Qξa = ρabξb

Qρab = ρacρbc − Λξaξb
(4..36)

Также на g[1] присутствует естественная 2 форма инвариантная
относительно Q

ω = εabcdξ
adρbc (4..37)

Соответствующий потенциал:

φ = εabcξ
aρbc (4..38)

Соответствующий гамильтониан:

H = εabcξ
c(ρacρ

cb − Λ

3
ξaξc) (4..39)
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Будем строить суперотображение:

σ∗(ξa) = ξa + eaµθ
µ +

1

2
ξaµνθ

µθν +
1

6
ξaµνλθ

µθνθλ

σ∗(ρab) = ρab + ωabµ θ
µ +

1

2
ρabµνθ

µθν +
1

6
ρabµνλθ

µθνθλ

(4..40)

Тогда само действие получится в нужном виде:

SBV =

∫
(Rab ∧ ec − Λ

3
ea ∧ eb ∧ ec)εabc + S[gh 6= 0] (4..41)

Таким образом, мы получили AKSZ формулировку для теории гравитации
в трёх измерениях. Стоит отметить, что можно было выбрать другой
базис в алгебре so(2,2), связанный с теорией Черна-Саймонса, тогда бы
мы получили, в конечном действии разность двух действий (4..35)
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ЗАКЛЮЧЕНИЕ

В результате проведения работы по иследованию асимптотических
симметрий в теории гравитации в 3-х измерениях с отрицательной
космологической постоянной:

• Подробно рассмотрен переход от исходной теории гравитации с
отрицательной космологической постоянной к теории Черна-Саймонса

• Подробно рассмотрена связь между теорией гравитации с
отрицательной космологической постоянной и теорией Весс-Зумино-
Виттена, естественно возникающей на границе

• Исследована алгебра асимптотических симметрий

• Получена AKSZ-BV формулировка для теории гравитации с
отрицательной космологической постоянной.в трёх измерениях
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ПРИЛОЖЕНИЕ А

Покажем, что следующая калибровка в теории Черна-Саймонса
всегда возможна

Aρ = h−1∂ρh(ρ) (4..42)

Пусть поле находится в какой-то произвольной конфигурации A
′

ρ.
Сделаем преобразование с U - отображением из пространства времени в
калибровочную группу.

U−1A
′

ρU + U−1∂ρU = h−1∂ρh (4..43)

Введём U
′
, так что U = U

′
h, тогда:

∂ρU
′
= −A′

ρU
′

(4..44)

Откуда получаем:

U = Pexp(−
∫ ρ

A
′

ρdρ
′
)U0h (4..45)
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