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Введение

Множество естественных объектов поразительно симметричны. Но, когда
мы начнем погружаться в современное описание природы с помощью физики,
то увидим ещё одно интересное явление - окружающий мир не только содержит
симметрию, но и склонен отвечать на её нарушение.
Что имеется в виду? Квантовая теория поля говорит нам, что если симмет­
рия будет нарушена спонтанно, т.е. в процессе эволюции некоторой физической
системы инвариантность относительно некоторых преобразований начальной
симметрии нарушится (Теорема Голдстоуна), тогда будут рождены частицы,
не имеющие массу. Если же при этом происходит ещё и явное нарушение сим­
метрии, то частицы приобретают малую массу. В данной работе мы будем рас­
сматривать явления, связанные с одним из видов таких частиц - аксионами,
которые помогают описать СР инвариантность в сильном взаимодействии (т.е.
инвариантность относительно одновременного зеркального отражения и заме­
ны всех зарядов на противоположные).

Рисунок 1 — Пример спонтанного нарушения симметрии. Система может
самостоятельно перейти в любую из двух потенциальных ям в процессе

эволюции.

Аксионы обладают одним важным свойством. А именно, под действием
внешнего магнитного поля аксион может превратиться в фотон и обратно (Эф­
фект Примакова-Сикиви).

Рисунок 2 — Иллюстрация одиночного эффекта Примакова-Сикиви. Фотон
под действием внешнего поля превращается в аксион.
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До сих пор рассматривался одиночный процесс, т.е. один фотон переходит в
один аксион, а также была получена оценка на потери энергии, которые вносит
данный процесс в недрах звезд, влияя тем самым на их эволюцию [1]:

⟨𝜖𝑥⟩ . 10 эрг гр−1 сек−1 (1)

В настоящей же работе мы рассмотрим множественный процесс превращения,
т.е. фотон и два аксиона смешиваются. Мы рассчитаем вероятности данных
переходов (под действием внешнего поля) в зависимости от расстояния до ис­
точника (в нашем случае - первичный фотон), чтобы оценить возможность де­
тектирования, а также проведем оценку, аналогичную (1), чтобы посмотреть
на сколько изменится влияние данного механизма потери энергии на продол­
жительность жизни звезды.
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Глава 1.
Математическое описание

1.1 Уравнения движения

Запишем лагранжиан системы двух аксионов и фотона [1],[2],[4]:

ℒ = −1

4
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𝑚2

𝜑𝜑
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(𝜕𝜇𝜒)
2

2
−
𝑚2

𝜒𝜒
2

2
+ (1.1)
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𝑔𝜒𝜖𝜇𝜈𝜌𝜆𝐹

𝜇𝜈𝐹 𝜆𝜌𝜒

Здесь 𝜑 и 𝜒 - поля, соответствующие аксионам, 𝑚𝜑 и 𝑚𝜒 - "массы"аксионов,
𝜖𝜇𝜈𝜌𝜆 - символ Леви-Чивита, 𝑔𝜑 и 𝑔𝜒 - константы связи для аксионов, отвечаю­
щие за смешивание с фотоном, а 𝑀 - константа, отвечающая за смешивание
аксионов друг с другом. 𝐹𝜇𝜈 - тензор электромагнитного поля, задающийся со­
отношением (𝐴 - векторный потенциал электромагнитного поля):

𝐹𝜇𝜈 ≡ 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 =

⎛⎜⎜⎜⎜⎝
0 𝐸𝑥 𝐸𝑦 𝐸𝑧

−𝐸𝑥 0 −𝐻𝑧 𝐻𝑦

−𝐸𝑦 𝐻𝑧 0 −𝐻𝑥

−𝐸𝑧 −𝐻𝑧 𝐻𝑥 0

⎞⎟⎟⎟⎟⎠ (1.2)

𝜕𝜇 =
𝜕

𝜕𝑥𝜇
; 𝜕𝜈 =

𝜕

𝜕𝑥𝜈

Также удобно ввести естественную систему единиц. То есть ~ = 𝑐 = 𝑘𝐵 = 1. Бу­
дем ещё иметь в виду, что 𝐴𝜇 = (𝐴0, 𝐴𝑖) = (𝐴0, 𝐴𝑖); 𝐴𝜇 = (𝐴0,−𝐴𝑖); 𝜕𝑖 = −𝜕𝑖(по
определению).
Рассмотрим систему (1.1) в присутствии внешнего магнитного поля 𝐵𝑖 =

−1
2𝜖𝑖𝑗𝑘𝐹𝑗𝑘 = 1

2𝜖0𝑖𝑗𝑘𝐹𝑗𝑘. Тогда, проварьировав действие, получим следующую си­
стему дифференциальных уравнений(Сразу раскрыв тензор 𝐹𝜇𝜈):⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕2𝐴𝜇 − 𝜕𝜇(𝜕𝐴)− 𝑔𝜑 𝐵𝑖 𝜑̇ 𝛿

𝑖
𝜇 − 𝑔𝜑 𝐵𝑖 𝜕𝑖𝜑 𝛿

0
𝜇 − 𝑔𝜒 𝐵𝑖 𝜒̇ 𝛿

𝑖
𝜇 − 𝑔𝜒 𝐵𝑖 𝜕𝑖𝜒 𝛿

0
𝜇 = 0

𝜕2𝜑+𝑚2
𝜑𝜑− 𝑔𝜑𝐵𝑖(𝜕0𝐴

𝑖 − 𝜕𝑖𝐴
0)−𝑀 2𝜒 = 0

𝜕2𝜒+𝑚2
𝜒𝜒− 𝑔𝜒𝐵𝑖(𝜕0𝐴

𝑖 − 𝜕𝑖𝐴
0)−𝑀 2𝜑 = 0

(1.3)
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Далее разделим в 𝐴𝜇 временную и пространственные части, тогда система чуть
увеличится: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕2𝐴0 − 𝑔𝜑 𝐵𝑖 𝜕𝑖𝜑− 𝑔𝜒 𝐵𝑖 𝜕𝑖𝜒 = 𝜕0(𝜕𝐴)

𝜕2𝐴𝑖 − 𝑔𝜑 𝐵𝑖 𝜑̇− 𝑔𝜒 𝐵𝑖 𝜒̇ = −𝜕𝑖(𝜕𝐴)

𝜕2𝜑+𝑚2
𝜑𝜑− 𝑔𝜑𝐵𝑖(𝐴̇𝑖 − 𝜕𝑖𝐴

0)−𝑀 2𝜒 = 0

𝜕2𝜒+𝑚2
𝜒𝜒− 𝑔𝜒𝐵𝑖(𝐴̇𝑖 − 𝜕𝑖𝐴

0)−𝑀 2𝜑 = 0

(1.4)

Используем калибровку Кулона 𝑑𝑖𝑣 A = 𝜕𝑖𝐴𝑖 = 0. Система упрощается,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕2𝑖𝐴
0 + 𝑔𝜑 𝐵𝑖 𝜕𝑖𝜑+ 𝑔𝜒 𝐵𝑖 𝜕𝑖𝜒 = 0

𝜕2𝐴𝑖 + 𝜕𝑖𝐴̇0 − 𝑔𝜑 𝐵𝑖 𝜑̇− 𝑔𝜒 𝐵𝑖 𝜒̇ = 0

𝜕2𝜑+𝑚2
𝜑𝜑− 𝑔𝜑𝐵𝑖(𝐴̇𝑖 − 𝜕𝑖𝐴

0)−𝑀 2𝜒 = 0

𝜕2𝜒+𝑚2
𝜒𝜒− 𝑔𝜒𝐵𝑖(𝐴̇𝑖 − 𝜕𝑖𝐴

0)−𝑀 2𝜑 = 0

(1.5)

Следующим нашим шагом будет переход в импульсное пространство, т.е. пред­
ставим поля в виде: 𝜑 = 𝜑(𝑘)𝑒−𝑖𝜔𝑡+𝑖kx , 𝜒 = 𝜒(𝑘)𝑒−𝑖𝜔𝑡+𝑖kx , 𝐴 = 𝐴(𝑘)𝑒−𝑖𝜔𝑡+𝑖kx.
При этом импульс: 𝑝𝜇 = (𝜔,k) и 𝑝𝜇 = (𝜔,−k)
(𝜕2 ≡ 𝜕20 − 𝜕2𝑖 - оператор Д’Аламбера, при этом 𝜕2𝑖 = |k|2, а 𝜕2 = 𝑝2 = 𝜔2 − k2

из выражения для оператора импульса)
Сделаем попутно следующие упрощения - представим внешнее магнитное поле
в виде B = B⊥ +B‖, при этом пусть оно будет полностью ортогонально волно­
вому вектору, т.е. B‖ = 0 , B⊥k = 0.
Тогда из 1-го уравнения следует:

𝐴0 =
𝑖Bk
|k|2

(𝜑𝑔𝜑 + 𝑔𝜒𝜒) = 0 (1.6)

С другой стороны представим поле А, как A = 𝜏⃗ + 𝑎B⊥
|B⊥| , где 𝜏⃗k (калибровка

Кулона). И система (1.5) преобразуется, с учетом (1.6), в следующую:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝2𝜏⃗ + 𝑝2𝑎 B⊥

|B⊥| + 𝑖𝜔𝜑𝑔𝜑B⊥ + 𝑖𝜔𝜒𝑔𝜒B⊥ = 0

(𝑝2 −𝑚2
𝜑)𝜑− 𝑖𝜔𝑔𝜑𝑎B⊥ −𝑀 2𝜒 = 0

(𝑝2 −𝑚2
𝜒)𝜒− 𝑖𝜔𝑔𝜒𝑎B⊥ −𝑀 2𝜑 = 0

(1.7)
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Далее 𝜏 поляризация фотона отщепляется и в матричном виде мы будем иметь
матрицу уравнений движения:⎛⎜⎝ 𝑝2 𝑖𝑔𝜑𝜔B⊥ 𝑖𝑔𝜒𝜔B⊥

−𝑖𝑔𝜑𝜔B⊥ 𝑝2 −𝑚2
𝜑 −𝑀 2

−𝑖𝑔𝜒𝜔B⊥ −𝑀 2 𝑝2 −𝑚2
𝜒

⎞⎟⎠
⎛⎜⎝𝑎𝜑
𝜒

⎞⎟⎠ = 0 (1.8)

1.2 Дисперсионное соотношение и квантование

Дисперсионное соотношение, а именно зависимость 𝜔(𝑘) либо 𝑘(𝜔), будет
следовать из условия:

𝑁 =

⃒⃒⃒⃒
⃒⃒⃒ 𝑝2 𝑖𝑔𝜑𝜔B⊥ 𝑖𝑔𝜒𝜔B⊥

−𝑖𝑔𝜑𝜔B⊥ 𝑝2 −𝑚2
𝜑 −𝑀 2

−𝑖𝑔𝜒𝜔B⊥ −𝑀 2 𝑝2 −𝑚2
𝜒

⃒⃒⃒⃒
⃒⃒⃒ =

⃒⃒⃒⃒
⃒⃒⃒ 𝜔2 − k2 𝑖𝑔𝜑𝜔B⊥ 𝑖𝑔𝜒𝜔B⊥

−𝑖𝑔𝜑𝜔B⊥ 𝜔2 − k2 −𝑚2
𝜑 −𝑀 2

−𝑖𝑔𝜒𝜔B⊥ −𝑀 2 𝜔2 − k2 −𝑚2
𝜒

⃒⃒⃒⃒
⃒⃒⃒ = 0

(1.9)

Видно, что получится кубическое уравнение относительно k2 либо 𝜔, следова­
тельно будет три корня, которые мы обозначим 𝑘𝑠 , где 𝑠 = 1,2,3 (𝜔 будет
постоянной частотой).
И далее, решая задачу на собственные векторы мы сможем представить поля
в x - пространстве через них:

𝑎(𝑥) =
1

(2𝜋)
3
2

∑︁
𝑠

∫︁
𝑑3𝑘√
2𝜔
𝑓𝑠(𝑒

𝑖𝑝𝑠𝑥𝑎*𝑠 + 𝑒−𝑖𝑝𝑠𝑥𝑎𝑠) (1.10)

𝜑(𝑥) =
1

(2𝜋)
3
2

∑︁
𝑠

∫︁
𝑑3𝑘√
2𝜔
𝑔𝑠(𝑒

𝑖𝑝𝑠𝑥𝑎*𝑠 + 𝑒−𝑖𝑝𝑠𝑥𝑎𝑠)

𝜒(𝑥) =
1

(2𝜋)
3
2

∑︁
𝑠

∫︁
𝑑3𝑘√
2𝜔
𝑣𝑠(𝑒

𝑖𝑝𝑠𝑥𝑎*𝑠 + 𝑒−𝑖𝑝𝑠𝑥𝑎𝑠)

Здесь коэффициенты 𝑣𝑠 и 𝑔𝑠 находятся непосредственно из подстановки в
(1.8) и выражаются через коэффициенты 𝑓𝑠. Их явное выражение написано в
приложении (А.1). Также 𝑎*𝑠 и 𝑎𝑠 - некоторые амплитуды полей в канонической
базисе.
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Дальнейшие действия будут заключаться в поиске 𝑓𝑠. Для этого нужно вначале
составить гамильтониан системы (1.1). Тензор энергии-импульса имеет вид:

𝑇 𝜇
𝜈 =

𝜕ℒ
𝜕(𝜕𝜇𝜑𝑖)

𝜕𝜈𝜑𝑖 − 𝛿𝜇𝜈ℒ (1.11)

Преобразовав исходный лагранжиан (1.1), мы получим выражение:

ℒ =
1

2
(𝜕𝑎)2+

1

2
(𝜕𝜑)2+

1

2
(𝜕𝜒)2−1

2
𝑚2

𝜑𝜑
2−1

2
𝑚2

𝜒𝜒
2+𝑀 2𝜑𝜒+𝑔𝜑𝑎̇𝐵𝜑+𝑔𝜒𝑎̇𝐵𝜒 (1.12)

Его импульсы

𝜋𝑎 = 𝑎̇+ 𝑔𝜑𝐵𝜑+ 𝑔𝜒𝐵𝜒; (1.13)

𝜋𝜑 = 𝜑̇; 𝜋𝜒 = 𝜒̇

И гамильтониан таким образом из (1.11):

ℋ = 𝑇 00 =
1

2
𝑎̇2 +

1

2
𝜑̇2 +

1

2
𝜒̇2 +

1

2
(𝜕𝑖𝑎)

2 +
1

2
(𝜕𝑖𝜑)

2+ (1.14)

+
1

2
(𝜕𝑖𝜒)

2 +
1

2
𝑚2

𝜑𝜑
2 +

1

2
𝑚2

𝜒𝜒
2 −𝑀 2𝜑𝜒

И теперь нам требуется взять выражения (1.10), подставить их в гамильтониан
(1.14) и проинтегрировать, то есть найти энергию 𝐸 =

∫︀
𝑑3𝑥 ℋ(𝑘𝑠, 𝑓𝑠). И всё

что остается, это с другой стороны приравнять энергию к
∑︀
𝑠

∫︀
𝑑3𝑘 𝜔 𝑎*𝑠 𝑎𝑠,

т.к. вследствие квантования амплитуды 𝑎*𝑠 и 𝑎𝑠, ставшие операторами, должны
удовлетворять условию [𝑎𝑠(k), 𝑎*𝑠′(q)] = 1 · 𝛿𝑠𝑠′ 𝛿(k − q) ([..] - коммутатор).
Итого имеем уравнение

∫︀
𝑑3𝑥 ℋ(𝑘𝑠, 𝑓𝑠) =

∑︀
𝑠

∫︀
𝑑3𝑘 𝜔 𝑎*𝑠 𝑎𝑠 из которого можно

явно выразить коэффициенты 𝑓𝑠 (условие нормировки). Пример подробного
расчёта см. (А.2).
Также запишем 4-импульс - он нам ещё пригодится:

𝑃𝜇 =
∑︁
𝑠

∫︁
𝑑3𝑥 𝑝𝑠,𝜇 𝑎

*
𝑠 𝑎𝑠 (1.15)
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1.3 Поиск вероятностей превращений

Пусть лазером рождается фотон при 𝑡 = 0, x = 0 с энергией 𝜔. Тогда
квантовая механика говорит нам, что такое состояние имеет вид:

𝐴†|0⟩ ≡
∑︁
𝑠

𝑓𝑠(𝜔, 𝑘𝑠) 𝑎
*
𝑠(k𝑠)|0⟩ ≡ |𝐴⟩ (1.16)

Соответственно для аксионов 𝜑 и 𝜒:

Φ†|0⟩ ≡
∑︁
𝑠

𝑔𝑠(𝜔, 𝑘𝑠) 𝑎
*
𝑠(k𝑠)|0⟩ ≡ |Φ⟩ (1.17)

𝑋†|0⟩ ≡
∑︁
𝑠

𝑣𝑠(𝜔, 𝑘𝑠) 𝑎
*
𝑠(k𝑠)|0⟩ ≡ |𝑋⟩ (1.18)

𝑔𝑠 и 𝑣𝑠 были найдены нами ранее - они выражаются через 𝑓𝑠. Опишем теперь
эволюцию состояний, используя (1.15):

|𝐴(𝑡)⟩ = 𝑒−𝑖𝑃𝜇𝑥𝜇|𝐴(0)⟩ = 𝑒
−𝑖
∫︀

𝑑3𝑥
∑︀
𝑠
𝑝𝑠,𝜇 𝑥𝜇 𝑎*𝑠 𝑎𝑠 |𝐴(0)⟩ = 𝑒−𝑖𝜔𝑡

∑︁
𝑠

𝑓𝑠𝑎
*
𝑠𝑒

𝑖𝑘𝑠𝐿|0⟩

(1.19)

А вероятность обнаружить 𝜑 на расстоянии 𝐿 по определению (например, для
𝜑):

𝑃𝛾𝜑 =
|⟨Φ|𝐴(𝑡)⟩|2

⟨Φ|Φ⟩⟨𝐴|𝐴⟩
(1.20)

И обнаружить опять фотон (например, аксион пролетит сквозь стену и превра­
тится обратно в фотон) мы сможем с вероятностью: 𝑃𝛾𝛾 = 𝑃 2

𝛾𝜑 (А.3)
Тогда, учитывая, что у нас три волновых вектора, вероятность раскрывается:

𝑃𝛾𝜑 =

|
∑︀
𝑠
𝑔*𝑠𝑓𝑠𝑒

𝑖𝑘𝑠𝐿|2∑︀
𝑠
|𝑓𝑠|2

∑︀
𝑠
|𝑔𝑠|2

=
|𝑔*1𝑓1𝑒𝑖𝑘1𝐿 + 𝑔*2𝑓2𝑒

𝑖𝑘2𝐿 + 𝑔*3𝑓3𝑒
𝑖𝑘3𝐿|2

(|𝑓1|2 + |𝑓2|2 + |𝑓3|2)(|𝑔1|2 + |𝑔2|2 + |𝑔3|2)
(1.21)

Здесь все коэффициенты были нами найдены ранее, так что это вполне опреде­
ленное число, которое можно найти, подставив все константы связи и поле 𝐵.
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При этом должно выполняться соотношение:

𝑃𝛾𝛾 + 𝑃𝛾𝜑 + 𝑃𝛾𝜒 + · · · = 1 (1.22)

Многоточием обозначены процессы перемешиваний порядка, большего едини­
цы, которые менее вероятны.

1.4 Программная проверка

Мы получили все формулы, представленные выше, пришло время прове­
рить их правильность и вообще характер изменения вероятности с расстоянием.
Делать мы это будем численно. Для этого используем Wolfram Mathematica.
Какие значения констант выбирать? Возьмем частоту фотона 𝜔 ≈ 1 эВ, ожи­
даемые массы аксионов порядка ≈ 10−3 эВ, такого же порядка возьмем и
константу смешивания аксионов M. И будем варьировать только поле 𝐵, ведь
константы взаимодействия аксионов и фотона можно взять порядка единицы,
а все ненулевые порядки заложить в 𝐵 (это возможно в силу того, что эти
величины входили как произведение в систему (1.8). Теперь рассмотрим для
проверки два критических случая.
1. Поле сравнимо по величине с энергией фотона. Рассмотрим магнитное
поле на два порядка меньшее, чем энергия фотона. Тогда будут иметь высокую
вероятность процессы превращения фотона в аксион. Построим соответствую­
щий график:
Можно заметить, что один аксион оказывается в данном случае подавленным
по вероятностям перехода. Кстати, при этом вероятность 𝑃𝜑𝜒 ≈ 0.02 = 𝑐𝑜𝑛𝑠𝑡,
т.е. вероятность смешивания аксионов не меняется на расстоянии(не показана
на графике).
2. Поле стремится к нулю. Здесь вероятность 𝑃𝛾𝛾 становится практически
тождественно равной единице, а вероятности 𝑃𝜑𝛾,𝑃𝜒𝛾 . 10−15, что согласует­
ся с теорией, построенной ранее. Но также хочется отметить, что вероятность
𝑃𝜑𝜒 нулю не равняется, т.е. в отсутствии внешнего поля, если строить теорию,
как это делалось выше, аксионы могут спокойно смешиваться друг с другом
(правда вероятность эта 𝑃𝜑𝜒 . 10−7).
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Рисунок 1.1 — График зависимости вероятностей, от расстояния до
источника. Отметим, что заметно выполнение соотношения (1.22).
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Глава 2.
Влияние множественного эффекта Примакова-Сикиви

на эволюцию звёзд

2.1 Эволюция звёзд

Рассмотрим диаграмму Герцшпрунга - Рассела, которая наглядно показы­
вает эволюционные стадии звёзд.

Рисунок 2.1 — Схематическая диаграмма Герцшпрунга-Рассела, на которой
показаны основные типы звёзд, которые нам понадобятся.

Для начала поясним основные стадии эволюции, изображенные на диаграмме
и которые понадобятся нам в дальнейших рассуждениях.
Главная последовательность - это первая стадия эволюции после стадии
протозвезды, здесь единственным источником энергии являются термоядерные
реакции синтеза гелия из водорода (в частности, Солнце сейчас находится на
главной последовательности).
Далее, если масса звезды 0.5 𝑀𝑠𝑢𝑛 . 𝑀𝑠𝑡𝑎𝑟, то звезда, после выгорания водо­
рода образует гелиевое ядро, массой около 0.5 𝑀𝑠𝑢𝑛 и переходит на стадию
красного гиганта. На данной стадии у таких звезд горит водородный слоевой
источник. Начало же горения гелия и его превращение в углерод происходит
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с кратковременным энерговыделением (гелиевая вспышка). После неё звезда
начинается перемещаться от ветви красных гигантов влево с постоянной све­
тимостью, образуя горизонтальную ветвь. Оболочка звезды сбрасывается и
рассеивается, и образуется остывающий углеродно-кислородный белый карлик
массой около 0.5𝑀𝑠𝑢𝑛.
Для 2.5𝑀𝑠𝑢𝑛 .𝑀𝑠𝑡𝑎𝑟 гелиевой вспышки не происходит, т.к. гелиевое ядро невы­
рождено и после стадии красного гиганта происходит невырожденное горение
гелия с образованием углерода и кислорода.
Дальнейшую эволюцию мы рассматривать не будем, поскольку оценка на ско­
рость потери энергии получена по определению времени задержки зажигания
гелия в звездах, которые находятся в Шаровых Звёздных Скоплениях (по со­
вокупности наблюдательных данных, таких как, яркость, расстояние(которое
определяется по цефеидам), радиус (Метод Бааде — Весселинка), спектр - мож­
но провести соответствующие оценки) . Шаровые звёздные скопления (далее -
ШЗС) - гравитационно связанные ансамбли из примерно 106 звезд - наиболее
значимые объекты во Вселенной, которые помогут нам проследить за влиянием
нового механизма потери энергии на жизнь звезды. Так как все звезды в ШЗС
имеют примерно одинаковых химический состав и различаются лишь массой, то
мы получаем наглядную эволюционную картину, потому они и имеют большой
вес в астрофизике.

2.2 Оценка констант связи

Рассмотрим эффект Примакова - Сикиви для случая, когда фотон может
под действием внешнего поля превращаться в два различных аксиона.

Рисунок 2.2 — Обе реакции рассматриваемого эффекта Примакова-Сикиви

Соответственно, константы связи 𝑔𝜑𝛾 и 𝑔𝜒𝛾. Тогда, считая два этих превращения
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независимыми, перепишем скорость перехода фотона 𝜔 в аксион (исходя из
теории Дебая-Хюккеля):

Γ𝛾 −→ 𝜑(𝜒) =
𝑔2𝜑(𝜒)𝛾𝑇𝑘

2
𝑠

32𝜋

[︁(︁
1 + 𝑘2𝑠

4𝜔2

)︁
ln
(︁
1 + 4𝜔2

𝑘2𝑠

)︁
− 1
]︁
; (2.1)

где,

𝑘𝑠 =
4𝜋𝛼
𝑇 𝑛𝐵

(︃
𝑌𝑒 +

∑︀
𝑗

𝑍2
𝑗𝑌𝑗

)︃
;

𝑛𝐵 = 𝜌
𝑚𝑢
. (2.2)

Здесь Т - температура плазмы, 𝑛𝐵 - барионная плотность, 𝑌𝑒 и 𝑌𝑗 - доли на
барион электронов и различных ядер 𝑗 с зарядами 𝑍𝑗.
Следовательно для каждого из аксионов потеря энергии на единицу объема
будет составлять:

𝑄𝜑(𝜒) =

∫︁
2 𝑑3𝑘𝛾
(2𝜋)3

·
Γ𝛾 −→ 𝜑(𝜒)𝜔

𝑒
𝜔
𝑇 − 1

=
𝑔2𝜑(𝜒)𝛾 𝑇

7

4𝜋
· 𝐹 (𝜅2); (2.3)

где,

𝐹 (𝜅2) =
𝜅2

2𝜋2

∫︁ ∞

0

𝑑𝑥

[︂
(𝑥2 + 𝜅2) ln

(︂
1 +

𝑥2

𝜅2

)︂
− 𝑥2

]︂
𝑥

𝑒𝑥 − 1
;

𝜅 ≡ 𝑘𝑠
2𝑇

(2.4)

Таким образом общая потеря энергии на единицу объема:

𝑄 = 𝑄𝜑 +𝑄𝜒 =
𝑇 7𝐹 (𝜅2)

4𝜋
· (𝑔2𝜑𝛾 + 𝑔2𝜒𝛾) (2.5)

Далее, подставляя характерные значения параметров для звезды горизонталь­
ной ветви, а именно 𝑇 = 108 К, 𝜌 = 104 гр/см3 и 𝜅2 ≈ 2.5, и переводя в
соответствующие единицы измерения, получим:

⟨𝜖⟩ = (𝑔210𝜑𝛾 + 𝑔210𝜒𝛾) · 30 эрг гр−1 сек−1 (2.6)

𝑔10𝜑𝛾 ≡ 𝑔𝜑𝛾 · 1010 ГэВ−1; 𝑔10𝜒𝛾 ≡ 𝑔𝜒𝛾 · 1010 ГэВ−1

Тогда для констант связи находим искомую оценку:√︁
𝑔2𝜑𝛾 + 𝑔2𝜒𝛾 . 0.6 · 10−10 ГэВ−1 (2.7)
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Заключение

По итогу выполнения работы были получены вероятности превращений
фотона в аксионы и оценка на константы взаимодействия этих аксионов
с помощью теории Дебая-Хюккеля и обработки наблюдательных данных,
представленных в [1]. Из полученного можно сделать два вывода:

Во-первых заметим, что вероятности перехода одного аксиона в другой
при отсутствии внешнего поля не является нулевой, чего не может быть, когда
речь идет о вероятности превращения аксиона в фотон и обратно. Также
отметим, что вероятности перехода в любых полях, которые по величине
меньше звездных, −→ 0, мы уже не говорим о превращениях второго порядка.

Во-вторых, оценки на константы взаимодействия как для двух аксио­
нов, так и для большего их числа (Б) - совпадают с (1), что говорит о
равновероятности всех этих случаев, если получать их так, как получили мы,
и говорит также, что мы не сможем их отличить, наблюдая за звездами. Ещё
отметим, что вероятности переходов аксионов в аксионы в n-аксионном случае,
по аналогии, тоже ненулевые при отсутствии поля, и только переход в квант
света оказывается невозможен.
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Приложение А

Пояснения некоторых фактов и расчётов

А.1 Коэффициенты 𝑣𝑠 и 𝑔𝑠

Рассмотрим систему (1.8)-(1.9) и подставим в первые два уравнения выра­
жения для полей (1.10). Тогда, в соответствии с теорией о поиске собственных
векторов, можно выразить 𝑔𝑠 и 𝑣𝑠 через свободные коэффициенты 𝑓𝑠.
В ходе подстановок возникнут интегралы по пространству 𝑘, которые, в силу
основной леммы вариационного исчисления можно будет убрать. Тогда, после
некоторых алгебраических преобразований, получим довольно громоздкие вы­
ражения (почему они и были вынесены в приложение):

𝑔𝑠 =
−𝑖𝑓𝑠((𝜔2 − 𝑘2𝑠)𝑀

2 𝑔𝜑 − 𝑔2𝜑 𝑔𝜒 𝐵
2
⊥ 𝜔

2)

𝑔𝜑 𝜔 𝐵⊥(𝑀 2𝑔𝜑 − 𝑔𝜒(−𝜔2 + 𝑘2𝑠)− 𝑔𝜒 𝑚2
𝜑)

(А.1)

𝑣𝑠 =
𝑖𝑓𝑠((𝜔

2 − 𝑘2𝑠)
2 −𝑚2

𝜑(𝜔
2 − 𝑘2𝑠)− 𝑔2𝜑 𝐵

2
⊥ 𝜔

2)

𝜔 𝐵⊥(𝑀 2𝑔𝜑 − 𝑔𝜒(−𝜔2 + 𝑘2𝑠)− 𝑔𝜒 𝑚2
𝜑)

А.2 Расчёт энергии для нахождения 𝑓𝑠

Для начала запишем известные свойств дельта функции:∫︁
𝑓(𝑥)𝛿(𝑥− 𝑎)𝑑 𝑥 = 𝑓(𝑎); (А.2)

𝛿(𝜔) =
1

2𝜋

∫︁
𝑒𝑖𝜔𝑡𝑑𝑡. (А.3)

Теперь рассмотрим одно из полей, например 𝜒:

𝜒(𝑥) =
1

(2𝜋)
3
2

∑︁
𝑠

∫︁
𝑑3𝑘√
2𝜔
𝑣𝑠(𝑒

𝑖𝑝𝑠𝑥𝑎*𝑠 + 𝑒−𝑖𝑝𝑠𝑥𝑎𝑠) (А.4)
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При подставлении данного поля в гамильтониан (1.14) возникнет два типа сла­
гаемых, например, рассмотрим 𝜒2:

𝜒2 =
𝑣2𝑠

(2𝜋)3

(︃∑︁
𝑠

∫︁
𝑑3𝑘√
2𝜔

(︀
𝑒𝑖𝑝𝑠𝑥 𝑎*𝑠 + 𝑒−𝑖𝑝𝑠𝑥 𝑎𝑠

)︀)︃2

(А.5)

Раскрыв, получим слагаемые вида (. . . 𝑎1 · 𝑎2), т.е. перекрестные по разным по­
лям; вида (. . . 𝑎1 · 𝑎1, т.е. "квадратичные". Все эти слагаемые сократятся либо
за счет дисперсионного соотношения (1.9) и найденных соотношений между ко­
эффициентами 𝑔𝑠 , 𝑣𝑠, 𝑓𝑠), когда мы соответствующим образом подставим все
три поля и их производные, либо за счет коммутационных соотношений между
операторами, относящимися к разным полям в каноническом базисе.
Наиболее интересны слагаемые вида (. . . 𝑎1 · 𝑎*1), которые и будут формировать
выражение для энергии. Возьмем перекрестное слагаемое из (А.5) и проинте­
грируем его, чтобы найти часть энергии, т.к. энергия задается выражением
𝐸 =

∫︀
𝑑3𝑥 ℋ(𝑘𝑠, 𝑓𝑠) (рассмотрим только 𝑠 = 1):

𝐸1 =

∫︁
𝑑3𝑥

2𝑣21
(2𝜋)3

∫︁
𝑑3𝑘√
2𝑘0

𝑑3𝑞√
2𝑞0

𝑒𝑖(𝑘0−𝑞0)𝑥0 𝑒𝑖(k−q)x𝑎1𝑘 𝑎
*
1𝑞

(А.6)

Применяя определение дельта функции преобразуем:

𝐸1 = 2 𝑣21

∫︁
𝑑3𝑘√
2𝑘0

𝑑3𝑞√
2𝑞0

𝑒𝑖(𝑘0−𝑞0)𝑥0 𝛿(k − q)𝑎1𝑘 𝑎
*
1𝑞
= (А.7)

=
𝑣21
𝜔

∫︁
𝑑3𝑘 𝑎*1 𝑎1

Абсолютно таким же образом ищутся все остальные слагаемые такого же вида.
Вспоминая, что энергия должна иметь вид

∫︀
𝑑3𝑘 𝜔 𝑎*1 𝑎1, и вычисляя таким же

образом слагаемые соответствующие индексам 𝑠 и складывая, получим оконча­
тельную неявную функцию для нахождения нормировочных коэффициентов:

ℱ(𝑓𝑠,𝑘𝑠) =
1

2
𝜔𝑓 2𝑠 +

1

2

𝑘2𝑠
𝜔
𝑓 2𝑠 +

1

2
𝜔𝑔2𝑠 +

1

2

𝑘2𝑠
𝜔
𝑔2𝑠 +

1

2
𝜔𝑣2𝑠+ (А.8)

+
1

2

𝑘2𝑠
𝜔
𝑣2𝑠 +

1

2

𝑚2
𝜑𝑔

2
𝑠

𝜔
+

1

2

𝑚2
𝜒𝑣

2
𝑠

𝜔
− 𝑀 2𝑔𝑠𝑣𝑠

𝜔
− 𝜔 = 0
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Отсюда, после подстановки коэффициентов (А.1) и волновых векторов из (1.9)
получим явные выражения для нормировочных коэффициентов 𝑓𝑠.

А.3 Норма и скалярное произведение в формализме Дирака

Выражение вида ⟨𝐴|𝐵⟩ - является состоянием системы:

⟨𝐴|𝐵⟩ = 𝜓𝐵(𝐴); (А.9)

Соответственно, т.к. в нашем случае собственные функции это экспоненты и
используя свёртку с дельта функцией, норма в гильбертовом пространстве и
скалярное произведение (* - эрмитово сопряжение, в нашем случае оно выро­
дится позднее просто в комплексное):

⟨𝐴|𝐴⟩ =
∫︁
𝜓*
𝑎 𝜓𝑎 𝑑q = |𝐴|2(2𝜋)3𝛿3(0) (А.10)

⟨𝐴|𝐵⟩ =
∫︁
𝜓*
𝑎 𝜓𝑏 𝑑q = |𝐴 ·𝐵|(2𝜋)3𝛿3(0)

Тогда для норм в случае аксионов и фотона:

⟨𝐴|𝐴⟩ = 𝛿3(0)
∑︁
𝑠

𝑓 *𝑠 · 𝑓𝑠 = 𝛿3(0)
∑︁
𝑠

|𝑓𝑠|2 (А.11)

⟨Φ|Φ⟩ = 𝛿3(0)
∑︁
𝑠

𝑔*𝑠 · 𝑔𝑠 = 𝛿3(0)
∑︁
𝑠

|𝑔𝑠|2

⟨𝑋|𝑋⟩ = 𝛿3(0)
∑︁
𝑠

𝑣*𝑠 · 𝑣𝑠 = 𝛿3(0)
∑︁
𝑠

|𝑣𝑠|2

И для эволюции:

⟨Φ|𝐴(𝑡)⟩ = 𝛿3(0) 𝑒−𝑖𝜔𝑡 ·
∑︁
𝑠

𝑔*𝑠 𝑓𝑠 𝑒
𝑖𝑘𝑠𝐿 (А.12)

⟨𝑋|𝐴(𝑡)⟩ = 𝛿3(0) 𝑒−𝑖𝜔𝑡 ·
∑︁
𝑠

𝑣*𝑠 𝑓𝑠 𝑒
𝑖𝑘𝑠𝐿 (А.13)

⟨𝐴|𝐴(𝑡)⟩ = 𝛿3(0) 𝑒−𝑖𝜔𝑡 ·
∑︁
𝑠

𝑓 *𝑠 𝑓𝑠 𝑒
𝑖𝑘𝑠𝐿 (А.14)
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Подставим полученные выражения в вероятности вида (1.20) и получим соот­
ношения (1.21) со всеми известными коэффициентами. (В частности, для того,
чтобы мы могли таким образом найти вероятности мы и нормировали расска­
занным ранее способом 𝑓𝑠).
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Приложение Б

Случай смешивания n аксионов

Оценку (2.7) можно обобщить на случай, когда фотон может превращать­
ся в любое наперед заданное число различных аксионов. Тогда, рассматривая
потери энергии каждого процесса независимо, получим:

𝑄0 =
∑︁
𝑛

𝑄𝑛 =
𝑇 7𝐹 (𝜅2)

4𝜋
·
∑︁
𝑛

𝑔2𝜑𝑛𝛾
(Б.1)

Подставляя те же параметры звёзд в уравнение, находим оценку:

⟨𝜖0⟩ =
∑︁
𝑛

𝑔210𝜑𝑛𝛾
· 30 эрг гр−1 сек−1 (Б.2)

𝑔10𝜑𝑛𝛾 ≡ 𝑔𝜑𝑛𝛾 · 1010 ГэВ−1; (Б.3)

Тогда, аналогично (2.7) имеем:√︃∑︁
𝑛

𝑔2𝜑𝑛𝛾
. 0.6 · 10−10 ГэВ−1 (Б.4)

Это говорит о том, что мы не сможем, в силу совпадения оценок, понять, наблю­
дая за звездами (в частности за ШЗС), какое количество аксионов участвует в
данных реакциях, по крайней мере пока.
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Приложение В

Примеры эволюционных треков звёзд

Рисунок В.1 — Эволюционные треки звезд различных масс на диаграмме
Герцшпрунга-Рассела.
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