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Введение.
В работе рассматривается взаимодействие налетающего волнового пакета

с солитоном. Целью этой работы является разработка аналитического метода
описания данного процесса. Численное моделирование рассеяния волнового
пакета на солитоне предсказывает рост массы последнего. С помощью раз-
работанного аналитического метода мы намерены вычислить число частиц,
оставшихся в солитоне после рассеяния волнового пакета, и сравнить ответ
с результатами численного моделирования для разных значений импульса и
амплитуды налетающего волнового пакета.

Расчеты проводятся в предположении, что амплитуда налетающего паке-
та много меньше амплитуды солитона, а также пакет мало меняется в ре-
зультате рассеяния. В этом случае применимо Борновское приближение [1],
в котором решение представляется в виде ряда по амплитуде налетающего
пакета. После взаимодействия волнового пакета часть частиц из него оказы-
вается захваченной солитоном. При этом рождаются прошедший и отражен-
ный волновые пакеты, частота которых равняется разности удвоенной часто-
ты налетающего волнового пакета и солитона. Используя законы сохранения,
можно показать, что число частиц в них равно числу частиц, захваченных
солитоном. Это позволяет вычислить число частиц, захваченных солитоном,
косвенно, что значительно упрощает вычисления.

Исследование таких зависимостей полезно при изучении бозе-конденсата,
темной материи и в других случаях, где исследуемые объекты являются со-
литонными решениями, например, в оптике [2]. Данная задача актуальна для
описания захвата солитоном частиц из ансамбля, что применимо в различных
областях физики. Однако, обычно изучаются взаимодействия между солито-
нами [5], а не рассеяние отдельной волны на солитонном решении. Также, в
некоторых работах обсуждается рост солитонов в ансамбле частиц, но не ясен
процесс, ответственный за их рост [4]. Актуальность задачи подчеркивается
тем, что ранее взаимодейстие волнового пакета и солитонного решения не ис-
следовалось. В работе используется естественная система единиц h̄ = c = 1.
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Борновское приближение в задаче одномерного
рассеяния на солитоне.

Рассмотрим нелинейное уравнение Шредингера:

i∂ψ

∂t
= −∆ψ

2
+ U(ψ∗ψ)ψ (1)

Пусть ecть солитонное решение, которое удовлетворяет уравнению (1):

ψs = f(x)e−iγt,

где γ < 0- частота солитона.
Мы хотим изучить взаимодействие солитона и широкого волнового паке-

та. Поэтому представим искомую волновую функцию в виде: ψ = ψs + ψω,
где в начальный момент времени

ψω = ψ0
ω = Ae−iωt+ikx. (2)

ЗдесьA медленно зависит от t и x. Во всех выражениях ниже будем ее считать
постоянной.

i∂ψω
∂t

+
i∂ψs
∂t

= −∆ψω
2
−∆ψs

2
+U(|ψω+ψs|2)(ψω+ψs)+U(|ψs|2)ψs−U(|ψs|2)ψs,

(3)
Далее учтем, что ψs удовлетворяет уравнению (1), поэтому:

i∂ψω
∂t

= −∆ψω
2

+ U(|ψω + ψs|2)[ψω + ψs]− U(|ψs|2)ψs, (4)

Будем считать длину волны много меньше размера солитона λω � Rs. В
таком случае может быть применимо приближение Борна, согласно которому,
потенциал может рассматриваться как возмущение [1]. Тогда ψω может быть
предсталена в виде

ψω = ψ0
ω + δψ, (5)

где ψ0
ω дается выражением (2) и удовлетворяет свободному уравнению Шре-

дингера. В этом случае изменения налетающей волны и солитона после вза-
имодействия друг с другом будут содержаться в δψ. Подставив (5) в (4) по-
лучим:

i∂(δψ)

∂t
= −∆δψ

2
+ U(|ψ0

ω + δψ + ψs|2)[ψ0
ω + δψ + ψs]− U(|ψs|2)ψs (6)
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Пренебрегая δψ в правой части уравнения (6), получим

i∂(δψ)

∂t
= −∆δψ

2
+ U(|ψ0

ω + ψs|2)[ψ0
ω + ψs]− U(|ψs|2)ψs (7)

Рассмотрим случай, когда A� f . Тогда правую часть уравнения (7) можно
разложить в ряд по ψ0

ω:

i∂(δψ)

∂t
= −∆δψ

2
+U(|ψ|2)ψ0

ω+
∂U

∂|ψ|2 |ψs+ψ
0
ω|2(ψs+ψ0

ω)+
∂2U

2∂|ψ|4 |ψs+ψ
0
ω|4(ψs+ψ0

ω)

(8)
Оставляем только линейные и квадратичные по А члены, получим

i∂(δψ)

∂t
= −∆δψ

2
+ U(|ψ|2)ψ0

ω +
∂U

∂|ψ|2 [ψsψ
∗0
ω + ψ∗sψ

0
ω]ψs+

+
∂U

∂|ψ|2 |ψ
0
ω|2ψs +

∂U

∂|ψ|2 (ψsψ
0∗
ω + (9)

ψ∗sψ
0
ω)ψ0

ω +
∂2U

2∂|ψ|4 (ψsψ
∗0
ω + ψ∗sψ

0
ω)2ψs +O(A3)

Получаем на δψ уравнение с источником, каждое слагаемое в котором
можно рассматривать отдельно. Заметим, что слагаемые порядка A опреде-
ляют поправки, зависящие от времени как e±iωt. Они описывают изменения
налетающего волнового пакета, а также определяют отраженный волновой
пакет. Слагаемые порядка A также определяют интерференционный член,
зависящий от времени как ei(ω−2γ)t. Члены порядка A2 описывают волновые
пакеты с частотой ±(2ω − γ), порождаемые в результате взаимодействия с
солитоном. Также член этого порядка описывает изменения солитона в ре-
зультате взаимодействия.

i∂(δψ)

∂t
= −∆

2
δψ + Uψ0

ω +
∂U

∂|ψ|2 (|ψ0
ω|2ψs + ψ2

sψ
0∗
ω +

+2|ψ0
ω|2ψs + ψ∗s(ψ

0
ω)2) +

∂2U

∂|ψ|4
(

(ψ∗sψ
0
ω)2 + 2|ψs|2|ψω|2 + (ψsψ

0∗
ω )2
)
ψs (10)

Найдем функцию Грина свободного уравнения Шредингера

(i
∂

∂t
+

∆

2
)G = δ(t)δ(x)

G(t, x) =
1

(2π)2

∫
dpdωe−iωt+ipxGω,p
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(ω − p2

2
)Gω,p = 1⇒ Gω,p =

1

ω − p2

2

Рассмотрим t < 0
G(t, x) =

∫
dωeiω|t| - замыкаем контур сверху. Чтобы G = 0 для t < 0 – об-

ходим полюс сверху. В нашем случае используется запаздывающая функция
Грина

G =
1

(2π)2

∫
e−iωt+ipx

ω − p2

2

dωdp (11)

Где дельта-функия определена так:

δ(t) =
1

2π

∞∫
−∞

eiωt dω

Определим преобразование Фурье следующим образом:

f̂(ω) =

∫
f(x)e−ixωdx

f(x) =
1

2π

∫
f̂(ω)eixωdω (12)

Запишем решение через функцию Грина:

δψ =

∫
G(t− t′, x− x′)(U1ψ

0
ω + U2(|ψs|2ψ0

ω + ψ2
sψ

0∗
ω + 2ψs|ψ0

ω|2+

+ψ∗s(ψ
0
ω)2) + U3((ψ

∗
sψ

0
ω)2 + 2|ψs|2|ψω|2 + (ψsψ

0∗
ω )2)ψs))dt

′dx′ (13)

Подставим функию Грина и ψ0
ω = Ae−iωt+ikx, ψs = fe−iγt. Рассмотрим каж-

дый из членов, соответствующих разным частотам, по отдельности. Далее
вместо δψ будем писать ψ. Начнем с члена, зависящего от времени как eiωt:

ψ(ω) =
A

(2π)2

∫
e−iΩ(t−t′)+ip(x−x′)

Ω− p2

2

((U(|ψs|2) +
∂U

∂|ψ|2f
2)eiωt+ikx

′
dt′dx′dΩdp (14)

Обозначим
V1 = U(|ψs|2) +

∂U

∂|ψ|2f
2 (15)

Делаем замену, показанную выше, и интегрируем по t′. В результате в
каждом слагаемом выражения (13) получаем дельта-функию

ψ(ω) =
A

2π

∫
δ(Ω− ω)

Ω− p2

2

V1e
−iΩteip(x−x

′)eikx
′
dpdx′dΩ (16)
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Интегрируя по Ω с учетом дельта-функции, получаем

ψ(ω) =
Ae−iωt

2π

∫
V1(x

′)

ω − p2

2

eix
′(k−p)eipxdx′dp (17)

Сделаем замену в виде преобразования Фурье (12) для каждого из слага-
емых

ψ(ω) = Ae−iωt
∫
V̂1(k − p)
ω − p2

2

eipxdp (18)

Для того чтобы получить следующее выражение, проинтегрируем урав-
нение (18), используя теорему Коши. Подробный расчет приеведен в Прило-
жении А. В результате получим:

ψ(ω) =
2πiA

k
(e−ikxV̂1(2k)− eikxV̂1(0))e−iωt (19)

Первое слагаемое в (19) представляет собой отраженный волновой пакет, в то
время как второе слагаемое определяет поправки к налетающему волновому
пакету. из этого выражения видно, что эта поправка не мала, а пропорцио-
нальна V̂1(0)

k .
Мы делали замену типа Фурье, теперь сделаем обратную замену, помня

про условия, возникающие из-за мнимых полюсов, при интегрировании с по-
мощью теоремы Коши. В итоге для члена, пропорционального eiωt, получим:

ψ(ω) =
iA

k
(e−ikx

∫
V1(x

′)e2ikx′dx′ − eikxV1(x
′)ei0x

′
)e−iωt (20)

Рассмотрим источник, зависящий от времени как eiωt−2iγt. Будем действо-
вать также как и с членом, пропориональным eiωt

ψ(ω−2γ) =
A

(2π)2

∫
e−iΩ(t−t′)+ip(x−x′)

Ω− p2

2

∂U

∂|ψ|2f
2e−2iγt′+iωt′−ikx′dt′dx′dΩdp (21)

Обозначим
V2 =

∂U

∂|ψ|2f
2

Тогда

ψ(ω−2γ) =
A

2π

∫
δ(Ω− 2γ + ω)

Ω− p2

2

V2e
−iΩteip(x−x

′)e−ikx
′
dpdx′dΩ =

=
e−i(2γ−ω)

2π

∫
V2(x

′)

2γ − ω − p2

2

eix
′(−p−k)eipxdx′dp =

7



Сделаем замену y = x− x′, dy = −dx′, тогда

ψ(ω−2γ) =
e−i(2γ−ω)

2π

∫ −V2(x− y)

2γ − ω − p2

2

eipye−ik(x−y)dydp =

Теперь посчитаем интеграл с помощью теоремы Коши (подробный расчет
приведен в Приложении А), получим

ψ(ω−2γ) =
2πe−i(2γ−ω)√
k2 − 4γ

∫ (
−V2(x− y)e−y

√
k2−4γe−ik(x−y)

∣∣∣∣
y>0

dy−

−
∫
V2(x− y)ey

√
k2−4γe−ik(x−y)

∣∣∣∣
y<0

)
dy =

Сделаем обратную замену x′ = x − y, dx′ = −dy и вынесем зависимые от x
множители за знак интерала

=
e−i(2γ−ω)t√
k2 − 4γ

(
e−x
√
k2−4γ

∫ −∞
x

−V2(x
′)ex

′
√
k2−4γ−ikx′dx′+ (22)

+ex
√
k2−4γ

∫ x

+∞
−V2(x

′)e−x
′
√
k2−4γ−ikx′dx′

)
Выражения, пропорциональные e−i2ωt+iγt

ψ(−2ω+γ) =
A2

(2π)2

∫
e−iΩ(t−t′)+ip(x−x′)

Ω− p2

2

(
∂U

∂|ψ|2f+
∂2U

2∂|ψs|4
f 3)e−2iωt′+2ikx′+iγt′dt′dx′dΩdp

(23)
Обозначим

V3 =
∂U

∂|ψ|2f +
∂2U

2∂|ψs|4
f 3.

Тогда

ψ(−2ω+γ) =
A2

2π

∫
δ(Ω− 2ω + γ)

Ω− p2

2

V3e
−iΩteipxei(2k−p)x

′
dpdx′dΩ =

=
A2e−i(2ω−γ)t

2π

∫
V3(x

′)

2ω − γ − p2

2

eipxei(2k−p)x
′
dx′dp =

= A2e−i(2ω−γ)t

∫
V̂3(−2k + p)

2ω − γ − p2

2

eipxdp =

8



= −2πiA2e−i(2ω−γ)√
2k2 − 2γ

(−V̂3(−2k −
√

2k2 − 2γ)e−ix
√

2k2−2γ+

V̂3(−2k +
√

2k2 − 2γ)eix
√

2k2−2γ) =

= −iA
2e−i(2ω−γ)t√
2k2 − 2γ

(
−
∫
V3(x

′)ei(2k+
√

2k2−2γ)x′dx′e−ix
√

2k2−2γ+

+

∫
V3(x

′)e−i(2k+
√

2k2−2γ)x′dx′eix
√

2k2−2γ
)

(24)

Аналогично, для e−iγt

ψ(−γ) =
2A2

(2π)2

∫
e−iΩ(t−t′)+ip(x−x′)

Ω− p2

2

(
∂U

∂|ψ|2f +
∂2U

2∂|ψs|4
f 3)e−iγt

′
dt′dx′dΩdp (25)

Используем то же обозначение, что и в случае для e−i2ωt+iγt

V3 =
∂U

∂|ψ|2f +
∂2U

2∂|ψs|4
f 3

ψ(−γ) =
2A2

2π

∫
δ(Ω− γ)

Ω− p2

2

V3e
−iΩteip(x−x

′)dpdx′dΩ =

=
2A2e−iγt

2π

∫
V3(x

′)

γ − p2

2

eip(x−x
′)dx′dp =

Сделаем такую же замену как и для второго слагаемого и посчитаем интеграл
по теореме Коши

ψ(−γ) =
4A2πe−iγt√−2γ

(−V3(x− y)e−y
√−2γdy

∣∣∣∣
y>0

+ V3(x− y)ey
√−2γ

∣∣∣∣
y<0

)+

Вернемся обратно к переменной x′

ψ(−γ) =
2A2e−iγt√−2γ

(∫ x

−∞
V3(x

′)e
√−2γx′dx′e−x

√−2γ−
∫ ∞
x

V3(x
′)e−x

′√−2γe−x
√−2γdx′

)
(26)

Член, соответствующий ei2ωt−i3γt

ψ(2ω−3γ) =
A2

(2π)2

∫
e−iΩ(t−t′)+ip(x−x′)

Ω− p2

2

∂2U

2∂|ψ|4f
3e−3iγt′+2iωt′−2ikx′dt′dx′dΩdp (27)

Обозначим
V4 =

∂2U

2∂|ψ|4f
3

9



ψ(2ω−3γ) =
A2

2π

∫
δ(Ω + 2ω − 3γ)

Ω− p2

2

V4e
−iΩteipxe−i(2k+p)x′dpdx′dΩ =

=
A2e−i(3γ−2ω)t

2π

∫
V4(x

′)

3γ − 2ω − p2

2

eipxe−i(2k+p)x′dx′dp =

=
2πA2e−i(3γ−2ω)t√

2k2 − 6γ
(−V4(x− y)e−y

√
2k2−6γe−2ik(x−y)

∣∣∣∣
y>0

+

+V4(x− y)ey
√

2k2−6γe−ik(x−y)

∣∣∣∣
y<0

) =

=
A2e−i(3γ−2ω)t√

2k2 − 6γ

(∫ x

−∞
V4(x

′)e−i(2k+i
√

2k2−6γ)x′dx′e−x
√

2k2−6γ− (28)

−
∫ ∞
x

V4(x
′)eix

′(−2k+i
√

2k2−6γ)ex
√

2k2−6γdx′
)

Дальнейшее вычисление интегралов зависит от конкретного потенциала.
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Применение метода для конкретной модели.
Для дальнейших вычислений рассмотрим нелинейное уравнение Шредин-

гера с определенным потенциалом. В качестве модели, в которой солитонное
решение известно аналитически, рассмотрим

U = − λ

2m2
|ψs|2 +

3g

8m3
|ψs|4 (29)

Тогда уравнение Шредингера принимает вид

i∂ψ

∂t
= −∆ψ

2m
− λ

2m2
|ψ|2ψ +

3g

8m3
|ψ|4ψ (30)

Сделаем замену:

ψ̃ = ψ

√
4λm

3g

t̃ =
2tλ2

3mg

x̃ =

√
2xλ√
3g

Это позволяет избавиться от параметров. В результате уравнение и потенциал
принимают вид.

i∂ψ̃

∂t̃
+

∆ψ̃

2
+ |ψ̃|2ψ̃ − |ψ̃|4ψ̃ = 0 (31)

U = −|ψ̃|2 + |ψ̃|4 (32)

Далее вместо ψ̃ будем писать ψ.
Уравнение (31) с данным потенциалом имеет солитонное решение вида

(33), (34), где γ- параметр солитона (его частота) [2]. Решение существует
только при значениях параметра − 3

16 < γ <∞, но в нашем случае γ < 0.

ψs = f(x)e−iγt (33)

f =
2
√−γ√

1 +
√

1 + 16
3 γ cosh(2

√−2γx)

,− 3

16
< γ < 0 (34)

Вид f при различных γ показан на рисунке 1.
Перепишем выражения для Vi, i = 1, .., 4 через потенциал (32)

V1 = −2f 2 + 3f 4
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V2 = −f 2 + 2f 4

V3 = −f + 3f 3

V4 = f 3

Так же как и в общем случае рассмотрим каждый из членов, соответству-
ющих разным частотам, по отдельности.

ψ(ω) =
iAe−iωt

k
(e−ikx

∫
(2f 2 − 3f 4)e2ikx′dx′ − eikx(2Af 2 − 3Af 4)ei0x

′
) (35)

ψ(2γ−ω) =
Ae−i(2γ−ω)t√
k2 − 4γ

∫
(f 2 − 2f 4)e−(i

√
k2−4γ−k)x′dx′e−x

√
k2−4γ (36)

ψ(2ω−γ) = −iA
2e−i(2ω−γ)t√
2k2 − 2γ

(∫
(−f + 3f 3)e−i(2k+

√
2k2−2γ)x′dx′e−ix

√
2k2−2γ+

+

∫
(f − 3f 3)ei(2k+

√
2k2−2γ)x′dx′eix

√
2k2−2γ

)
(37)

ψ(3γ−2ω) =
A2e−i(3γ−2ω)t√

2k2 − 6γ

(∫
f 3e−i(2k+i

√
2k2−6γ)x′dx′e−x

√
2k2−6γ+ (38)

+

∫
(−f 3)eix

′(−2k+i
√

2k2−6γ)ex
√

2k2−6γdx′
)

ψ(γ) =
A2e−iγt√−2γ

(∫
(f − 3f 3)e

√−2γx′dx′e−x
√−2γ)

−
∫

(f − 3f 3)e−x
′√−2γe−x

√−2γdx′
)

(39)

Рассмотрим прошедшую и отраженную волну с частотами ω и 2ω:

ψ(ω) =
iAe−iωt

k

(
e−ikx

∫
(2f 2 − 3f 4)e2ikx′dx′ − eikx(2f 2 − 3f 4)ei0x

′
)

ψ(2ω−γ) = −iA
2e−i(2ω−γ)t√
2k2 − 2γ

(∫
(−f + 3f 3)e−i(2k+

√
2k2−2γ)x′dx′e−ix

√
2k2−2γ

+

∫
(f − 3f 3)ei(2k+

√
2k2−2γ)x′dx′eix

√
2k2−2γ

)
Остальные слагаемые являются интерференционными членами и в этом

разделе нами не рассматриваются.
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Будем искать ассимптотику интегралов при k → ∞ с помощью метода
перевала [3]. В общем случае интегралы методом перевала вычисляются по
алгоритму:

I =

∫ +∞

−∞
g(t)eh(t)dt =

∫ +∞

−∞
eh(t)+ln(g(t))dt =

∫ +∞

−∞
eF (t)dt,

где F (t) = h(t) + ln(g(t)). Далее нужно найти точки перевала из уравнения:

F ′(t0) = 0,

где t0 – перевальная точка. Тогда приближенное значение интеграла вычис-
ляется по формуле:

I ≈
√
− 2π

F ′′(t0)
eF (t0). (40)

Точек перевала может быть несколько, тогда вклад от каждой точки вычис-
ляется по формуле (40), а полный интеграл дается их суммой:

I =

∫ +∞

−∞
eF (t)dt ≈

∑
i

√
− 2π

F ′′(ti)
eF (ti)

Рассмотрим прошедшую волну с двойной частотой:

I2ω+ = −iA
2e−i(2ω−γ)t√
2k2 − 2γ

eix
√

2k2−2γ

∫
ei(2k+

√
2k2−2γ)x′+ln (f(x′)−3f3(x′))dx′ = (41)

= −iA
2e−i(2ω−γ)t√
2k2 − 2γ

eix
√

2k2−2γ

∫
eF2ω+(x′)dx′ ≈

≈ −iA
2e−i(2ω−γ)teix

√
2k2−2γ√

2k2 − 2γ
ei(2k+

√
2k2−2γ)x0+ln

(
f(x0)−3f3(x0)

)√
− 2π

F ′′2ω+(x0)
, (42)

где
F2ω+(x′) = i(2k +

√
2k2 − 2γ)x′ + ln (f(x′)− 3f 3(x′)),

x0 является решением уравнения F ′2ω+(x0) = 0, а индекс ” + ” обозначает
прошедшую волну:

i(2k+
√

2k2 − 2γ)+

288γ2
√

1+ 16γ
3 sinh 2

√−2γx0

(1+
√

1+ 16γ
3 cosh 2

√−2γx0)
5
2

+
4γ
√

1+ 16γ
3 sinh 2

√−2γx0

(1+
√

1+ 16γ
3 cosh 2

√−2γx0)
3
2

− 48
√

2(−γ)
3
2

(1+
√

1+ 16γ
3 cosh 2

√−2γx0)
3
2

+ 2
√−2γ

(1+
√

1+ 16γ
3 cosh 2

√−2γx0)
1
2

= 0 (43)
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Рис. 2: Сравнение результатов, вычисленных разными способами, для ам-
плитуды прошедшего волнового пакета с двойной частотой. Здесь simulation
– означает результат численного решения, Born – борновское приближение, а
saddle-point – вычисление интегралов методом перевала. Расчеты проводятся
для γ = −2.999

16 .
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Рис. 3: Сравнение числа частиц, поглощенных солитоном, и числа частиц в
прошедшем волновом пакете с двойной частотой. Расчеты проводятся для
γ = −2.999
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Дальнейшее решение проводится в программе Wolfram Mathematica, срав-
нение результата работы которой с численным решением той же задачи пред-
ставлен на графике (2). На графике (3) представлено сравнение числа частиц,
поглощенных солитоном и числа частиц в волновом пакете. Этот рисунок до-
казывает, что для того, чтобы посчитать число частиц, поглощенных солито-
ном, нужно вычислить число частиц в прошедшем пакете с двойной частотой.{

δNγ + δNω + δN2ω−γ = 0.

δEγ + δEω + δE2ω−γ = 0

Но δEγ = γδNγ – верно для солитона. На линейных уравнениях для волны
верно δEω = ωδNω.

γδNγ + ωδNω + (2ω − γ)δN2ω−γ = 0

ω(−δNγ − δN2ω−γ) = −γδNγ + (γ − 2ω)δN2ω−γ

δNγ(γ − ω) = (γ − ω)δN2ω−γ

⇒ δNγ = δE2ω−γ
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Здесь δNγ− изменение числа частиц в солитоне с частотой γ, δNω−изменение
числа частиц в налетающей волне с частотой ω, δN2ω−γ−изменение числа
частиц в волне с частотой 2ω−γ. δEγ−изменение энергии солитона с частотой
γ, δEω−изменение энергии волны с частотой ω, δE2ω−γ− изменение энергии
волны с частотой 2ω − γ Отсюда видно, что число частиц, "застрявших"в
солитоне, совпадает с числом частиц с частотой 2ω − γ.

Аналогичные вычисления производятся для оставшихся двух интегралов:

I2ω− = −iA
2e−i(2ω−γ)t√
2k2 − 2γ

e−ix
√

2k2−2γ

∫
e−i(2k+

√
2k2−2γ)x′+ln (−f(x′)+3f3(x′))dx′ =

(44)

= −iA
2e−i(2ω−γ)t√
2k2 − 2γ

e−ix
√

2k2−2γ

∫
eF2ω−(x′)dx′ ≈

≈ −iA
2e−i(2ω−γ)te−ix

√
2k2−2γ√

2k2 − 2γ
e−i(2k+

√
2k2−2γ)x0+ln

(
−f(x0)+3f3(x0)

)√
− 2π

F ′′2ω−(x0)
,

(45)
где

F2ω−(x′) = −i(2k +
√

2k2 − 2γ)x′ + ln (−f(x′) + 3f 3(x′)),

а индекс ” - ” обозначает отраженную волну:

−i(2k +
√

2k2 − 2γ) +

− 288γ2
√

1+ 16γ
3 sinh 2

√−2γx0

(1+
√

1+ 16γ
3 cosh 2

√−2γx0)
5
2
− 4γ

√
1+ 16γ

3 sinh 2
√−2γx0

(1+
√

1+ 16γ
3 cosh 2

√−2γx0)
3
2

48
√

2(−γ)
3
2

(1+
√

1+ 16γ
3 cosh 2

√−2γx0)
3
2
− 2

√−2γ

(1+
√

1+ 16γ
3 cosh 2

√−2γx0)
1
2

= 0

(46)
Решение для отраженного пакета с двойной частотой представлена на ри-
сунке (4). Для отраженной волны с одинарной частотой приближение будет
выглядеть так:

Iω− =
ie−iωt−ikx

k

∫
e2ikx′+ln(2Af2(x′)−3Af4(x′))dx′ =

ie−iωt−ikx

k

∫
eFω−(x′)dx′ ≈

≈ ie−iωt−ikx

k
e2ikx0+ln(2Af2(x0)−3Af4(x0))

√
− 2π

F ′′ω−(x0)
, (47)

где
Fω−(x′) = 2ikx′ + ln(2Af 2(x′)− 3Af 4(x′))

17



10−8

10−6

10−4

10−2

1

0 2

|A
(r
e
)

2
ω
−
γ
|/A

2

p0

simulation
Born
saddle-point

Рис. 4: Результаты численного и аналитического решений для отраженного
волнового пакета с двойной частотой. Расчеты проводятся для γ = −2.999
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F ′(x0) = 0 :

2ik +

192
√−2γγ2

√
1+ 16γ

3 sinh(2
√−2γx0)

(1+
√

1+ 16γ
3 cosh(2

√−2γx0))3
+

16
√−2γγ

√
1+ 16γ

sinh (2
√−2γx0)3

(1+
√

1+ 16γ
3 cosh(2

√−2γx0))2

− 48γ2

(1+
√

1+ 16γ
3 cosh(2

√−2γx0))2
− 8γ

(1+
√

1+ 16γ
3 cosh(2

√−2γx0))

= 0 (48)

Решение для этого случая представлено на рисунке (5).
Для прошедшей волны с одинарной частотой метод перевала неприменим,

так как в данном случае экспоненента равна 1, поэтому его можно посчитать
аналитически.
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Рис. 5: Результаты численного и аналитического решений для отраженного
волнового пакета с одинарной частотой. Расчеты проводятся для γ = −2.999
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Вычисление поправок.
В данном случае могут существовать поправки двух типов. Первый – это

уточнение результатов за счет подстановки решений (42) и (45) в уравнение
(9) вместо ψ0

ω в источник, генерирующий эти решения. Эти попраки получа-
ются очень малы по сравнению с самими решениями, поэтому мы их учиты-
вать не будем. Второй тип поправок – это поправки из интерференционных
членов. Вследствие того, что при вычислении интегралов при помощи тео-
ремы Коши, получаются мнимые полюса, возникают условия на переменные
интегрирования. Поэтому мы не можем рассчитать интегралы и подставляем
не результат вычислений этих интегралов, а сами выражения. Чтобы посчи-
тать поправку, необходимо подставить интерференционный член в правую
часть уравнения (9) в то слагаемое, которое ответственно за появление дан-
ного интерференционного члена. Получаются двойные интегралы, с одним
переменным пределом. Например, из интерференционного члена с частотой
2γ−ω получаются поправки к прошедшей и отраженной волднам с одинарной
частотой. Этот интеграл выглядит так:

Ipoprω =
iAe−iωt

k
√
k2 − 4γ

(
eikx
(
−
∫ +∞

−∞
Vω(x′)ex

′(ik−
√
k2−4γ)×
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×
∫ −∞
x′

V2(x
′′)ex

′′(ik+
√
k2−4γ)dx′dx′′+

+

∫ +∞

−∞
Vω(x′)ex

′(ik+
√
k2−4γ)

∫ x′

+∞
V2(x

′′)e−x
′′(−ik+

√
k2−4γ)dx′dx′′

)
+ (49)

+eikx
(∫ +∞

−∞
Vω(x′)e−x

′(ik+
√
k2−4γ)

∫ −∞
x′

V2(x
′′)ex

′′(ik+
√
k2−4γ)dx′dx′′+

+

∫ +∞

−∞
Vω(x′)ex

′(−ik+
√
k2−4γ)

∫ x′

+∞
V2(x

′′)e−x
′′(−ik+

√
k2−4γ)dx′dx′′

))
,

где Vω = f 2 − 2f 4, а V2 = (f 2 − 2f 4). Результат этих вычислений того же
порядка, что и решение, к которому мы считаем поправку. Данные поправки
описывают изменения фазы волновых пакетов в результате взаимодействия
с солитоном.

Этот факт можно проиллюстрировать на простом примере. Рассмотрим
эволюцию волнового пакета с учетом нелинейных членов:

i∂ψ

∂t
= −∆ψ

2
− |ψ|2ψ + |ψ|4ψ

ψ = Ae−iωt+ikx

Для закона дисперсии получаем:

(ω − k2

2
) = −A2 + A4

Отсюда видно как связана частота и амплитуда в простом случае только для
ψ0
ω, но у нас есть еще взаимодействие с солитоном, что значительно усложняет

эту связь. Вследствие этого усложняется вопрос о разделении числа части и
изменения фазы.

В итоге получается, что несмотря на то, что мы можем найти поправки,
они либо малы, либо неотделимы от фазы, поэтому в данной работе мы их
не учитываем.
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Заключение.
В работе представлен метод, основанный на Борновском приближении,

применимый для описания процесса взаимодействия солитона с налетающим
волновым пакетом. Показано, что в результате взаимодействия рождаются
волновые пакеты с большей частотой, число частиц в которых равно числу
частиц, захваченных солитоном. Это дает простой способ вычисления измене-
ния числа частиц солитона. Предложенный метод подтверждем сравнением
с результатами численного моделирования.
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Приложение

Приложение A: Вычисление интегралов.
Рассмотрим подробно интегрирование (18) с помощью теоремы Коши. Так

как все интегралы имеют вид
∫ +∞
−∞ R(x)eiλxdx, то к ним применима Лемма

Жордана. Поэтому мы можем посчитать интеграл по формуле:
При λ > 0:∫ +∞

−∞
R(x)eiλxdx = 2πi

n∑
k=1

Res
z=zk

[R(z)eiλz], Im zk > 0

При λ < 0:∫ +∞

−∞
R(x)eiλxdx = −2πi

n∑
k=1

Res
z=zk

[R(z)eiλz], Im zk < 0

Найдем полюса для каждого из слагаемых выражения (18). Далее для каж-
дого полюса найдем соответствующий вычет и, так как все полюса являются
полюсами перого порядка, то их можно вычислить по формуле:

Res
z0

φ(z)

ψ(z)
=

φ(z0)

ψ′(z0)
, (50)

где z0 - полюс первого порядка. В дальнейших вычислениях нам понадобит-
ся дисперсионное соотношение 2ω = k2. Рассмотрим каждое из слагаемых
выражения (18) отдельно:

I1 =

∫
V1(k − p)
ω − p2

2

eipxdp (51)

Полюса p = ±
√

2ω = ±
√
k2 = ±k Согласно (50) вычеты для I1 можно

получить по формуле (для остальных слагаемых вычеты считаются по ана-
логичному принципу)

ResI1 =
V1(k − p)

p
eipx

Тогда результатом интегрирования для I1 будет:

I1 =
2πi

k
(e−ikxV1(2k)− eikxV1(0))
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Рассмотрим второе слагаемое, здесь мы не делали замену Фурье, поэтому
выражение имеет другой вид:

I2 =

∫
V3(x− y)

2ω − γ − p2

2

eipye−ik(x−y)dpdy

Полюса p = ±√4γ − 2ω = ±i
√
k2 − 4γ. Так как полюса мнимые, то пока-

затель экспоненты для вычетов будет действительным и вследствие этого
возникают дополнительные условия на полученные результаты

I2 =
2π√
k2 − 4γ

(
V2(x− y)e−y

√
k2−4γe−ik(x−y)dy

∣∣∣∣
y>0

−

−V2(x− y)ey
√
k2−4γe−ik(x−y)dy

∣∣∣∣
y<0

)
Перейдем к третьему слагаемому

I3 =

∫
V3(−2k + p)

2ω − γ − p2

2

eipxdp

Полюса p = ±√4ω − 2γ = ±
√

2k2 − 2γ. Тогда

− 2πi√
2k2 − 2γ

(−V3(−2k−
√

2k2 − 2γ)e−ix
√

2k2−2γ+V3(−2k+
√

2k2 − 2γ)eix
√

2k2−2γ)

Четвертое слагаемое имеет вид

I4 =

∫
V4(x− y)

3γ − 2ω − p2

2

eipye−2ik(x−y)dpdy

Полюса p = ±√6γ − 4ω = ±i
√

2k2 − 6γ. Как и в случае второго слагаемого
полюса мнимые, поэтому появятся дополнительные условия на y

I4 =
2π√

2k2 − 6γ
(−V4(x− y)e−y

√
2k2−6γe−2ik(x−y)

∣∣∣∣
y>0

+

+V4(x− y)ey
√

2k2−6γe−2ik(x−y)

∣∣∣∣
y<0

)

Перейдем к рассмотрению последнего слагаемого

I5 =

∫
V3(x− y)

γ − p2

2

eipydpdy
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Полюса p = ±i√2γ - мнимые, следовательно, результатом интегрирования
будет

I4 =
2π√−2γ

(−V3(x− y)e−y
√−2γ

∣∣∣∣
y>0

+ V3(x− y)ey
√−2γ

∣∣∣∣
y<0

)

В итоге суммирования всех результатов получим:

δψ =
2πAi

k
(e−ikxV1(2k)− eikxV1(0))e−iωt+

+
2πAe−i(2γ−ω)√

k2 − 4γ

(
V2(x− y)e−y

√
k2−4γe−ik(x−y)dy

∣∣∣∣
y>0

−

−V2(x− y)ey
√
k2−4γe−ik(x−y)dy

∣∣∣∣
y<0

)
−

−2πA2ie−i(2ω−γ)√
2k2 − 2γ

(−V3(−2k −
√

2k2 − 2γ)e−ix
√

2k2−2γ+

+V3(−2k +
√

2k2 − 2γ)eix
√

2k2−2γ)+ (52)

+
2πA2e−i(3γ−2ω)t√

2k2 − 6γ
(−V4(x− y)e−y

√
2k2−6γe−2ik(x−y)

∣∣∣∣
y>0

+

+V4(x− y)ey
√

2k2−6γe−2ik(x−y)

∣∣∣∣
y<0

)+

+
2πA2e−iγt√−2γ

(−V3(x− y)e−y
√−2γ

∣∣∣∣
y>0

+ V3(x− y)ey
√−2γ

∣∣∣∣
y<0

)
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