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1. Введение

Туннелирование - переход частицы через потенциальный барьер в
случае, когда её полная энергия меньше высоты барьера. Туннельные
процессы — это явления квантовой природы, которые невозможны с
точки зрения классической механики. Они лежат в основе многих важных
процессов в атомной и молекулярной физике, в физике атомного ядра,
твёрдого тела и т. д.

Ложный вакуум - состояние в теории поля, которое не является
состоянием с глобально минимальной энергией, а соответствует её
локальному минимуму. Такое состояние стабильно в течение определённого
времени, но может «туннелировать» в состояние истинного вакуума.

Цель работы - изучить квазиклассический метод вычисления
вероятности распада ложного вакуума с помощью отскокового решения.
В данной работе будет исследован процесс распада на примере кусочно
- гладких потенциалов. Некоторые из рассмотренных в данной работе
потенциалов взяты из статей [2], [3].
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2. Квазиклассическое приближение к вычислению вероятности
туннельных процессов

Простейшая система, в которой возникает задача о распаде
метастабильного состояния, - это квантовая механика одной переменной
q, описываемая потенциалом V (q). Мы будем рассматривать распад
только основного метастабильного состояния. В квазиклассическом
приближении вероятность тунеллирования через потенциальный барьер
дается выражением

Γ = Ae−Sb, (2..1)

где Γ - ширина метастабильного состояния, A - предэкспоненциальный
множитель, а Sb - главная квазиклассическая экспонента,

Sb = 2

∫ q1

q0

√
2MV (q) dq, (2..2)

M - масса частицы, q1 - точка поворота, в которой V (q1) = 0.
Чтобы упростить выкладки, положим V (q0) = 0 в локальном минимуме
потенциала.

Запишем обычное действие для классической частицы в потенциале
V (q):

S =

∫ [
M

2

(
dq

dt

)2

− V (q)

]
dt. (2..3)

После замены t = −iτ действие (2..3) превратится в iSE, где

SE =

∫ [
M

2

(
dq

dτ

)2

+ V (q)

]
dτ. (2..4)

SE - евклидово действие, τ - евклидово время.
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Варьируя (2..4), получим уравнение движения:

M
d2q

dτ 2
=
∂V

∂q
≡ −∂(−V )

∂q
. (2..5)

Из последнего равенства можно увидеть, что полученное нами уравнение
есть не что иное, как уравнение классической механики для частицы в
потенциале (−V ). Интеграл движения этого уравнения

M

2

(
dq

dτ

)2

− V (q) = E (2..6)

назовем евклидовой энергией.
Рассмотрим решение с нулевой евклидовой энергией, которое

начинается при τ → −∞ в точке q = q0, достигает точки q1 и возвращается
в точку q0 при τ → +∞. Такое решение называется отскоковым решением.
Обозначим его qb(τ). Вычислим на нем евклидово действие:

SE [qb] =

∫ +∞

−∞
dτ

[
M

2

(
dqb
dτ

)2

+ V (qb)

]
= 2

∫ 0

−∞
2V (qb(τ)) dτ, (2..7)

Сделав замену dτ =

√
M

2V (qb)
dqb, перейдем от интеграла (2..7) к интегралу

(2..2). В итоге имеем
Sb = SE [qb (τ)] . (2..8)
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3. Квазиклассическое описание распада ложного вакуума

Изложение предыдущего раздела можно обобщить на теории поля.
Рассмотрим модель одного действительного скалярного поля в d - мерном
пространстве - времени (d ≥ 3) [1]. Действие для такого поля выглядит
следующим образом:

S =

∫
ddx

[
1

2
(∂µϕ)2 − V (ϕ)

]
, (3..1)

Запишем действие в виде

S =

∫
dd−1x dt

[
1

2

(
∂ϕ

∂t

)2

− 1

2

(
∂ϕ

∂x

)2

− V (ϕ)

]
(3..2)

и сделаем в нем замену t = −iτ . С точностью до множителя i действие
(3..2) перейдет в евклидово действие

SE =

∫
dd−1x dτ

[
1

2

(
∂ϕ

∂τ

)2

+
1

2

(
∂ϕ

∂x

)2

+ V (ϕ)

]
=

=

∫
ddx

[
1

2
(∂µϕ∂

µϕ) + V (ϕ)

]
, (3..3)

где xµ = (τ,x), а суммирование ведется с метрикой diag(1, 1, . . . , 1).
Варьируя (3..3), получим уравнения поля:

− ∂µ∂µϕ+
∂V

∂ϕ
= 0. (3..4)

Предположим, что потенциал V (ϕ) имеет неглобальный минимум. По
аналогии с квантовой механикой, мы должны найти отскоковое решение
этих уравнений, которое стремилось бы к ложному вакууму ϕ− при
τ → ±∞ и имело бы «точку поворота». Под термином «точка поворота»
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мы подразумеваем «момент времени», при котором

∂ϕ

∂τ
= 0 для всех x. (3..5)

Требованию
ϕ(τ,x)→ ϕ− при τ → ±∞ (3..6)

и условию (3..5) можно одновременно удовлетворить, если рассматривать
гладкие сферически - симметричные поля ϕ(r), где r =

√
τ 2 + x2 =

√
xµxµ,

с асимптотикой
ϕ(r →∞) = ϕ−. (3..7)

Для таких полей уравнение (3..4) приводится к виду

ϕ′′ +
d− 1

r
ϕ′ =

∂V

∂ϕ
, (3..8)

где штрих обозначает производную по r.
В теории скалярного поля вероятность тунеллирования через

потенциальный барьер также дается выражением

Γ = Ae−Sb, (3..9)

где Sb - евклидово действие, вычисленное на отскоковом решении.
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4. Примеры отскоковых решений

1. Рассмотрим теорию скалярного поля в 3 + 1 - мерном пространстве с
потенциалом

V (ϕ) = −1

4
λϕ4 (4..1)

Положив d = 4, получим уравнение

ϕ′′ +
3

r
ϕ′ = −λϕ3, (4..2)

решение которого будем искать в виде ряда по степеням r2:

ϕ(r) =
∞∑
n=0

Cnr
2n (4..3)

Проведя необходимые выкладки и сделав замену
8

λC2
= ρ2, получим

окончательное решение:

ϕл(r) =
2
√

2ρ√
λ(ρ2 + r2)

(4..4)

Отметим, что такое решение называется липатоном [4], оно пригодится
нам в дальнейшем. Вычислим евклидово действие на липатоне. В
сферических координатах (3..3) имеет вид:

SE = 2π2
∫ ∞
0

r3dr

[
1

2
(ϕ′)

2
+ V (ϕ)

]
, (4..5)

поэтому евклидово действие на решении (4..4) равно:

SE = 2π2
∫ ∞
0

dr

[
16ρ2r5

λ (ρ2 + r2)4
− 16ρ4r3

λ (ρ2 + r2)4

]
=

8π2

3λ
. (4..6)

2. Рассмотрим теперь теорию скалярного поля в 3 + 1 - мерном
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пространстве в кусочно - гладком потенциале вида

V (ϕ) =


λ−ϕ

3
0ϕ+

1

4
λ+ϕ

4
0, ϕ < 0

1

4
λ+ (ϕ− ϕ0)

4 , ϕ > 0
. (4..7)

Отметим, что областей, в которых существует отскоковое решение,
будет две: ϕ < 0 и ϕ > 0. Следовательно, в точке ϕ = 0 полученные в
различных областях решения потребуется сшить.

1) ϕ < 0

Уравнение (3..8) будет иметь вид

ϕ′′ +
3

r
ϕ′ = λ−ϕ

3
0. (4..8)

Сделав замену ψ = ϕ′ и потребовав гладкость при r = 0, получим
решение:

ϕ(r) =
λ−ϕ

3
0

8
r2 + C, C ∈ R. (4..9)

2) ϕ > 0

Уравнение (3..8) запишется следующим образом:

ϕ′′ +
3

r
ϕ′ = λ+ (ϕ− ϕ0)

3 . (4..10)

Сделаем замену χ = ϕ− ϕ0 и будем искать решение в виде ряда:

χ(r) =
∞∑
n=0

Cnr
2n. (4..11)

Окончательно, решение будет иметь вид:

ϕ(r) =
2
√

2ρ√
λ+(ρ2 − r2)

+ ϕ0, (4..12)

где ρ2 =
8

λ+C2
.
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После сшивки отскоковое решение запишется следующим образом:

ϕ(r) =
λ−ϕ

3
0

8
r2 − ϕ0

(
1 +

λ+
λ−

)
, ϕ < 0 (4..13)

ϕ(r) =
8λ−ϕ0

8λ+ − λ2−ϕ2
0r

2
+ ϕ0, ϕ > 0. (4..14)

Вычислим евклидово действие на найденном решении.

SE = 2π2
∫ ∞
0

r3dr

[
1

2
(ϕ′)

2
+ V (ϕ)

]
= (4..15)

=
16π2

3λ−

(
2 +

λ+
λ−

)3

−
8π2λ3+
3λ4−

.

Заметим, что при λ− →∞, SE → 0.
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5. Примеры потенциалов, в которых отсутствуют отскоковые решения

5.1. Пример №1

В данном разделе нам предстоит найти отскоковое решение для
потенциала вида

V (ϕ) =
1

2
m2ϕ2 − 1

4
λϕ4. (5..1)

Проведем предварительное исследование. Запишем евклидово действие:

SE =

∫
d4x

[
1

2
(∂µϕ)2 +

1

2
m2ϕ2 − 1

4
λϕ4

]
. (5..2)

Пусть ϕ0(x) - отскоковое решение. Значит, ϕ0(x) экстремизирует (5..2).
Сделаем замену ϕ = aϕ0(ax). Заметим, что при a = 1 новое решение равно
исходному, а значит, также экстремизирует (5..2).

SE =

∫
d4y

[
1

2

(
∂

∂yµ
ϕ0(y)

)2

− 1

4
λϕ4

0(y) +
m2ϕ2

0(y)

2a2

]
, (5..3)

где yµ = axµ. Найдем экстремум SE по параметру a. Для этого возьмем
производную:

∂SE
∂a

= −m
2

a3

∫
ϕ2
0 d

4y. (5..4)

Действие должно быть экстремально при a = 1 (т. к. a = 1 соответствует
предполагаемому отскоку). Но это не выполняется, как видно из (5..4).
Данное обстоятельство показывает, что точного отскокового решения для
потенциала (5..1) не существует.

Разберем подробнее причину отсутствия отскокового решения.
Предположим, что решение существует и попробуем найти его вид.
Рассмотрим решения, которые при достаточно малых r близки к липатону
с маленьким значением ρ, то есть с маленьким размером(mρ� 1).

Рассмотрим две области: r � ρ и r � m−1.
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1. r � ρ

В данной области липатон будет иметь асимптотику ϕ(r) ∼ 1

r2
, это

позволяет сделать вывод о том, что вклад массового слагаемого в
потенциале (5..1) больше, а значит, пренебрегать им нельзя. Но можно

пренебречь слагаемым −1

4
λϕ4. Окончательно, уравнение поля будет

иметь вид:
ϕ′′ +

3

r
ϕ′ = m2ϕ. (5..5)

С помощью замены ϕ =
χ

r
уравнение (5..5) сводится к

модифицированному уравнению Бесселя, решением которого
являются модифицированные функции Бесселя. Таким образом,
решение уравнения (5..5) будет иметь вид:

ϕ(r) =
C

r
K1(mr), (5..6)

где C ∈ R - произвольная постоянная, K1(mr) - функция
МакДональда.

2. r � m−1

При таких значениях r можно показать, что вклад массового
слагаемого действительно пренебрежимо мал. В таком случае
уравнения поля запишутся следующим образом:

ϕ′′ +
3

r
ϕ′ = −λϕ3. (5..7)

Решение такого уравнения нам известно, это липатон (4..4).

Итак, мы получили два решения для двух областей, которые

необходимо сшить в области ρ � r � m−1. Раскладывая
C

r
K1(mr) в ряд

до первого слагаемого, находим, что C =
2
√

2mρ√
λ

. Таким образом, имеем

два сшитых решения, образующих отскоковое:

ϕ(r) =
2
√

2mρ√
λr

K1(mr), r � ρ (5..8)

ϕ(r) =
2
√

2ρ√
λ(ρ2 + r2)

, r � m−1. (5..9)
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Стоит отметить, что оба решения были найдены в нулевом порядке по m2.
Рассмотрим теперь решения в первом порядке по m2. Решение в

области r � m−1 будет иметь вид ϕ = ϕ0+δϕ, где ϕ0 - липатон, найденный
в нулевом порядке по m2, δϕ - возмущение, соответствующее добавлению
массы. Подставив выражение для липатона в (3..8) (полагая d = 4) и
используя (5..1) в качестве выражения для потенциала, получим уравнение
для δϕ:

(δϕ)′′ +
3

r
(δϕ)′ + 3λϕ2

0 (δϕ) = m2ϕ0. (5..10)

Заметим, что уравнению (4..2) удовлетворяет (4..4), притом для любого
значения параметра ρ. Данное обстоятельство помогает понять, что
решение ϕ̃0(ρ+δρ) = ϕ0+χ·δρ также удовлетворяет (4..4). Легко показать,

что χ =
∂ϕ0

∂ρ
. Домножим (5..10) слева на χ и проинтегрируем по d4x

от 0 до r. Проведя необходимые выкладки, получим уравнение

χr3(δϕ)′ − r3dχ
dr

(δϕ) = m2

∫ r

0
ϕ0χr

3dr (5..11)

Подставив χ,
dχ

dr
, ϕ0, решим (5..11) и получим вид массовой поправки:

(δϕ)1 =
ρm2

√
2λr2

9ρ2r2 − 3r4 +
(
ρ4 − 10ρ2r2 + r4

)
ln
(

1 + r2

ρ2

)
ρ2 + r2

+ (5..12)

+6ρ2r2
ρ2 − r2

(ρ2 + r2)2
Li2
(
−r

2

ρ2

)]
,

где Li2(x) - дилогарифм. Таким образом, в области r � m−1 решением
является липатон с поправкой O

(
m2
)
:

ϕ =
2
√

2ρ√
λ (ρ2 + r2)

+
ρm2

√
2λr2

9ρ2r2 − 3r4 +
(
ρ4 − 10ρ2r2 + r4

)
ln
(

1 + r2

ρ2

)
ρ2 + r2

+

(5..13)

+6ρ2r2
ρ2 − r2

(ρ2 + r2)2
Li2
(
−r

2

ρ2

)]

В области r � ρ решением по-прежнему будет (5..6). Для выполнения
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сшивки в области ρ � r � m−1 необходимо взять асимптотику (5..13), а
(5..6) разложить в ряд до второго слагаемого:

ϕ(r) =
C

mr2
+
Cm

2

(
ln
mr

2
+ γ − 1

2

)
(5..14)

ϕ(r) =
2
√

2ρ√
λr2

+

√
2ρm2

√
λ

ln

(
r

ρ

)
− 3ρm2

√
2λ

, (5..15)

где γ - постоянная Эйлера - Маскерони. При C =
2
√

2mρ√
λ

в

обоих выражениях совпадут слагаемые, содержащие
1

r2
и ln

mr

2
, однако

константы совпадать не будут. Данное обстоятельство показывает, что
решения не сшиваются, а значит, отскоковое решение найти невозможно.

Чтобы найти решение, необходимо модифицировать уравнение. Для
этого наложим интегральную связь:∫

ϕ3d4x = C (5..16)

SE =

∫
d4x

[
1

2
(∂µϕ)2 +

1

2
m2ϕ2 − 1

4
λϕ4

]
(5..17)

и будем искать экстремум евклидова действия при наличии этой связи.
Применяя метод Лагранжа, получим экстремальное значение действия:

S∗E =

∫
d4x

[
1

2
(∂µϕ)2 +

1

2
m2ϕ2 − 1

4
λϕ4 + Lϕ3

]
, (5..18)

где L - множитель Лагранжа. Варьируя (5..18), получим уравнение поля

ϕ′′ +
3

r
ϕ′ = m2ϕ− λϕ3 + 3Lϕ2, (5..19)

Рассматривая вклад, даваемый наложением связи как еще одно
возмущение наравне с массовым слагаемым, получим уравнение для
поправки:

(δϕ)′′ +
3

r
(δϕ)′ + 3λϕ2

0 (δϕ) = 3Lϕ2
0. (5..20)

Аналогично уравнению (5..11) получим уравнение

χr3(δϕ)′ − r3dχ
dr

(δϕ) = 3L

∫ r

0
ϕ2
0χr

3dr, (5..21)
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решив которое, найдем поправку, соответствующую добавлению связи:

(δϕ)2 = L
r4 − ρ2r2 + 4ρ4

λ (r2 + ρ2)2
. (5..22)

В области r � ρ (5..22) будет иметь вид

(δϕ)2 =
L

λ
. (5..23)

Таким образом, учитывая, что результирующая поправка к (4..4) в области
r � ρ является суммой асимптотик поправок (5..12) и (5..22), получим
окончательный вид решения в области r � ρ:

ϕ =
2
√

2ρ√
λr2

+

√
2m2ρ√
λ

ln

(
r

ρ

)
− 3m2ρ√

2λ
+
L

λ
. (5..24)

В этой же области (5..6) будет иметь вид

ϕ =
C

mr2
+
Cm

2

(
ln
mr

2
+ γ − 1

2

)
. (5..25)

Из сшивки находим, что C =
2
√

2mρ√
λ

, L =
√

2λρm2
(
γ + 1 + ln

ρm

2

)
.

Данный пример показывает, как добавление связи помогает найти
отскоковое решение. Итак, запишем вид решения во всех областях:

ϕ(r) =
2
√

2mρ√
λr

K1(mr), r � ρ (5..26)

ϕ(r) =
2
√

2ρ√
λr2

+

√
2m2ρ√
λ

(
ln
mr

2
+ γ − 1

2

)
, ρ� r � m−1 (5..27)

ϕ(r) =
2
√

2ρ√
λ(ρ2 + r2)

+ (δϕ)1 + (δϕ)2 , r � m−1, (5..28)

14



где:

(δϕ)1 =
ρm2

√
2λr2

9ρ2r2 − 3r4 +
(
ρ4 − 10ρ2r2 + r4

)
ln
(

1 + r2

ρ2

)
ρ2 + r2

+ (5..29)

+6ρ2r2
ρ2 − r2

(ρ2 + r2)2
Li2
(
−r

2

ρ2

)]
,

(δϕ)2 = L
r4 − ρ2r2 + 4ρ4

λ (r2 + ρ2)2
. (5..30)

Вычислим евклидово действие на полученном решении. Прежде
всего, заметим, что выражение (5..18), записанное в сферических
координатах, можно упростить. Проинтегрируем кинетический член по
частям:

2π2
∫ ∞
0

1

2
(ϕ′)

2
r3dr = 2π2

[
1

2
ϕϕ′r3

∣∣∣∣∞
0

− 1

2

∫ ∞
0

ϕ
d

dr

(
r3
dϕ

dr

)
dr

]
. (5..31)

Первое слагаемое обращается в нуль, т.к. для отскокового решения
выполняется условие гладкости. Во втором слагаемом умножим и разделим
подынтегральное выражение на r3. В результате получим выражение
1

r3
d

dr

(
r3
dϕ

dr

)
, которое представляет собой лапласиан в сферических

координатах, который, в свою очередь, равен
∂V

∂ϕ
+ 3Lϕ2, что следует из

уравнений поля(5..20). Группируя и складывая с потенциальным членом,
а также с членом, отражающим связь, получим:

S∗E = 2π2
∫ ∞
0

r3dr

[
V (ϕ)− ϕ

2

∂V

∂ϕ
− 3

2
Lϕ3

]
. (5..32)

Выражением (5..32) можно воспользоваться, чтобы посчитать евклидово
действие на отскоковом решении. Подставляя (5..26), (5..27) и (5..28) в
(5..32), получим евклидово действие с поправкой:

S∗E =
8π2

3λ

[
1− 3

2
ρ2m2

(
ln
ρ2m2

4
+ 2γ + 1

)]
+ o
(
ρ2m2

)
. (5..33)
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Данное действие может быть использовано для нахождения вероятности
распада для массивного поля.

5.2. Пример №2

В данном разделе рассмотрим теорию скалярного поля с потенциалом
вида

V (ϕ) =


−λ−

4

(
ϕ4 − β3ϕ4

0

)
, ϕ < βϕ0

λ+
4

(ϕ− ϕ0)
4 , ϕ > βϕ0

, (5..34)

где

β =
λ
1/3
+

λ
1/3
+ + λ

1/3
−
. (5..35)

Воспользовавшись методом, описанным в разделе [4.], найдем решения в
обеих областях потенциала (5..34) и запишем их:

ϕ(r) =
2
√

2ρ−√
λ− (ρ2− + r2)

, ϕ < βϕ0 (5..36)

ϕ(r) =
2
√

2ρ+√
λ+ (ρ2+ − r2)

+ ϕ0, ϕ > βϕ0. (5..37)

Выполним сшивку в точке ϕ = βϕ0. Из равенства значений поля следует
соотношение

ρ− = −

√
λ−
λ+

(
β

β − 1

)2

ρ+, (5..38)

при этом можно показать, что квадрат радиуса, при котором поля
одинаковы, равен:

r2 = ρ2+ −
2
√

2ρ+√
λ+ϕ0 (β − 1)

. (5..39)

Приравнивая значения производных в точке ϕ = βϕ0, находим выражение
для ρ+:

ρ+ = − 2
√

2
√
λ+ϕ0 (β − 1)2

[
1 + λ−

λ+

(
β
β−1

)4] . (5..40)

Подставляя (5..40) в (5..39) и учитывая (5..35), получим, что сшивка
возможна только при r = 0. Если r > 0, то все пространство будет

16



заполнено решением (5..37), которое, исходя из его вида, не является
непрерывным, а значит, не может существовать.
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6. Заключение

В данной работе был изучен квазиклассический метод вычисления
вероятности распада ложного вакуума с помощью отскокового решения.
Была рассмотрена теория скалярного поля в 3 + 1 - мерном пространстве
на примере кусочно - гладких потенциалов, в которых найти отскоковое
решение предложенным методом не удалось. Модификация уравнения
наложением интегральной связи помогла сшить решения в различных
областях, тем самым дав возможность получить отскоковое решение, на
котором впоследствии было вычислено евклидово действие.
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