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1 Введение

1.1 Обзор
Классическая электродинамика, основанная на уравнениях Максвелла, явля-
ется линейной теорией – в ней отсутствует взаимодействие электромагнитных
волн друг с другом.

Тем не менее, из-за квантовых поправок, описываемых теорией Эйлера-
Гейзенберга, такое взаимодействие возникает. Согласно этой теории к лагран-
жиану свободного электромагнитного поля добавляются нелинейные слага-
емые, появляющиеся в результате рождения в вакууме двумя начальными
фотонами виртуальной электрон-позитронной пары и последующей анниги-
ляции этой пары в конечные кванты [2].

В представленной работе автор описывает характер самовоздействия элек-
тромагнитного излучения, используя энергетический подход, в основе кото-
рого лежит теория Эйлера-Гейзенберга.

1.2 Система единиц и основные соотношения
Далее будет использована система единиц Хевисайда (HL), в которой ε0 =
µ0 = c = h̄ = 1, а все остальные величины имеют размерности различных
степеней массы. Вся последующая теория будет строиться в пространстве
Минковского с метрикой

ηµν = ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Напряжённости электрического и магнитного полей выражаются через
4-потенциал поля Aµ = (A0, A1, A2, A3) ≡ (ϕ,Ax, Ay, Az) ≡ (ϕ,A):

E = −1

c

∂A

∂t
−∇ϕ, H = rotA.

Упомянутый выше лагранжиан выглядит следующим образом

L = −1

4
FµνF

µν +
α2
e

90m4
e

(
(FµνF

µν)2 +
7

4
(FµνF̃

µν)2
)
, (1)

где me – масса электрона, αe = e2

4π = 1
137 – постоянная тонкой структуры

в данной системе единиц, а компоненты тензора электромагнитного поля,
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определяемого соотношением Fµν = ∂µAν − ∂νAµ (∂µAν ≡ ∂Aν
∂xµ ), имеют вид

Fµν =


0 Ex Ey Ez

−Ex 0 −Hz Hy

−Ey Hz 0 −Hx

−Ez −Hy Hx 0

 , F µν =


0 −Ex −Ey −Ez

Ex 0 −Hz Hy

Ey Hz 0 −Hx

Ez −Hy Hx 0

 ,

F̃µν =


0 Hx Hy Hz

−Hx 0 Ez −Ey

−Hy −Ez 0 Ex

−Hz Ey −Ex 0

 , F̃ µν =


0 −Hx −Hy −Hz

Hx 0 Ez −Ey

Hy −Ez 0 Ex

Hz Ey −Ex 0

 ,

(2)

поскольку F̃ µν = 1
2ε
µνλρFλρ. Исходя из этого, можно построить два инвари-

анта (истинный скаляр и псевдоскаляр, соответственно)

FµνF
µν = 2(H2 − E2), FµνF̃

µν = −4(E,H).

2 Теоретическая часть

2.1 Плотность энергии электромагнитного поля в ли-
нейном случае

Рассмотрим некоторую систему, интеграл действия для которой имеет вид

S =

∫∫
L
(
Aα,

∂Aα

∂xµ

)
dV dt =

1

c

∫
LdΩ,

где L в данном случае – «плотность» функции Лагранжа.
Уравнения поля получаются согласно принципу наименьшего действия

путем варьирования S

δS =
1

c

∫ (
∂L
∂Aα

δAα +
∂L

∂(∂µAα)
δ∂µAα

)
dΩ =

=
1

c

∫ (
∂L
∂Aα

− ∂

∂xµ
∂L

∂(∂µAα)

)
δAαdΩ = 0.

Таким образом, мы приходим к следующим уравнениям поля

∂

∂xµ
∂L

∂(∂µAα)
− ∂L
∂Aα

= 0.

Далее запишем следующее выражение

∂L
∂xµ

=
∂L
∂Aα

∂µAα +
∂L

∂(∂νAα)
∂µ∂νAα.
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Подставляя сюда уравнения поля и замечая, что ∂µ∂νAα = ∂ν∂µAα, получаем

∂L
∂xµ

=
∂

∂xν

(
∂L

∂(∂νAα)

)
∂µAα +

∂L
∂(∂νAα)

∂ν∂µAα =
∂

∂xν

(
∂µAα

∂L
∂(∂νAα)

)
.

Введём обозначение

T νµ = ∂µAα
∂L

∂(∂νAα)
− δνµL (3)

– тензор энергии-импульса и перепишем полученное соотношение в виде

∂T νµ
∂xν

= 0.

В случае электромагнитного поля величина L равна

L = −1

4
FναF

να.

Для вычисления стоящей здесь производной от L напишем вариацию

δL = −1

2
F ναδ (∂νAα − ∂αAν) = −F ναδ(∂νAα).

Отсюда мы видим, что
∂L

∂(∂νAα)
= −F να,

и поэтому

T νµ = −(∂µAα)F να +
1

4
δνµFγτF

γτ ,

или для контравариантных компонент

T µν = −(∂µAα)F ν
α +

1

4
ηµνFγτF

γτ .

Симметризуем тензор, прибавив к нему (∂αAµ)F ν
α . Согласно уравнениям

Максвелла в отсутствие зарядов ∂F να
∂xα

= 0, а потому

(∂αAµ)F ν
α =

∂

∂xα
(AµF ν

α).

Итак, мы пришли к следующему выражению для тензора энергии-импульса
электромагнитного поля

Θµν = −F µαF ν
α +

1

4
ηµνFγτF

γτ .

С помощью компонент тензора электромагнитного поля (2) легко полу-
чаем, что Θ00 = w = E2+H2

2 – плотность энергии электромагнитного поля.
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2.2 Плотность энергии электромагнитного поля в нели-
нейном случае

Теперь выведем плотность энергии в случае учёта взаимодействий поля с вир-
туальными частицами. Как было сказано ранее, лагранжиан в такой нелиней-
ной теории имеет вид (1). Получим выражение для тензора энергии-импульса
электромагнитного поля. По аналогии с предыдущим пунктом сперва найдём
вариацию L

δL = −F ναδ(∂νAα) +
α2
e

90m4
e

[
2FναF

ναδ(FναF
να) +

7

2
FναF̃

ναδ(FναF̃
να)

]
=

=

[
−F να +

α2
e

90m4
e

(
8(FγτF

γτ)F να + 14(Fγτ F̃
γτ)F̃ να

)]
δ(∂νAα).

Подставляя производную ∂L
∂(∂νAα)

в формулу (3), для контравариантных ком-
понент будем иметь

T µν =

[
−F ν

α +
α2
e

90m4
e

(
8(FγτF

γτ)F ν
α + 14(Fγτ F̃

γτ)F̃ ν
α

)]
∂µAα+

+
1

4
(FγτF

γτ)ηµν − α2
e

90m4
e

(
(FγτF

γτ)2 +
7

4
(Fγτ F̃

γτ)2
)
ηµν.

Для дальнейшего вывода необходимо симметризовать этот тензор. В ли-
нейном случае мы использовали уравнения Максвелла, которые являются
следствием принципа наименьшего действия в применимости к электромаг-
нитному полю. Поступим тем же образом, а именно найдём вариацию дей-
ствия

δS = δ

∫ [
−1

4
FναF

να +
α2
e

90m4
e

(
(FναF

να)2 +
7

4
(FναF̃

να)2
)]

dΩ =

=

∫∫ [
−F να +

α2
e

90m4
e

(
8(FγτF

γτ)F να + 14(Fγτ F̃
γτ)F̃ να

)]
δ(∂νAα)dxνdSν,

интегрируя по частям, получим

δS =

∫ [
−F να +

α2
e

90m4
e

(
8(FγτF

γτ)F να + 14(Fγτ F̃
γτ)F̃ να

)]
δAαdSν+

+

∫
δAα

∂

∂xν

[
F να − α2

e

90m4
e

(
8(FγτF

γτ)F να + 14(Fγτ F̃
γτ)F̃ να

)]
dΩ,

где первое слагаемое зануляется, поскольку поле на бесконечности, являю-
щейся пределами пространственного интегрирования, равно нулю, а также
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вариация потенциалов в начальный и конечный моменты времени равна ну-
лю. Далее в силу произвольности δAα и минимума действия δS = 0

∂

∂xν

[
F να − α2

e

90m4
e

(
8(FγτF

γτ)F να + 14(Fγτ F̃
γτ)F̃ να

)]
= 0. (4)

Перепишем это равенство для контравариантных компонент

∂

∂xα

[
F ν
α −

α2
e

90m4
e

(
8(FγτF

γτ)F ν
α + 14(Fγτ F̃

γτ)F̃ ν
α

)]
= 0.

Теперь получим симметризованный тензор энергии-импульса

Θµν = T µν +
∂

∂xα

[
F ν
αA

µ − α2
e

90m4
e

(
8(FγτF

γτ)F ν
α + 14(Fγτ F̃

γτ)F̃ ν
α

)
Aµ

]
,

где второе слагаемое в силу равенства (4) равно[
F ν
α −

α2
e

90m4
e

(
8(FγτF

γτ)F ν
α + 14(Fγτ F̃

γτ)F̃ ν
α

)]
∂αAµ.

В итоге имеем

Θµν = −F µαF ν
α +

α2
e

90m4
e

(
8(FγτF

γτ)F µαF ν
α + 14(Fγτ F̃

γτ)F µαF̃ ν
α

)
+

+
1

4
(FγτF

γτ)ηµν − α2
e

90m4
e

(
(FγτF

γτ)2 +
7

4
(Fγτ F̃

γτ)2
)
ηµν,

откуда, используя (2), получаем плотность энергии электромагнитного поля

w = Θ00 =
1

2
(E2 +H2) +

2α2
e

45m4
e

(
3E4 − 2E2H2 −H4 + 7(E,H)2

)
. (5)

Для сокращения дальнейших выкладок введём следующее обозначение об-
щего коэффициента нелинейных слагаемых 2α2

e

45m4
e
≡ κ.

2.3 Исследование характера взаимодействия двух лу-
чей в вакууме

Сперва рассмотрим самый простой случай – две параллельно идущие друг к
другу плоские волны, имеющие область пересечения ширины ρ. Каждая из
них ограничена в пространстве параллелепипедом, характеристики которо-
го одинаковы для обеих: h – ширина и высота, l – длина (рис. 1). Заметим,
что исходя из нелинейных уравнений Максвелла (4) и ∂µF̃ µν = 0 легко пока-
зать, что плоская волна является их решением. Однако линейная комбинация
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Рис. 1: параллельные лучи.

плоских волн решением не является, так что мы работаем в приближении, по-
скольку взаимодействие мало, а два пересекающихся луча – это практически
решение.

Таким образом, мы имеем две волны, распространяющиеся вдоль оси X,
векторы напряжённости которых колеблются вдоль оси Z по закону E1,2 =
ezE0 cos(ωt− kx). В силу свойств плоских волн:

√
µµ0H0 =

√
εε0E0

– в вакууме в системе единиц Хевисайда E0 = H0, то есть H2 = E2. Рас-
смотрим для начала их суммарную энергию без учёта нелинейных поправок
(классический случайWl), проинтегрировав плотность энергии по объёму об-
ласти ограничения W =

∫∫∫
w dV :

Wl =
1

2

∫ h

0

dz

(∫ h−ρ

0

dy

∫ l

0

(E2
1+H2

1)dx+

∫ h

h−ρ
dy

∫ l

0

(
(E1+E2)

2+(H1+H2)
2
)
dx+

+

∫ 2h−ρ

h

dy

∫ l

0

(E2
2 +H2

2)dx

)
=

1

2
h

(
2(h− ρ)

∫ l

0

E2
0 cos2(ωt− kx)dx+

+ρ

∫ l

0

(
E2

1 + 2(E1,E2) + E2
2 +H2

1 + 2(H1,H2) +H2
2

)
dx+

+2(h− ρ)

∫ l

0

E2
0 cos2(ωt− kx)dx

)
.

В итоге получаем
Wl = 2h(h+ ρ)Jx(t),

где Jx(t) ≡
∫ l
0 E

2
0 cos2(ωt − kx)dx – осциллирующая ограниченная функция

только времени. Зависимость энергии от параметра ρ указывает на класси-
ческую интерференцию. Действительно, при ρ = h (случай полного нало-
жения лучей друг на друга) будет наблюдаться максимум интенсивности, а
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при отсутствии наложения (ρ = 0) – минимум. Поэтому, чтобы раскрыть
взаимодействие волн, непосредственно связанное с влиянием нелинейных по-
правок, необходимо исследовать лишь нелинейные слагаемые. Часть энер-
гии, относящуюся к теории Эйлера-Гейзенберга, будем обозначать WEH , то-
гда W = Wl +WEH – полная энергия.

WEH = κ

∫ h

0

dz

(∫ h−ρ

0

dy

∫ l

0

(
3E4

1 − 2E2
1H

2
1 −H4

1 + 7(E1,H1)
2
)
dx+

+

∫ h

h−ρ
dy

∫ l

0

(
3(E1 + E2)

4 − 2(E1 + E2)
2(H1 + H2)

2 − (H1 + H2)
4+

+7(E1 + E2,H1 + H2)
2
)
dx+

∫ 2h−ρ

h

dy

∫ l

0

(
3E4

2 − 2E2
2H

2
2 −H4

2+

+7(E2,H2)
2
)
dx

)
= 0,

поскольку (E1,2,H1,2) = 0, что следует из свойств плоских волн, (E1,E2) =
E2

1 = E2
2 и (E1,2,H2,1) = 0 при данных плоскостях поляризации. То есть при

параллельном распространении двух волн такой конфигурации нелинейный
вклад в энергию отсутствует, а следовательно, отсутствует и взаимодействие.

Аналогичным образом можно показать, что не будет взаимодействия и в
случае перпендикулярно расположенных плоскостей поляризации параллель-
но идущих лучей: а именно, когда вектор E одной волны параллелен вектору
H второй. То есть, как и раньше, k1,2 ↑↑ OX и E1 ↑↑ OZ (H1 ↑↓ OY ), однако
E2 ↑↑ OY (H2 ↑↑ OZ). Легко заметить, что здесь не будет наблюдаться и
интерференция:

Wl =
1

2
h

∫ l

0

(
(h−ρ)(E2

1 +H2
1 +E2

2 +H2
2)+ρ(E2

1 +E2
2 +H2

1 +H2
2)
)
dx = 2h2Jx(t),

чего и следовало ожидать, ведь волны в данном случае некогеренты.

WEH = 7hκ

∫ l

0

ρ
(
(E1,H2) + (E2,H1)

)2
dx = 0.

Итак, наиболее интересным случаем является распространение лучей под
некоторым углом друг к другу. Для упрощения выкладок рассмотрим их
пересечение под углом π

2 : k1 ↑↑ OX, E1 ↑↑ OZ, H1 ↑↓ OY ; k2 ↑↑ OZ, E2 ↑↓
OY, H2 ↑↑ OX (рис. 2). Классическая часть энергии окажется такой же, как в
предыдущем примере, поскольку интерференция отсутствует – в этом можно
убедиться, проводя аккуратные вычисления, разбивая, как и ранее, область
интегрирования на подобласти. Также следует обратить внимание на то, что
для векторов второй волны теперь в аргументе косинуса стоит координата z:
E2 = −eyE0 cos(ωt− kz).
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Рис. 2: перпендикулярные лучи.

В итоге получим Wl = h2
(∫ l

0 E
2
1dx+

∫ l
0 E

2
2dz
)
≡ h2(Jx(t) + Jz(t)). Распи-

шем здесь подробно лишь нелинейную часть:

WEH = κ

(∫ h

0

dz

∫ h−ρ

0

dy

∫ l

0

(
3E4

1 − 2E2
1H

2
1 −H4

1 + 7(E1,H1)
2
)
dx+

+

∫ h

h−ρ
dy

∫ h

0

∫ h

0

(
3(E1 + E2)

4 − 2(E1 + E2)
2(H1 + H2)

2 − (H1 + H2)
4+

+7((E1 + E2), (H1 + H2))
2
)
dxdz +

∫ h

0

dz

∫ h−ρ

0

dy

∫ l

h

(
3E4

1 − 2E2
1H

2
1 −H4

1+

+7(E1,H1)
2
)
dx+

∫ h

0

dx

∫ h

h−ρ
dy

∫ l

h

(
3E4

2 − 2E2
2H

2
2 −H4

2 + 7(E2,H2)
2
)
dz+

+

∫ h

0

dx

∫ 2h−ρ

h

dy

∫ l

0

(
3E4

2 − 2E2
2H

2
2 −H4

2 + 7(E2,H2)
2
)
dz

)
.

Ясно, что здесь все слагаемые, кроме второго, равны нулю, поскольку волны
плоские. Используя равенство E2

1,2 = H2
1,2, запишем

WEH = κρ

(∫ h

0

∫ h

0

(
6E2

1E
2
2−4E2

1E
2
2−2E2

1E
2
2

)
dxdz+7

∫ h

0

∫ h

0

(E2,H1)
2dxdz

)
,

то есть, как при E2 ↑↓ OY , так и при E2 ↑↑ OY , имеем отрицательную
энергию взаимодействия WEH = 7κρ

∫ h
0

∫ h
0 (E2,H1)

2dxdz:

WEH =
14α2

e

45m4
e

ρE4
0

∫ h

0

cos2(ωt− kx)dx

∫ h

0

cos2(ωt− kz)dz.
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Тогда полная энергия будет выглядеть следующим образом:

W = h2 (Jx(t) + Jz(t)) +
14α2

e

45m4
e

Jx(t)Jz(t)ρ. (6)

Поскольку при «сближении» лучей область их пересечения, пропорциональ-
ная ρ, увеличивается, а следовательно, увеличивается энергия, они будут от-
талкиваться.

2.4 Оценка амплитуды напряжённости поля
Вычислим, какая необходима амплитуда электрической напряжённости элек-
тромагнитных волн, чтобы сила отталкивания лучей могла уравновесить вес
человека в земных условиях. Массу примем равной 66 килограмм, тогда
F = mg ≈ 66 · 9.8 = 646.8 (Н). В системе СИ модуль силы будет выражаться
так:

Fwaves =

∣∣∣∣−∂W∂ρ
∣∣∣∣ =

14α2
eh̄

3ε20
45m4

ec
5

∫ h

0

∫ h

0

(E2, cB1)
2dxdz,

где B1 = µ0H1 = −µ0
√

ε0
µ0
E0ey cos(ωt − 2π

λ x) = −1
cE0ey cos(ωt − 2π

λ x), E2 =

−E0ey cos(ωt− 2π
λ z). Пусть h = 5 см, λ = 500 нм, тогда:∫ h

0

∫ h

0

(E2, cB1)
2dxdz = E4

0

(∫ 0.05

0

cos2
(

2π · 3 · 108

500 · 10−9
t− 2π

500 · 10−9
x

)
dx

)2

=

= E4
0

(
0.025− 2.70247 · 10−18 cos(2.51327 · 107t)

)2 ≈ 0.000625E4
0 .

Таким образом,

E4
0 =

45m4
ec

5 · 1600 · 646.8

14α2
eh̄

3ε20
≈ 11.4 · 1056

В4

м4
,

то есть амплитуда поля должна быть E0 ≈ 1.8 · 1014 В
м .

3 Итоги работы и перспективы
В ходе работы было получено выражение для энергии электромагнитного по-
ля в теории Эйлера-Гейзенберга, которое было использовано для определения
характера взаимодействия двух лучей в вакууме. В данной нелинейной тео-
рии они будут отталкиваться друг от друга. Также была оценена амплитуда
напряжённости электрической составляющей волн видимого спектра. Здесь и
раскрылась трудность экспериментального подтверждения данного эффекта.
В дальнейшем можно исследовать более общие случаи конфигурации, харак-
теристик и формы лучей и провести численный анализ явления.
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Хотя до создания световых мечей человечеству ещё далеко, учитывая
требуемые мощности, автор работы уверен, что экспериментальное подтвер-
ждение или опровержение эффекта взаимодействия электромагнитных волн
ожидает нас в недалёком будущем.
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