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ВВЕДЕНИЕ

На сегодняшний день экспериментами надежно установлено существование

астрофизических нейтрино высоких энергий (порядка 10(4...6) GeV, см. [1–4]).

Вместе с тем, исчерпывающее теоретическое обоснование их происхождения,

которое бы удовлетворительно воспроизводило данные наблюдений, на дан-

ный момент еще не найдено. Существует ряд моделей, которые претендуют на

то, чтобы объяснить— полностью или частично— наблюдаемый поток высо-

коэнергетичных астрофизических нейтрино (см. по этому поводу обзор [5] и

ссылки там).

Предметом настоящей работы является один из видов таких моделей. В нем

предлагается рассматривать в качестве производителей высокоэнергетичных

нейтрино (и других частиц, в частности гамма-квантов) взаимодействия кос-

мических лучей (КЛ) с окологалактическим газом (ОГ) в гало Млечного Пути

(МП)— резервуаром разреженного вещества на расстояниях в пределах вири-

ального радиуса Галактики, то есть порядка (200...300) kpc от центра.

До недавнего времени консенсуально предполагалось, что КЛ оказываются

в гало там в результате диффузии из области дискаМП, где, в свою очередь, рас-

положены их предполагаемые источники [6–9]. Недостатками данного подхода,

однако, оставались значительные неопределенности в параметрах источников

(мощности, характере эволюции, пространственной структуре), и, что еще бо-

лее существенно,— в профиле плотности ОГ, от которого сильно зависит коли-

чество рожденных во взаимодействиях частиц, и следовательно наблюдаемый

их поток. В наиболее свежем из известных автору результате с этой моделью [9]

показано, что при сценарии с диффузионным распространением КЛ их взаимо-

действие с ОГ способно объяснить лишь малую долю (порядка 1%) наблюдае-

мого потока астрофизических нейтрино высоких энергий.

В недавней работе [10], однако, обнаружены указания на несостоятельность

модели диффузии. Авторы утверждают, что диффузионное распространение
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КЛ вступает в противоречие с наблюдениями гамма-излучения от гало сосед-

ней с МП галактики Андромеды (далее M31), снятыми космическим телеско-

пом Fermi (следует отметить высокий уровень неопределенностей измерений

в этих данных, связанный в частности с тем, что дискМП загораживает пример-

но половину гало M31). В этой же работе они приводят ряд численных оценок

в отрыве от модели диффузии, на основе которых утверждают, что взаимодей-

ствием КЛ с ОГ можно объяснить практически весь наблюдаемый поток аст-

рофизических нейтрино. Эти оценки, вместе с тем, сильно зависят от довольно

приблизительно оцениваемых авторами плотности ОГ, размеров гало, а также

весьма плохо известной полной энергии всех КЛ высоких энергий в гало.

Таким образом, к настоящему времени мы имеем актуальную проблему,

значимую с фундаментальной точки зрения: два наиболее свежих результата

по обсуждаемой теме основываются на исключающих друг друга моделях рас-

пространения КЛ и дают прогнозы, отличающиеся в ∼ 100 раз.

Целью данной работы является детальный анализ причин этого противо-

речия и уточнение результатов обеих публикаций. В частности, одна из основ-

ных задач— обновить количественные оценки с учетом более свежего профиля

плотности ОГ, полученного при участии автора на основе самосогласованного

анализа двух независимых типов астрофизических наблюдений [11]. Исполь-

зуя это распределение плотности, планируется вычислить и сравнить потоки

высокоэнергетичных нейтрино и гамма-квантов от взаимодействия КЛ с ОГ

в модели с участием и без участия диффузии. Другая немаловажная задача—

обеспечить при этом согласованность закладываемых в модель параметров и

полученных результатов с известными на сегодняшний день наблюдениями.

В качестве метода исследования используются аналитические и компьютер-

ные вычисления, в частности с использованием программы [12] и собственного

кода автора.

Дальнейшая структура работы выглядит следующим образом. В главе I со-

ставляется и обсуждается физическая модель, которая описывает рождение аст-
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рофизических нейтрино и гамма-квантов высоких энергий во взаимодействи-

ях КЛ с ОГ с диффузионным распространением первых в гало и без такового.

В главе II по физической модели строится модель для компьютерных вычисле-

ний и кратко презентуются ее результаты. В главе III приводится подробное об-

суждение результатов, в том числе дается анализ самосогласованности модели

и делается оценка сопутствующих неопределенностей. Наконец, в главах IV иV

представляются окончательные выводы по итогам проделанной работы.
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I. ФИЗИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

В данной главе строится и обсуждается физическая модель, в рамках которой

описывается распространение КЛ в гало МП и взаимодействие их с ОГ с по-

следующим рождением вторичных частиц.

I.1 Общий обзор

Сделаем ряд договоренностей, которых в дальнейшем по умолчанию будем

придерживаться в нашей модели.

Во-первых, поскольку интересующий нас регион— гало МП, которое с хо-

рошей степенью точности обладает сферической симметрией, будем проделы-

вать все вычисления в рамках сферически симметричной относительно центра

Галактики модели, пренебрегая более сложной пространственной структурой

МП. Говоря о локальном потоке КЛ, мы, таким образом, будем подразумевать

соответствующий поток на галактоцентрическом радиусе r = r⊙ ≃ 8.5 kpc

(здесь и далее индексом ⊙ обозначаются величины, отвечающие Солнцу).

Во-вторых, договоримся вычислять наблюдаемый поток высокоэнергетич-

ных частиц (которые будем называть вторичными КЛ) со стороны гало, обу-

словленный только взаимодействием протонов первичных КЛ с водородом ОГ

(и последующей цепочкой взаимодействий). То есть, иными словами, мы пре-

небрегаем деталями состава ОГ и первичных КЛ в контексте рождения вторич-

ных КЛ.

В рамках таких договоренностей спектр и пространственный профиль ис-

точника вторичных КЛ определяется произведения концентрации газа на спек-

тральную плотность объемной плотности первичных КЛ при данных галакто-

центрическом радиусе и энергии (поскольку чем больше высокоэнергетичных

протонов и мишеней из ОГ для них— тем пропорционально выше количество

рождающихся вторичных КЛ). В нижеследующих разделах обсуждается по-

строение этих двух функций.
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I.2 Плотность окологалактического газа

Существует два различных подхода, которые позволяют оценить плотность ОГ.

Первый основан на наблюдении спектральных линий (в частности, кислорода)

в рентгеновском диапазоне: так можно оценить количество ионов данного ти-

па вдоль луча зрения, и, закладывая предположение об относительном содер-

жании этих ионов (как правило, данная информация описывается металлич-

ностью Z(r)—относительной массовой долей всех элементов тяжелее гелия),

оценить таким образом полную плотность газа [13, 14]. Второй способ не за-

висит от предположений о химическом составе газа и основан на наблюдениях

спутниковых галактик в гало МП, которые под давлением ОГ теряют собствен-

ный газ. Симуляции таких потерь собственного газа позволяют при достаточно

хорошо известной кинематике орбиты получить оценку полной плотности ОГ

на данном галактоцентрическом радиусе [15–18].

Консенсуально при этом принято параметризовать профиль плотности ОГ

следующим образом:

nCGM(r) = n0

(
1 +

r2

r2c

)−3β/2

(1)

Здесь nCGM(r)—концентрация газа на данном радиусе, n0 —нормировка, rc ∼

1 kpc—масштабный радиус (мы здесь и далее принимаем rc = 3 kpc), β—

параметр наклона.

До недавнего времени в рамках первого подхода было принято полагать

Z(r) = const = (0.2...0.3)Z⊙ [13, 14], однако при таком предположении резуль-

тирующий профиль ОГ оказывался не согласован с результирующим профилем

на основе наблюдений за спутниками. Затем в работе [19] было показано, что

при замене этого предположения на гипотезу о том, что профиль металлично-

сти мимикрирует под профиль плотности (имеет ту же самую функциональ-

ную форму) и завышает таким образом его реальный наклон, удается согласо-

вать результаты двух подходов между собой. Позже в работе [11] был проведен
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более детальный самосогласованный анализ двух типов данных и предложен

физически мотивированный профиль металличности. Параметры, полученные

в последней упомянутой работе, заметно отличаются от более ранних работ,

и являются, насколько известно автору, наиболее свежей из многофакторных

наблюдательных оценок плотности газа в гало МП. В связи с этим мы далее

используем их в настоящей работе.

Важно отметить, что в регионе гало вблизи диска МП результаты [11] в си-

лу специфики фильтрации наблюдательных данных хуже описывают реальный

наклон профиля ОГ. В связи с этим, полный профиль ОГ мы выберем в виде

кусочно-гладкой функции, которая на больших радиусах совпадает со свежим

профилем из [11], а на внутренних радиусах (r < 30 kpc) меняет наклон на бо-

лее резкий, отражая поведение газа из более ранних симуляций [20]. С учетом

этого далее мы полагаем:

n0 = 4.54× 10−3 cm−3, β = 0.337, r ≥ 30 kpc

n0 = 4.47× 10−1 cm−3, β = 1.000, r < 30 kpc
(2)

График концентрации ОГ изображен на рисунке 1 (здесь и далее графики стро-

ятся с использованием matplotlib, см. [21]).

I.3 Диффузионный профиль первичных космических лучей

В модели диффузии распространение КЛ описывается уравнением (см. [9]):

∂tj(E, r, t) = D(E)∆j(E, r, t)− cσpp(E)nCGM(r)j(E, r, t) +Q(E, r, t) (3)

В этом уравнении j(E, r, t) = dnCR/dE—спектральная плотность объемной

плотности КЛ, D(E)—коэффициент диффузии при данной энергии КЛ, c—

скорость света, σpp(E)—сечение протон-протонного взаимодействия (отвеча-

ет за исчезновение частиц из состава КЛ вследствие взаимодействия с ОГ, ис-

пользуются данные [22]), nCGM(r)—концентрация ОГ, Q(E, r, t)—функция

источника. Следуя работе [9], мы закладываем для коэффициента диффузии
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Рис. 1: Профиль концентрации ОГ МП.
Штриховкой показана погрешность. Погрешность наклона на r < 30 kpc не оценивается.

D(E) = D0 × (E/GeV)1/3, а для источника— следующую форму:

Q(E, r, t) ∝ E−α exp
(
−E

Ecut

)
θ(rQ−r)×


1 + (t/Gyr), t ≤ 2 Gyr

3, 2 Gyr < t ≤ 6 Gyr

6− 0.5(t/Gyr), 6 Gyr < t ≤ 10 Gyr
(4)

Далее мы по умолчанию используем D0 = 1.2 × 1029 cm2 s−1, α = 2, Ecut =

108 GeV, rQ = 15 kpc. Такие форма источника и набор параметров одновре-

менно отвечают современным представлениям о величине коэффициента диф-

фузии и эволюции активности МП [20], позволяет сравнивать результаты мо-

дели диффузии с недиффузионной моделью за счет спектра источника ∝ E−2,

«обрезают» энергии, на которых должны преобладать внегалактические КЛ за

счет экспоненциального загибания на соответствующей энергии, а также позво-
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ляют пренебречь детализацией внутренней структуры региона с источниками,

заменив ее на кусочно-постоянную эффективную плотность, отличную от нуля

в крупной области вокруг диска МП, включающей в том числе пузыри Ферми

как потенциальные источники КЛ.

Отметим, что за счет линейности уравнения оно позволяет также не закла-

дывать априорную абсолютную величину мощности источника (вообще гово-

ря, неизвестную) и выбирать нормировку решения, опираясь на наблюдения.

Кроме того, зависимость от энергии чисто параметрическая (не перекрывается

с зависимостью от времени и радиуса). В работе [9] показано, что такой способ

нормировки позволяет также в рамках диффузионной модели сделать резуль-

таты слабо зависящими от вариаций коэффициента диффузии D0 в пределах

порядка величины, что также удобно для нашей работы, поскольку данный па-

раметр зависит от плохо ограниченной величины магнитного поля в околога-

лактической среде.

Естественными дополнительными условиями являются j(E, r, t)|t=0 = 0,

∂rj(E, r, t)|r=0 = 0—в силу очевидной симметрии j(+r) = j(−r), а также

limr→∞ j(E, r, t) = 0—в силу того, что даже самые высокоэнергетичные КЛ

в нашем диапазоне энергий в конечном итоге загибаются слабыми окологалак-

тическими магнитными полями в конечной окрестности Галактики: при харак-

терных полях B ∼ 10−(7...8) Гс (см. [23]) соответствующий ларморовский ради-

ус высокоэнергетичного протона rL ≃ cEcut/eB ∼ 10 kpc.

Итого имеем начально-краевую задачу, решением которой является иско-

мая спектральная плотность объемной плотности первичных КЛ (нас интере-

сует современное значение, при t = 10Gyr). Подробности численного решения

обсуждаются в следующей главе.

I.4 Недиффузионный профиль первичных космических лучей

В недавней работе [10] приводятся наблюдательные доводы в пользу того, что

диффузионная модель распространения первичных КЛ из предыдущего разде-
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ла может быть несостоятельна: по оценкам авторов, не удается воспроизвести с

ее помощью соотношения интенсивностей, измеренные для участков M31 [24].

Тем не менее, в рамках нашей модели для расчетов все равно требуется гипо-

теза о профиле первичных КЛ. В связи с этим мы воспользуемся упомянутыми

наблюдениями [24] и построим по их данным спекулятивный профиль концен-

трации протонов первичных КЛ, который позволит в дальнейшем вычислять

потоки вторичных частиц и на качественом уровне сравнивать результаты с

диффузионной моделью.

Напомним, что в рамках нашей модели функция источника вторичных КЛ

∝ nCGM(r)j(E, r). Для простоты будем считать, что в недиффузионном случае

j(E, r) факторизуется:

j(E, r) ∝ E−α exp
(
−E

Ecut

)
× nCR(r) (5)

Здесь мы по-прежнему полагаем α = 2, но изменяем Ecut на 2 × 107 GeV, сле-

дуя авторам [10], чтобы сделать более корректным последующее сравнение ре-

зультатов. Таким образом, пространственное распределение функции источни-

ка описывается произведением nCGM(r)nCR(r).

Сделаем еще одно оценочное допущение: пусть на больших радиусах (в га-

ло) nCGM(r)nCR(r) ∝ r−a. Далее будем подбирать параметр a так, чтобы он

отвечал наблюдательным данным по M31, а затем определим профиль концен-

трации первичных КЛ как nCR(r) = const× (nCGM(r) r
a)−1.

I.5 Потоки вторичных частиц

Потоки вторичных частиц в рамках обсуждаемой модели вычисляются анало-

гично работе [9]. Из-за нецентрального положения Солнца в Галактике поток

отдельно вычисляется вдоль каждого луча зрения. Для этого при известных

nCGM(r), j(E, r) решается уравнение переноса с источником вида:

Q(Ek, r) ∝ nCGM(r)

∫
dE j(E, r)

dσpp
dEk

(E,Ek), (6)
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где k—индекс, обозначающий частицу-продукт, причем используется прибли-

жение линейного распространения, неверное для заряженных частиц, чьи тра-

ектории сильно искажены магнитными полями. Тем не менее, нас в первую

очередь интересует интегральный поток (либо его изотропная часть) незаря-

женных частиц, поэтому такое приближение оправдано. В случае, когда нас бу-

дет интересовать угловое распределение вторичных КЛ, мы будем поступать

следующим образом: отдельно вычислять поток гамма-квантов, порождаемых

напрямую взаимодействием протонов с ОГ, и отдельно— поток гамма-квантов

и других вторичных КЛ, возникающих при взаимодействии вторичных заря-

женных частиц. Вторую компоненту мы будем усреднять по угловым направ-

лениям в силу искажения траекторий заряженных частиц магнитными полями

и складывать с первой.

Помимо протон-протонных взаимодействий, порождающих вторичные ча-

стицы, мы вводим в рассмотрение также обратное комптоновское рассеяние и

производство гамма-лучами электрон-позитронных пар, чтобы учесть потери

энергии на реликтовом излучении в диапазоне Eγ > 105 GeV. Взаимодействие

с инфракрасным фоном на изучаемых масштабах расстояний в ∼ 100 kpc пре-

небрежимо мало.

Мы также пренебрегаем эффектами осцилляций, поскольку интересуемся

интегральным потоком всех шести типов нейтрино и антинейтрино.

Отметим, наконец, что в силу линейности уравнений мы вновь не обязаны

следить за нормировкой источника, а можем нормировать уже готовое решение

по выбранным наблюдательным данным, и при необходимости легко отслежи-

вать вклады отдельных пространственных областей источника в конечный от-

вет, обрезая функцию источника по радиусу соответствующим образом.
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II. ВЫЧИСЛИТЕЛЬНАЯ МОДЕЛЬ

В настоящей главе обсуждаются вычислительные детали, связанные с решени-

ем сформулированных физических задач. Компьютерные вычисления произво-

дятся в Python 3 с использованием библиотек numpy, scipy [25, 26] и кода [12].

II.1 Диффузионный профиль первичных космических лучей

Как уже было упомянуто выше, в диффузионной модели j(E, r)—это решение

уравнения (3), взятое в современный момент времени t = 10 Gyr.

Чтобы отыскать решение, сведем задачу к поиску вспомогательной функ-

ции u(E, r, t) = rj(E, r, t)/Q0, где Q0 —нормировка функции источника. Та-

ким образом мы одновременно фиксируем удобную нормировку решения по

функции источника и сводим вид уравнения к более простому:

∂tu(E, r, t) = D(E)∂2
ru(E, r, t)−cσpp(E)nCGM(r)u(E, r, t)+rQ(E, r, t)/Q0 (7)

Дополнительные условия: u(E, r, t)|t=0 = u(E, r, t)|r=0 = limr→∞ u(E, r, t) = 0.

Для численного решения введем дискретизацию по каждой из трех осей:

логарифмическую по энергии (напомним, что зависимость от энергии чисто

параметрическая, при каждой энергии решается свое дифференциальное урав-

нение— в связи с этим мы опускаем далее связанный с энергией индекс, но

везде подразумеваем его) и линейную по радиусу и времени. Получим неяв-

ную конечно-разностную схему:

um+1
i − umi

∆t
= D

um+1
i+1 + um+1

i−1 − 2um+1
i

∆r2
− fiu

m+1
i + qm+1

i , (8)

где i—пространственный индекс,m—временной индекс,∆t и∆r—шаги по

временной и радиальной координате соответственно, umi ≡ u(E, ri, t
m), D ≡

D(E), fi ≡ cσpp(E)nCGM(ri), qmi ≡ rQ(E, ri, t
m)/Q0. Здесь мы имеем второй

порядок аппроксимации дифференциального опреатора по r и первый по t.

13



Приводя подобные слагаемые, получим уравнение перехода к следующему

слою по времени с трехдиаогнальной матрицей:

− um+1
i+1 − um+1

i−1 +

(
2 +

∆r2

D

(
fi +

1

∆t

))
um+1
i =

∆r2

D

(
qm+1
i +

umi
∆t

)
(9)

Используя начальное и граничные условия, получаем u0i = um0 = umimax = 0. Это

уравнение решается далее с помощью стандартного алгоритма прогонки: вво-

дятся на данном временном слое коэффициенты ρi, λi, связывающие линейно

значения функции в соседних узлах по r:

ui = ρiui+1 + λi (10)

Подстановкой в уравнение (9) и из граничного условия легко установить рекур-

сивные формулы:

ρi =

(
2 +

∆r2

D

(
fi +

1

∆t

)
− ρi−1

)−1

, ρ0 = 0

λi =

(
∆r2

D

(
qm+1
i +

umi
∆t

)
+ λi−1

)(
2 +

∆r2

D

(
fi +

1

∆t

)
− ρi−1

)−1

, λ0 = 0

(11)

При компьютерных вычислениях на данном временном слое сначала последо-

вательно определяется весь набор ρi, λi от начального до конечного по i значе-

ния, а затем на обратном ходу определяются значения сеточной функции (ис-

ходя из umimax = 0).

Итоговая концентрация первичных КЛ (nCR(r) =
∫
dE j(E, r)) в единицах

локальной концентрации, полученная численно для сеткиNE×Nr×Nt = 256×

1024 × 256 и внешних границ rmax = 1000 kpc, Emax = 1010 GeV приведена на

рисунке 2.

II.2 Недиффузионный профиль первичных космических лучей

Обсудим теперь построение недиффузионного профиля первичных КЛ.

В работе [24] приведены измеренные космическим телескопом Fermi значе-

ния интенсивности (в единицах ph s−1 cm−2 sr−1), для пяти видимых регионов
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Рис. 2: Профиль плотности первиных КЛ в рамках модели диффузии.

M31: центральной области (в пределах ∼ 5 kpc), а также северной и южной

половины (в Галактических угловых координатах) промежуточного (до ∼ 100

kpc) и внешнего (от ∼ 100 до ∼ 200 kpc) гало. В дальнейшем нас будут интере-

совать только два южных региона гало, поскольку центральная область загряз-

нена вкладом от диска и ядра M31, а северная часть гало перекрывается для

телескопа полосой МП на переднем плане и потому также наверняка зашумле-

на (об этом свидетельствует также большое различие в спектрах той и другой

половин гало, см. текст оригинальной работы). Мы в связи с этим далее полага-

ем, что истинные значения интенсивности промежуточной и внешней области

гало равны удвоенным значениям интенсивности их южных половин.

В контексте нашей модели интенсивность от соответствующих участков

пропорциональны интегралу r−a, взятому по области гало M31, ограниченной

соответствующими угловыми координатами (см. рисунок 3). Обозначая за ξ ко-

ординату вдоль луча зрения (в единицах внешней границы гало, за которую мы
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в дальнейшем условимся принимать вириальный радиус Rvir, который далее

условимся оценочно считать одинаковым для МП и M31 в рамках точности на-

шего приближения и равным 223 kpc— по оценке для МП, см. [27]), а за η—

координату перпендикулярно лучу зрения в тех же единицах, получим:

I(ηin, ηout|a) = 2I0 ×
1

η2out − η2in

ηout∫
ηin

dη η2

√
1−η2∫
0

dξ
(
ξ2 + η2

)−a/2
=

= 2I0 ×
1

η2out − η2in

ηout∫
ηin

dη η2−a
√

1− η2 2F1

(
1

2
,
a

2
,
3

2
, 1− 1

η2

)
,

(12)

где 2F1 —гипергеометрическая функция. Используя последнюю форму одно-

мерного интеграла по отрезку, значения I(ηin, ηout|a) легко отыскать численно.

С целью получить параметр a из наблюдений мы далее рассматриваем отно-

шение двух интенсивностей: I(ηSHin , ηSHout|a) ÷ I(ηFOHin ≡ ηSHout, η
FOH
out |a), где индекс

SH (Spherical Halo) отвечает промежуточной области гало, а FOH (Far Outer

Halo)— внешней. Вычислив соответствующие координаты по видимым угло-

вым размерам и зная экспериментальное значение отношения интенсивностей

1.4 ± 1.0, мы можем определить параметр a наклона профиля источника (см.

рисунок 4).

В дальнейшей работе используется два значения этого параметра: первое

дает в точности наблюдаемое отношение интенсивностей 1.4, а второе пред-

ставляет наибольшее значение a, которое оставляет это отношение в преде-

лах ошибки измерений (соответствующее наименьшее значение не рассмат-

ривается, так как в таком случае a < 0, что нефизично). Учитывая nCR(r) =

const×(nCGM(r) r
a)−1, мы получаем два профиля концентрации первичных КЛ,

которые для удобства нормируем на концентрацию в точке r⊙ (см. рисунок 5).

Важно отметить, что в данном методе приходится делать искуственное об-

резание профилей на нижнем радиусе r ≃ 5 kpc в силу отсутствия наблюда-

тельных данных по чистому вкладу гало M31 в этой области (измерена только

полная интенсивность, включающая вклад диска).
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Рис. 3: Схематический чертеж к вычислению интеграла из уравнения (12).
Черной пунктирной линией ограничено гало, оттенками серого схематически показан

профиль плотности источника в нем. Серыми штриховыми линиями показаны поверхности,

ограничивающие область интегрирования, красным— безразмерные координаты,

отражающие расстояние в единицах радиуса гало (для наглядности начало координат

смещено относительно центра, в уравнении оно совпадает с центром гало).

II.3 Потоки вторичных частиц

Потоки вторичных частиц в рамках обсужденных в предыдущей главе прибли-

жений вычисляются при помощи открытого кода [12]. Программа принимает на

вход значения сеточной функции j(E, r) и распределение газа nCGM(r), после

чего численно решает уравнение переноса вдоль заданного набора направле-

ний, используя источник ∝ j(E, r)nCGM(r)/nCGM(r⊙), что делает корректным

апостериорную нормировку решений на локальные наблюдения.

Поскольку гало в нашей модели сферически симметрично, достаточно с

учетом смещения Солнца относительно центра вычислить поток только из чет-
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Рис. 4: Сравнение прогноза модели nCGM(r)nCR(r) ∝ r−a с наблюдениями.
Прогноз модели— сплошная линия, наблюдения—штриховая линия, закрашенная область

соответствует стандартной ошибке измерений.

верти полного телесного угла: в диапазоне Галактических долгот 0° < l < 180°

и широт 0° < b < 90°.

II.4 Результаты

Для нормировки полученного результата мы выделяем направление минималь-

ной плотности потока гамма-излучения, принимаем его за изотропный фон и

требуем, чтобы при всех рассматриваемых энергиях модельный фон не пре-

восходил измерения изотропного потока гамма-фона телескопа Fermi [28]. Для

проверки самосогласованности мы также привлекаем ряд наблюдений пото-

ков вторичных КЛ [29–33]. Кроме того, мы оцениваем погрешность рассчи-

танного потока, связанную с неопределенностью профиля плотности газа, как

[rel. err.] =
∫
drδnCGM(r)nCR(r)÷

∫
drnCGM(r)nCR(r).
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Рис. 5: Профили концентрации КЛ в относительных единицах.
Сплошной линией показан оптимально описывающий наблюдения M31 профиль, a = 1.5,

штриховой линией— профиль, согласующийся с этими наблюдениями при наибольшем

наклоне на больших радиусах, a = 2.3. Для сравнения пунктирной линией показан также

профиль в рамках модели с диффузией.

Результаты изображены на рисунках 6–9, в частности, на рисунке 6 показа-

на зависимость плотности потока гамма-лучей от направления в Галактических

координатах в рамках модели с диффузионным распространением первичных

КЛ (в рамках второй модели подобный график лишен смысла из-за внутрен-

него обрезания профиля плотности первичных КЛ, что значительно влияет на

угловое распределение). На рисунках 7–9 изображены спектры вторчиных КЛ

в моделях с диффузией первичных КЛ и для двух вышеупомянутых спекуля-

тивных бездиффузионных профилей первичных КЛ. Результаты на каждом из

графиков сравниваются с наблюдениями (подробнее см. следующую главу).
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Рис. 6: Распределение интенсивности гамма-излучения по направлениям в мо-

дели с диффузей первичных КЛ.

III. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В настоящей главе обсуждаются и сопоставляются результаты, полученные на-

ми ранее.

III.1 Потоки вторичных космических лучей

В модели с диффузией (см. рисунок 6) отношение максимальной интенсивно-

сти с направления к минимальной составляет ≃ 1.7, что покрывается погреш-

ностью результата, вызванной неопределенностью профиля плотности газа (от-

ношение верхнего предела к нижнему≃ 1.8). Важно отметить, что эта погреш-

ность, вообще говоря, недооценена, поскольку мы в рамках работы не учитыва-

ем погрешность, унаследованную от параметров спектра первичных КЛ. Таким

образом, в рамках точности нашей модели с диффузией первичных КЛ угловое
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Рис. 7: Спектры вторичных КЛ в модели с диффузией.
Зеленый цвет— γ, серый— ν, красный— p. Сплошными линиями показан наш прогноз и

стандартная ошибка. Снизу пунктиром— верхний предел потока нейтрино на уровне 3σ.
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Рис. 8: Спектры вторичных КЛ в модели без диффузии, a = 1.5.
Зеленый цвет— γ, серый— ν, красный— p. Сплошными линиями показан наш прогноз и

стандартная ошибка. Снизу пунктиром— верхний предел потока нейтрино на уровне 3σ.
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Рис. 9: Спектры вторичных КЛ в модели без диффузии, a = 2.3.
Зеленый цвет— γ, серый— ν, красный— p. Сплошными линиями показан наш прогноз и

стандартная ошибка. Снизу пунктиром— верхний предел потока нейтрино на уровне 3σ.
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распределение потока гамма-квантов неотличимо от изотропного, хотя и имеет

небольшой разброс с максимумом в направлении на центр Галактики.

Как видно из рисунков 7–9, нормировка на изотропный поток гамма-фона

телескопа Fermi [28] во всех случаях превращается в нормировку на наиболее

высокоэнергетичную точку сE = 820 GeV. При меньших энергиях поток от га-

ло рамках нашей модели (вне зависимости от выбора механизма распростране-

ния первичных КЛ) составляет лишь ∼ (1...10)% наблюдаемого. Отметим, что

такая нормировка потока гамма-лучей не конфликтует с ограничениями [32].

Во всех случаях (как с диффузией, так и без нее) модель прогнозирует поток

нейтрино существенно меньше наблюдаемого, однако в модели со спекулятив-

ным бездиффузионным профилем первичных КЛ прогнозируется больший по-

ток (в ≃ 4 раза), который при отдельных энергиях даже превышает best-fitting

измерения 6-нейтринного потока [31] в модели с сегментированием данных по

энергетическим бинам, однако лежит ниже best-fitting кривой, построенной по

измерениям в отрезке энергий, на которых приходится 90 процентов событий

(без качественной разницы между результатом с более и менее пологим без-

диффузионным профилем первичных КЛ).

Полный вклад гало по отношению к данным [31] представлен в таблице 1.

Для наглядности на рисунках 7–9 показаны также кривые (со стандартны-

ми ошибками), описывающие поток мюонных нейтрино и антинейтрино по

степенному закону (умноженные на фактор 3 для корректности сравнения с 6-

нейтринным потоком) из работы [33].

Отметим, что для модели без диффузии, дающей сравнительно большие по-

токи нейтрино, повысить best-fitting прогноз до полного объяснения наблюда-

емого потока не удается даже при отказе от нормировки на поток Fermi, по-

скольку это привело бы к противоречию с другими наблюдениями: в частности,

измерениями потока протонов при E ∼ 10(7...8) GeV [29, 30] и ограничениями

гамма-фона [32].

Важно также подчеркнуть, что процент объясняемого вкладом гало потока
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профиль первичных КЛ дифф. бездифф., a = 1.5 бездифф., a = 2.3

Φ6ν observed, segmented[42.0 TeV, 7.7 TeV] = 7.73 (3.45...14.2) ×10−13 cm−2 sr−1 s−1

Φ6ν , 10−13 cm−2 sr−1 s−1
0.39 1.59 1.64

(0.27...0.49) (1.02...2.06) (1.05...2.12)

best-fitting, % набл. 5.0 20.5 21.2

3σ-предел, % набл. <9.0 <38.7 <40.0

Φ6ν observed, single[69.4 TeV, 1.9 TeV] = 6.73 (4.90...8.29) ×10−13 cm−2 sr−1 s−1

Φ6ν , 10−13 cm−2 sr−1 s−1
0.18 0.77 0.80

(0.12...0.23) (0.50...1.00) (0.51...1.03)

best-fitting, % набл. 2.7 11.5 11.8

3σ-предел, % набл. <4.7 <21.7 <22.4

Таблица 1: Доля нейтрино из гало МП относительно полного 6-нейтринного

потока [31]. В круглых скобках 68% интервал, в квадратных— указан диапазон

энергий. Сверху сравнение с наблюдениями, отсегментированными по 7 энер-

гетическим бинам, снизу— с кривой, построенной по всему отрезку энергий.

значительно зависит от договоренности о том, что называть полным наблюда-

емым потоком. Если обрабатывать наблюдения раздельно по семи энергетиче-

ским бинам и определять полный поток как сумму потоков всех бинов в диа-

пазоне E ∈ [42.0 TeV, 7.7 TeV], то в результате верхний предел смоделирован-

ного здесь вклада гало может покрыть до 61 процента нижнего предела таких

измерений в модели без диффузии и до 14 процентов— с диффузией. По оп-

тимальным предсказаниям модели и наблюдательным оценкам же получается

объяснить около 20 процентов потока в модели без диффузии, и около 5 процен-

тов— с диффузией. Еслиже использовать степенную параметризацию спектра,

построенную по всей совокупности наблюдений, и считать полный поток как

интеграл от такой функции по отрезкуE ∈ [69.4 TeV, 1.9 TeV] (на который при-

ходится 90 процентов зарегистрированных событий из [31]), то без диффузии

best-fitting результат составляет около 12 процентов, а с диффузией— около 3
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процентов; верхний предел смоделированного здесь вклада гало в модели без

диффузии (с диффузией) может покрыть лишь до 21 процента (до 5 процентов)

нижнего предела таких измерений.

На рисунке 10 результаты нейтринного потока из настоящей работы сравни-

ваются с результатами предыдущими прогнозами диффузионного и недиффу-

зионного нейтринного потока, а также наблюдениями [31] (отдельно по энер-

гетическим бинам).

Рис. 10: Сравнение результатов настоящей работы с результатами [9, 10] и на-

блюдениями [31].

III.2 Энергетические оценки

В контексте поиска механизма происхождения первичных КЛ и теста само-

согласованности модели необходимо также оценить энергию КЛ. Для этого

мы вычисляем по известному отнормированному спектру протонов локальную

плотность энергии высокоэнергетичных КЛ wCR(r⊙), из которой, зная форму
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распределения по радиусу, можем восстановить профиль плотности энергии

wCR(r) =
∫
dE j(E, r)E протонов КЛ в гало.

Зная этот профиль, можно оценить полную энергиюКЛ в объеме галоEtot =∫
dr 4πr2wCR(r). Последняя величина позволяет дать грубое ограничение на

мощность источника первичныхКЛPsrc > Etot/T , где T —характерный период

активности источника.

Как видно из таблицы 2, диффузионная модель и бездиффузионная модель

с резким профилем первичных КЛ дают примерно одинаковые энергии КЛ в га-

ло, тогда как бездиффузионная модель с a = 1.5 приводит к значению на поря-

док выше. Более того, результат чувствителен к постановке внешней границы

Rvir (который, вообще говоря, определен с разбросом в десятки kpc, см. [27]):

∆Etot/Etot ≃ 1% × (∆Rvir/1 kpc), что является недостатком на фоне сравни-

тельно большого значения энергии.

профиль первичных КЛ дифф. бездифф., a = 1.5 бездифф., a = 2.3

wCR(r⊙), 10
−4 eV cm−3 1.9 0.50 0.61

Etot, 10
56 erg 0.29 2.4 0.31

Psrc, 10
42 erg s−1 × (T/Myr) >0.93 >7.5 >0.98

Таблица 2: Локальная плотность энергии КЛ, полная энергия КЛ в объеме гало

и нижняя оценка мощности источника для трех моделей

Следует отметить, что полученные оценки не противоречат соображениям

из [10] о том, что энергетически КЛ в гало подпитываются за счет активно-

сти центра Галактики, след которой—Пузыри Ферми. Симуляции [34–36] да-

ют энерговыделение в ходе эволюции Пузырей в диапазоне EFB ∼ 10(55...58) erg

и мощность, конвертируемую в КЛ, в диапазоне PCR ∼ 10(42...44) erg s−1, что при

T > 0.1Myr допускается нашими оценками.

Заметим также, что при почти равной полной энергии, локальная плотность

энергии КЛ для бездиффузионного распространения оказывается практически

втрое меньше, чем для диффузионного сценария. Это отвечает соображениям
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из [34] и мотивирует нас исследовать подробнее пространственное распреде-

ление источника.

III.3 Пространственное распределение источника

На рисунках 11–13 приведены профили концентрации КЛ и источника для всех

трех моделей.

Рис. 11: Профиль концентрации КЛ и источника в модели с диффузией
Штриховой линией показана концетрация первичных КЛ, сплошной – она же с весом

nCGM(r)/nCGM(r⊙), который использовался при расчетах

Как видно, профили отличаются на качественном уровне: во-первых, без-

диффузионные профили источника более пологие по сравнению с диффузион-

ным, во-вторых, бездиффузионные профили концетрации КЛ имеют максимум

при r = 30 kpc, тогда как диффузионный профиль— плато при r < 15 kpc.

Несмотря на то, что последние два свойства суть следствия построения про-

филей (при получении бездиффузионного профиля мы делим степенную зави-
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Рис. 12: Профиль концентрацииКЛи источника в модели без диффузии, a = 1.5

Штриховой линией показана концетрация первичных КЛ, сплошной – она же с весом

nCGM(r)/nCGM(r⊙), который использовался при расчетах

симость на профиль газа, имеющий излом при r = 30 kpc, а при получении

диффузионного— закладываем равномерное распределение мощности в шаре

r < 15 kpc), на качественном уровне они все равно отражают характер распре-

делений КЛ, вытекающий из гипотез о (без)диффузионном распространении.

В модели с диффузией мы закладываем идею о том, что КЛ приходиться

диффузионно добираться до гало из центральной области Галактики, что авто-

матически порождает максимум распределения концентрации КЛ (и тем более

максимум плотности источника, за счет спада концентрации ОГ) в центре МП.

В модели без диффузии в рамках данной работы механизм распространения КЛ

не оговаривается, однако вместе с тем мы при построении профиля КЛ исполь-

зуем идею о том, что локальная концентрация КЛменьше, чем их концентрация

вне диска МП (чтобы не противоречить наблюдениям M31)— это позволяет
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Рис. 13: Профиль концентрацииКЛи источника в модели без диффузии, a = 2.3

Штриховой линией показана концетрация первичных КЛ, сплошной – она же с весом

nCGM(r)/nCGM(r⊙), который использовался при расчетах

«нарастить» прогноз локальных потоков вторичных КЛ относительно диффу-

зионной модели, не вступая в противоречие с местными наблюдениями.

Спекулятивно можно также отметить, что полученная здесь бездиффузион-

ная форма профиля концентрации КЛ могла бы возникнуть за счет механизма

доставки КЛ в гало через формирующиеся вблизи центра Галактики пузыри-

контейнеры для КЛ, обсуждаемого в [10]. Сравнительно небольшие значения

плотности в диске могут быть вызваны удерживанием КЛ в таких пузырях, ко-

торые затем «всплывают» в сторону уменьшения плотности среды и активно

высвобождают КЛ уже вне диска вблизи r ∼ 30 kpc, в результате чего устанав-

ливается такая форма профиля концентрации. Тем не менее, важно помнить,

что такие пузыри преимущественно наблюдаются в скоплениях галактик и еще

не обнаружены в МП.
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III.4 Оценка вклада других галактик

Оценим вклад других галактик из следующих соображений. Полная мощность

излучения одной галактики дается выражением:

Igal = const×
Rvir, gal∫
0

dr nCGMnCR4πr
2 (13)

Эта величина зависит от величины вириального радиуса галактики и плотно-

стей газа и КЛ в гало галактики.

Оценочно будем далее считать эту мощность связанной со звездной массой

галактики соотношением Igal/IMW =
(
M ⋆

gal/M
⋆
MW

)γ

, γ ∼ (1...2). Для космоло-

гически далекой галактики с красным смещением z измеряемый наблюдателем

поток:

Fgal =
Igal

4πd2L,gal
, где dL = (1+z)d = (1+z)c

z∫
0

dz′

H(z′)
— расстояние светимости

(14)

При этом потокМП оценивается как FMW = const×
Rvir, MW∫
r⊙

dr nCGMnCR (интегри-

руем в направлении антицентра, чтобы выделить изотропную часть), откуда:

ξ = FEG/FMW =

(∫
FgaldNgal

)
F−1
MW =

=

∫
dV

ngal(z)

4πd2(z)(1 + z)2
(
M ⋆

gal(z)/M
⋆
MW

)γ ×
Rvir, MW∫

0

dr nCGMnCR4πr
2

Rvir, MW∫
r⊙

dr nCGMnCR

=

=
c

H0

∫
dz

n1−γ
gal (z)(1 + z)−2√
ΩΛ + ΩM(1 + z)3

(
ρ⋆gal(z)/M

⋆
MW

)γ ×
Rvir, MW∫

0

dr nCGMnCR4πr
2

Rvir, MW∫
r⊙

dr nCGMnCR

(15)

Здесь ngal, ρ⋆gal—плотность числа и звездной массы галактик в сопутствующем

объеме, H0 —современное значение постоянной Хаббла, ΩM,Λ —косомологи-

ческие параметры плотности материи и темной энергии. Плотность звездной
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массы найдем как:

ρ⋆gal =

∫
ΦM ∗d logM ⋆, где Φ =

dN

dV d logM ⋆
(16)

ФункциюΦ возьмем из работы [37], функцию ngal—из [38]. Результаты вычис-

лений в зависимости от параметра γ представлены на рисунке 14.

Рис. 14: Доля внегалактического потока относительно Галактического в зави-

симости от модельного параметра γ.

На качественном уровне нет существенной разницы во внегалактическом

потоке между диффузионной и недиффузионной моделью, хотя недиффузион-

ный вклад оказывается несколько выше. При этом при реалистичных значениях

параметра γ мы имеем долю внегалактического потока относительно галакти-

ческого не более 10 процентов— это находится в пределах ошибки, с которой

производятся все наши вычисления Галактического потока с учетом неопреде-

ленности в распределении плотности ОГ МП.
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IV. ВЫВОДЫ

Подытожим основные результаты данной работы.

В рамках модели диффузионного распространения первичных КЛ заведомо

не удается объяснить наблюдаемый поток астрофизических нейтрино IceCube

более, чем на ≃ (5...9)%, даже при локализации источника в пределах r < 15

kpc (что включает Пузыри Ферми).

В рамках модели недиффузионного распространения первичных КЛ (по-

строенной по наблюдениям M31) из-за одновременной слабой точности изме-

рений и прогноза модели имеется не вполне однозначный результат: по best-

fitting значениям модель может объяснить ≃ (12...21)% наблюдаемого потока

(в зависимости от выбора техники обработки наблюдений и сопутствующего

диапазона энергий), однако в пределах ошибок нашей модели и наблюдений

мы имеем разброс в ≃ (6...61)% наблюдаемого потока, что не позволяет окон-

чательно закрыть вопрос о недиффузионном профиле КЛ. В рамках получен-

ного результата нельзя исключить, что вклад гало может быть доминирующим,

однако гипотеза о полном объяснении наблюдаемого потока нейтрино вкладом

гало неправдоподобна как по результатам прямых вычислений, так и в силу

сторонних наблюдательных ограничений. При этом недиффузионная модель

не противоречит энергетическим ограничениям, связанным с активностью Га-

лактического центра.

Таким образом, принимая во внимание вышесказанное (недостаточную точ-

ность вычислений и измерений, зависимость от выбора способа сравнения по-

токов), следует считать утверждение из [10] об объяснении потока астрофизи-

ческих нейтрино вкладом гало МП по меньшей мере дискуссионным вопросом

и продолжать искать другие источники наблюдаемого нейтринного потока, до-

полняющие вклад гало.
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V. ЗАКЛЮЧЕНИЕ

Итак, в настоящей работе было проведены вычисления потоков гамма-квантов

и нейтрино высоких энергий, рождающихся во взаимодействиях КЛ высоких

энергий с ОГ МП.

При вычислениях использовался обновленный профиль плотности ОГ [11],

что позволило уточнить результаты и оценить их погрешность. Вычисления

производились для двух сценариев: (1) диффузионного распространения пер-

вичных КЛ из центральной области Галактики в гало— здесь, с целью полу-

чить профиль и спектр первичных КЛ, было решено уравнение диффузии для

сферически симметричного плавно эволюционирующего протяженного источ-

ника в центреМП; (2) недиффузионного механизма попадания КЛ в гало: здесь,

без обсуждения конкретного сценария, профиль был получен на основе на-

блюдений соседней галактики М31 [24] (по отношению интенсивности гамма-

излучения во внешней и внутренней области гало этой галактики).

Далее с помощью известного распределения первичных КЛ с помощью ко-

да [12] были рассчитаны потоки вторичных КЛ. Нормировка производилась по

наблюдениям изотропного потока гамма-фона телескопа Fermi [28] так, чтобы

не прогноз модели не превышал этот фон при всех энергиях.

Результаты сравнивались с рядом наблюдательных данных [29–33], а также

с недавними работами аналогичной тематики [9, 10], в которых анализируется

диффузионная и недифузионная модель соответственно.

Представленные в работе модели прогнозируют поток астроифизических

нейтрино (в диапазоне энергий, наблюдаемом на IceCube), превосходящий ре-

зультат из [9], однако меньший, чем в [10]. Недиффузионная модель при этом

прогнозирует вчетверо больший поток (относительно диффузионной модели)

при практически равной полной энергии КЛ (а значит и равных требованиях к

мощности источника).

В пределах ошибок (наблюдательных и модельных вместе взятых) неди-
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фузионная модель может объяснять ≃ (6...61)% наблюдаемого потока, что не

исключает идею [10] об объяснении большей части наблюдений вкладом га-

ло (при этом best-fitting значения плохо согласуются с этой идеей, составляя

≃ (12...21)%). С учетом больших неопределенностей недифузионной модели и

наблюдений, следует относиться к этому результату с осторожностью. В част-

ности, следует помнить о спекулятивности самого построения недифузионно-

го профиля концетрации первичных КЛ и связанной с этим дополнительной

неоцененной систематической ошибке, а также не забывать о зависимости ре-

зультата от выбора техники обработки наблюдательных данных.

Для диффузионной модели аналогичный интервал с учетом всех ошибок со-

ставляет ≃ (1...14)% наблюдаемого потока нейтрино, то есть с высокой долей

уверенности вклад гало для диффузионной модели не может быть доминирую-

щим. При этом best-fitting значения составляют ≃ (3...5)% полного потока.

Вклад гало других галактик в поток нейтрино по оценкам настоящей работы

не превышает ∼ 10% вклада гало МП для всех рассмотренных моделей, что

заведомо меньше точности вычислений потока от гало МП.

Таким образом, вопрос о происхождении потока астрофизических нейтри-

но IceCube, ровно как и вопрос о сценарии проникновении КЛ в гало МП, оста-

ется дискуссионным и требующим дальнейшего исследования— в частности,

накопления наблюдений и повышения точности, а также разработки количе-

ственных способов определить профиль концентрации КЛ в гало, не прибегая

к модели диффузии.
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