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1 Изменение массы черной дыры
Изменение массы черной дыры dM складывается из двух составляющих:

• Излучение Хокинга (dM−)

• Поглащение окружающего вещества (dM+)

dM = dM− + dM+ (1)

1.1 Излучение Хокинга
Мощноcть излучения черной дыры равна:

dEизл

dt
=

h̄c6

15360πG2M 2
(2)

dEизл = −dEч.д. = −c2dM (3)
Подставляя (3) в (2) получим:

dM

dt
= − h̄c4

15360πG2M 2
(4)

Пусть a2 :=
h̄c4

15360πG2 , тогда a2 ≈ 4 · 1015 кг3
с

В итоге получим:

dM− = − a2
M 2

dt, где a2 ≈ 4 · 1015 кг3

с
(5)

1.2 Поглощение массы
Мы будем рассматривать черную дыру, как некоторую область в про-

странстве, границей которой является сфера радиуса Швардшильда Rш

Из классических соображений формулу для радиуса Швардшильда мож-
но получить следующим образом. Запишем закон сохранения энергии:

mc2

2
−G · mM

Rш
= 0

Данный закон сохранения энергии показывает, каким должен быть мини-
мальный радиус сферы, чтобы тело обладающее скоростью c на ее поверности
могло улететь на бесконечность (смогло выйти за пределы гравитационного
влияния объекта) . Отсюда можно получить

Rш =
2GM

c2
(6)
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Рассмотрим площадку площадью ds на поверхности сферы за время dt
через эту площадку пройдет масса:

d(dmt)s = min < vr > dtds, (7)

где mi - масса частиц среды, n - концентрация, а < vr > - средняя скорость
частиц вдоль направления совпадающего с внутренней нормалью к площадке

Если среда однородна, то min = miN
V = m

V = ρ

d(dmt)s = ρ < vr > dtds, (8)

Мы считаем, что среда состоит из ультрарелятивистских частиц, то есть
|v⃗| ≈ c

Найдем среднюю проекцию скорости частиц на направление r сонаправ-
ленное с внутренней нормалью к площадке

vri = c · cos(θi) (9)

Нас интересуют только положительные проекции, поэтому мы интегри-
руем только по половине телесного угла

< vr >=
1

2π

∫
vr · dΩ (10)

dΩ =
ds

r2
=

r2 · sin(θ)dθdφ
r2

= sin(θ)dθdφ

< vr >=
1

2π

π∫
0

dθ

2π∫
0

c · cos(θ)sin(θ)dφ = c

1∫
0

sin(θ)d(sin(θ)) =
c

2

< vr >=
c

2
(11)

d(dmt)s =
ρc

2
dtds (12)∫

d(dmt)s =

∫
SСф.

ρc

2
dtds, (13)

где интегрирование ведется по поверхности сферы радиуса Швардшильда

dmt =
ρc

2
dt4πR2

ш = 2πρc

(
2GM

c2

)2

dt =
8πG2

c3
ρM 2dt
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В ранней вселенной плотность зависила от времени следующим образом:

ρ(t) =
3

32πG
· 1
t2

(14)

dm =
8πG

c3
· 3

32πG
· M

2

t2
dt =

3G

4c3
· M

2

t2
dt

Пусть a1 :=
3G
4c3 ≈ 2 · 10−36 с

кг

dM+ = a1

(
M

t

)2

dt (15)

1.3 Суммарное изменение массы
Из формулы (3) следует

dM = dM+ + dM− = a1

(
M

t

)2

dt− a2
M 2

dt

Поделив на dt, получим дифференциальное уравнение описывающее из-
менение массы черной дыры

dM

dt
= a1

(
M

t

)2

− a2
M 2

(16)

К сожалению, данное дифференциальное уравнение не имеет аналитиче-
ского решения, поэтому давайте рассмотрим некоторые предельные случаи

1.4 Критическая масса
Пусть dM

t = 0, тогда

a1

(
M

t

)2

=
a2
M 2

M 4 =
a2
a1

· t2

Mк =

(
a2
a1

· t2
) 1

4

Mк - критическая масса

При M > Mк масса черной дыры растет (доминирует поглащение веще-
ства)
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При M < Mк масса черной дыры уменьшается (доминирует испарение)

Oбозначим a0 :=
(
a2
a1

) 1
4 ≈ 7 · 1012 кг

c
1
2

Mк = a0
√
t (17)

1.5 Масса первичной черной дыры в момент возникно-
вения

Оценим сверху массу первичной черной дыры в момент возникновения.
Рассмотрим точку и найдём размер причинно связной области с центром в
этой точке. Пусть в момент времени t=0 из этой точки равномерно во все
стороны были испущенны лучи. Тогда границей этой области к моменту вре-
мени t будет являться сфера с радиусом r = ct. Отсюда мы можем оценить
объем области V = 4

3π(ct)
3. Исходя из выражения для плотности вещества

(14), найдем массу вещества содержащегося внутри этой области m = ρV . В
итоге получим

M =
c3t

8G
(18)

1.6 Предельные случаи
Рассмотрим поведение дифференциального уравнения в зависимости от

начального условия. Пусть M(t0) = M0 и пусть выполнено соотношение
M0 << Mк(t0)

Перепишем уравнение в виде

dM

dt
=

a1
t2
M 2 − a2

M 4
M 2 (19)

Если выполнено соотношение M0 << Mк(t0), то и выполнено соотношение

a1
t20

<<
a2
M 4

0

(20)

Отсюда следует, что в течение следующего бесконечно малого промежут-
ка времени dt, масса будет уменьшаться, а коэффициент a2

M4
0

увеличеваться,
в свою очередь коэффициент a1

t20
будет уменьшаться, следовательно соотно-

шение (20) сохраниться. Поэтому слагаемым a1
t2M

2 в данном случае можно
принебреч. В итоге мы получим следующее уравнение

dM

dt
= − a2

M 2
(21)
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M(t)∫
M0

M 2dM = −a2

t∫
t0

dt

M = (M 3
0 − 3a2(t− t0))

1
3 (22)

Из этого соотношения можно оценить время, τ за которое черная дыра
испарится

τ =
M 3

0

3a2
(23)

Теперь пердположим, что выполнено Mк(t0) << M0 < c3t0
8G , тогда спра-

видливо соотношение
a1
t20

>>
a2
M 4

0

(24)

Отсюда следует, что в течение следующего бесконечно малого промежут-
ка времени dt, масса будет увеличиваться, а коэффициент a2

M4
0

уменьшаться, в
свою очередь коэффициент a1

t20
тоже будет будет уменьшаться, но медленнее,

следовательно соотношение (24) сохраниться. Сохранятся оно будет до тех
пор пока кривая M(t) не пересечет кривую Mк(t). Поэтому слагаемым a2

M2 в
данном случае можно принебреч. В итоге мы получим следующее уравнение

dM

dt
= a1

(
M

t

)2

(25)

M(t)∫
M0

dM

M 2
= a1

t∫
t0

dt

t2

M =
M0t0

tt0 − a1M0(t− t0)
t (26)

Оценим до какого моента времени справедлива данная формула, для это-
го опредлим в какой момент времени предложенная зависимость пересечет
зависимость Mк(t)

M0t0
tt0 − a1M0(t− t0)

t = a0
√
t

(a0t0 − a1a0M0)t−M0t0
√
t+ a1a0M0t0 = 0

t =

(
M0t0 +

√
(M0t0)2 − 4a1a0M0(a0t0 − a1a0M0)

2(a0t0 − a1a0M0)

)2

(27)
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1.7 Поиск аналитического решение в виде ряда
Попробуем написать формальное разложение в ряд Тейлора функции

M(t). Для этого домножим уравнение (16) справа и слева на 1
M2 и сделаем

замену переменной z(t) = 1
M(t) . Получим следующее уравнение для функции

z(t)
dz

dt
= a2z

4 − a1
t2

(28)

Разложение в ряд тейлора функции z(t) в точке t0выглядит следующим
образом

z(t) =
∞∑
n=0

z(n)(t0)

n!
(t− t0)

n (29)

То есть нам нужно вычислить n-ю производную функции z(t)

z(n) =
dn−1

dtn−1
(a2z

4)− dn−1

dtn−1

(a1
t2

)
Для облегчения вычисления производной сделаем следующую замену в

правой части ъ = z2

z(n) =
dn−1

dtn−1
(a2ъ2)− dn−1

dtn−1

(a1
t2

)
Вычислим сначала производную dn−1

dtn−1

(
a1
t2

)
. Пусть f(t) = a1

t2 . Тогда

f (1) = −2 · a1
t3
, f (2) = 2 · 3 · a1

t4

Отсюда получим

f (n)(t) = (−1)n(n+ 1)!
( a1
tn+2

)
dn−1

dtn−1

(a1
t2

)
= (−1)n−1n!

( a1
tn+1

)
(30)

Пусть теперь f(t) = (g(t))2

f (1) = 2gg′

f (2) = 2gg′′ + 2(g′)2

f (3) = 2gg′′′ + 6g′g′′

f (4) = 2gg′′′′ + 8g′g′′′ + 6(g′′)2

f (5) = 2gg′′′′′ + 10g′g′′′ + 20g′′g′′′

8



Отсюда видно

f (n) =

[n2 ]∑
i=0

bnig
(i)g(n−i), (31)

где bni задается следующим образом

bn0 = 2

∀i >
[n
2

]
bni = 0

Если i− 1 ̸= n

2
и i > 0, то bni = bn−1i + bn−1i−1

Если i− 1 =
n

2
и i > 0, то bni = 2bn−1i + bn−1i−1

Вычислим теперь производную dn−1

dtn−1 (a2ъ2). Положим f(t) = a2ъ2(t). Тогда
согласно формуле (31)

f (n) = a2

[n2 ]∑
i=0

bniъ(i)ъ(n−i)

Но ъ = z2. Тогла итоговое выражение для n-й производной можно запи-
сать в виде

f (n) = a2

[n2 ]∑
i=0

bni

 [ i2 ]∑
α=0

biαz
(α)z(i−α)


[n−i

2 ]∑
β=0

bn−1βz
(β)z(n−i−β)


dn−1

dtn−1
(a2ъ2) = a2

[n−1
2 ]∑

i=0

bn−1i

 [ i2 ]∑
α=0

biαz
(α)z(i−α)


[n−1−i

2 ]∑
β=0

bn−1−iβz
(β)z(n−1−i−β)


(32)

z(n) = a2

[n−1
2 ]∑

i=0

bn−1i

 [ i2 ]∑
α=0

biαz
(α)z(i−α)


[n−1−i

2 ]∑
β=0

bn−1−iβz
(β)z(n−1−i−β)

+(−1)nn!
( a1
tn+1

)
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Теперь можем оканчательно записать

M(t) =

(
M−1

0 +
∞∑
n=1

cn(t− t0)
n

)−1

, (33)

где

cn =
a2
n!

[n−1
2 ]∑

i=0

bn−1i

 [ i2 ]∑
α=0

biαz
(α)z(i−α)


[n−1−i

2 ]∑
β=0

bn−1−iβz
(β)z(n−1−i−β)

+(−1)n
( a1
tn+1

)
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2 Попытка описания системы, состоящей из двух
первичных черных дыр

Мы будем считать, что в начале своей эволюции система из двух первич-
ных черных дыр подчиняется законам классической механики, а сами черные
дыры движутся по круговым орбитам. Начнем с того, что рассмотрим слу-
чай, когда масса первичных черных дыр постоянна.

2.1 Случай постоянной массы
Пусть масса одной из первичных черных дыр m1, а масса другой m2.

Выберем начало системы координат в центре инерции системы, тогда радиус-
вектора тел системы будут вырвжвться следующим образом:

r⃗1 =
m2

m1 +m2
r⃗,

r⃗2 = − m1

m1 +m2
r⃗,

где r⃗ = r⃗1 − r⃗2
Напишем функцию Лагранжа для данной системы:

L =
m1v⃗

2
1

2
+

m2v⃗
2
2

2
+G

m1m2

r
Если подставить выражения для радиус векторов то получим

L =
µv⃗ 2

1

2
+G

m1m2

r
,

где µ = m1m2

m1+m2
- приведенная масса.

Расписывая, скорость в полярных координатах и учитывая, что радиус
орбиты постоянен получим

L =
µω2r2

2
+G

m1m2

r
,

где ω - угловая скорость Подставляя данный лагранжиан в уравнение
лагранжа получим

µω2r = G
m1m2

r2

Отсюда мы можем выразить ω

ω =

√
G(m1 +m2)

r−
3
2

(34)
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Интенсивность излучения гравитационных волн заданной поляризации в
телесный угол dΩ записывается в виде

dI =
G

72πc5

(
D

(3)
αβeαβ

)2
dΩ, (35)

где eαβ - симметричный тензор поляризации, а Dαβ - тензор квадруполь-
ного момента масс.

Тензор квадрупольного момента масс вводиться следующим образом

Dαβ = µ(3xαxβ − r2δαβ)

В нашем случае, когда плоскостьб движения совпадает с плоскотью xy
его компоненты можно записать

Dxx = µr2(3cos2(φ)− 1)

Dxy = 3µr2cos(φ)sin(φ)

Dyy = µr2(3sin2(φ)− 1)

Dzz = µr2

Рассмотрим две поляризации гравитационных волн eαβ = 1√
2

и eθθ =

−eφφ = 1√
2
. Преобразуя компоненты тензора Dαβ в сферические координа-

ты, вычисляя по формуле(35) и усредняя по времени получим для этих двух
случаев

dI

dω
=

Gµ2ω6r4

2πc5
(1 + 6cos2(θ) + cos4(θ))

после интегрирования по напарвлениям:

−dE

dt
=

32G4m2
1m

2
2(m1 +m2)

5c5r5

Поскольку E = −Gm1m2

2r , то скорость сближения

dr

dt
= −64G3m1m2(m1 +m2)

5c5r3
(36)

Решая данное дифференциальное уравнение получим

r(t) =

(
r40 −

256Gm1m2(m1 +m2)

5c3
t

) 1
4
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Отсюда мы можем оценить время, за которое черные дыры упадут друг
на друга, это произойдет, когда расстояние между телами станет равно сумме
их радиусов швардшильда . Согласно (6)

Rш 1 +Rш 2 =
2G(m1 +m2)

c2

τ =

(
r40 −

(
2G(m1 +m2)

c2

)4
)

5c3

256Gm1m2(m1 +m2)
(37)

2.2 Случай медленно меняющейся массы
Если масса черных дыр меняется достаточно медленно то ее производные

малы, и тогда можно ими принебреч , когда мы вычисляем третью производ-
ную компонент тензора квадрупольного мосента. В таком случае за основу
можно взять формулу (36), но необходимо учесть одно важное обстоятель-
ство, а именно, нам необходимо, чтобы система центра инерции оставалось
инерциальной, поэтому дополнительно потребуем чтобы масса второго выра-
жалось через массу первого следующим образом

m2 = m1γ = m(t)γ,

где γ - вещественное число

В качестве m(t) возьмем зависимость (26) , так как на больших временах
ее производные стремятся к нулю

m =
m0t0

tt0 − a1m0(t− t0)
t

m′ =
a1m

2
0t

2
0

(a1m0t0 + t(t0 − a1m0))2

m′ =
2a1m

2
0t

2
0(a1m0 − t0)

(a1m0t0 + t(t0− a1m0))3

Тогда дифференциальное уравнение приобретает вид:

dr

dt
= −64G3γ(1 + γ)

5c5r3

(
m0t0

tt0 − a1m0(t− t0)
t

)3

(38)

r(t) =

(
r40 −

64G3γ(1 + γ)

5c5r3

∫ t

t1

(
m0t0

tt0 − a1m0(t− t0)
t

)3

dt

) 1
4

(39)
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Зависимость суммы радиусов Швардшильда от времени дается следую-
щим соотношением

RшΣ =
2G(1 + γ)

c

m0t0
tt0 − a1m0(t− t0)

t (40)

Приравнивая (39) и (40) получаем урвнение, из которго можно определить
время слияния черных дыр. При этом есть ограничение на времена, которые
можем мы рассматривать (27).
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