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Введение

■ Сегодня общепринятой является

трёхнейтринная модель с осцилляциями

между ароматовыми (флейворными) и

массовыми состояниями;

■ Идея нейтринных осцилляций

принадлежит Бруно Понтекорво (1957);

■ Экспериментальное подтверждение

нейтринных осцилляций – эксперимент

SuperKamiokande (1998);



Описание нейтринных осцилляций

Флейворные состояния представляются как линейная 
комбинация массовых:
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Преобразование соответствует повороту в унитарном 
пространстве волновых функций.



Описание нейтринных осцилляций
в вакууме

В собственной системе отсчёта: 𝜈𝑖 𝑡𝑖
′ = 𝑒−𝑖𝑚𝑖𝑡𝑖

′
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В системе отсчёта детектора: 𝜈𝑖 𝑡 = 𝑒−𝑖(𝐸𝑖𝑡−𝑝𝑖𝐿) 𝜈𝑖 0

С учётом ультрарелятивистского характера нейтрино:
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Описание нейтринных осцилляций
в вакууме

Амплитуда вероятности осцилляций:

𝐴 𝛼 → 𝛽 = 𝜈𝛽 0 𝜈𝛼 𝑡 = ෍
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Описание нейтринных осцилляций в 
вакууме

Вероятность осцилляций в зависимости от времени:

𝑃 𝛼 → 𝛽 = 𝐴 𝛼 → 𝛽 2 =

= 𝛿𝛼𝛽 − 4 ෍
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Вид матрицы смешивания

PMNS-матрица (матрица Понтекорво-Маки-Накагава-

Саката) – унитарная матрица смешивания лептонов. 

Параметризуется тремя действительными углами 

смешивания и одной CP-нарушающей фазой.

𝑈 = 𝐶23 𝜃23 ∗ 𝐶13,𝛿 𝜃13, 𝛿 ∗ 𝐶12 𝜃12



Случай вещества постоянной плотности

Вакуум Вещество
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Эффективная «добавка» к 
гамильтониану
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Случай вещества постоянной плотности
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Нейтринная массовая иерархия



Идея эксперимента –
изучение распределения атмосферных нейтрино по 

энергии и зенитному углу

Детектор – черенковский детектор 

нейтрино с энергиями в единицы-

десятки ГэВ на географической позиции 

Байкальского подводного нейтринного 

телескопа.

Глубина расположения детектора 

– 1,1 км.

Эффективный объём – 1 Мт.



Параметры 
эксперимента

Параметры осцилляций

Параметр
Иерархия нейтринных масс

Нормальная Обратная

𝚫𝒎𝟐𝟏
𝟐 , эВ𝟐 7,39 ∗ 10−5 7,39 ∗ 10−5

𝚫𝒎𝟑𝟐
𝟐 , эВ𝟐 2,528 ∗ 10−3 2,426 ∗ 10−3

𝜽𝟏𝟑 8,60 8,64

𝜽𝟏𝟐 33,82 33,82

𝜽𝟐𝟑 48,60 48,80

𝜹𝑪𝑷 221,0 282,0

В вычислениях использовались

значения для среднегодового потока

нейтрино без учёта осцилляций,

полученные Хонда для детектора

Камиоканде.

В качестве сечений взаимодействия

приняты сечения глубоко неупругого

рассеяния для нейтрино и для

антинейтрино (порядка 10^(-39) кв.

см).



Число событий в данной области по 
энергии и углу
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Принцип исследования 
статистической значимости
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Неучтённые факторы

■ систематические ошибки численного моделирования, в том числе численного

интегрирования;

■ систематические ошибки при реконструкции действительной энергии и зенитного

угла для детектируемых нейтрино и экспериментальная неопределённость этих

параметров;

■ неопределённость параметров осцилляций: разностей квадратов масс, углов

смешивания и CP-нарушающей фазы;

■ неизвестный поток таонных атмосферных нейтрино;

■ принципиальная ошибка численного интегрирования: суммирование по областям,
имеющим разный знак асимметрии массовых иерархий



Результаты и их обсуждение

Нормальная иерархия Обратная иерархия 

  

Графики 1. Зависимость числа событий регистрации электронного нейтрино от энергии и косинуса 

зенитного угла для одного года экспонирования детектора. По горизонтальной оси отложена 

энергия в гигаэлектронвольтах, по вертикальной – косинус зенитного угла. Цветом обозначено 

число событий. 

 



Зависимость асимметрии 

массовых иерархий от энергии и 

косинуса зенитного угла для 

электронных нейтрино для 

одного года экспонирования 

детектора. По горизонтальной 

оси отложена энергия в 

гигаэлектронвольтах, по 

вертикальной – косинус 

зенитного угла. Цветом 

обозначена асимметрия.



Верхняя оценка статистической 
значимости



Заключение

Оценивалась возможность определения нейтринной массовой иерархии 
с использованием гипотетической модификации Байкальского 

подводного нейтринного телескопа. 

Показано, что возможность определения нейтринной массовой 
иерархии на черенковском детекторе нейтрино с энергиями в единицы 

гигаэлектронвольт заслуживает рассмотрения.
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