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Введение

Лоренц-инвариантность - это свойство систем математических уравнений,
описывающих физические законы, а также физических величин сохранять свой
вид при применении преобразований Лоренца. Лоренцевы преобразования
являются аналогом галилеевых преобразований от одной инерциальной системы
к другой в четырехмерном пространстве-времени.
Не вступая в противоречие с современными ограничениями, мы можем
допустить нарушение симметрии теории относительно преобразований Лоренца
лишь на самых высоких энергиях, близких к массе Планка. В качестве объекта
наблюдения мы будем рассматривать синхротронное излучение сверхвысоких
энергий, дошедшее из Крабовидной туманности.
Синхротронное излучение - это излучение электромагнитных волн
релятивистскими заряженными частицами, движущимися по криволинейной
траектории, то есть имеющими составляющую ускорения, перпендикулярную
скорости; впервые оно наблюдалось в электронных синхротронах в 1948 году.
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Теоретическое введение
Спектр излучения релятивистской заряженной частицы при движении по

окружности с сохранением Лоренц-инвариантности

Исследование излучения релятивистских заряженных частиц начнем с
определения потенциалов Лиенара-Вихерта. Потенциалы Лиенара-Вихерта - это
точное решение уравнений Максвелла для точечного поля одной частицы,
записанное в калибровке Лоренца.

Φ(⃗x, t) =

[
e

(1− β⃗n⃗)R

]
ret

, (1)

A⃗(⃗x, t) =

[
eβ

1− β⃗n⃗)R

]
ret

, (2)

где квадратные скобки с индексом "ret"означают, что величины в скобках
следует брать в момент времени t′ = t − R(t′)

c (запаздывающее (retarded) время). 2



Наши задачи

В настоящей работе рассматриваются современные концепции нарушения
лоренц-инвариантности, изучаемого на примере синхротронного излучения,
прибывающего из Крабовидной туманности в созвездии Тельца. Критически
анализируется, в первую очередь, одна из наиболее ранних и цитируемых статей
по предмету [3], авторы которой признаются одними из авторитетнейших
специалистов по теме, а также другие связанные статьи. Задачи в работе:
▶ Изучение и обзор принятой теории синхротронного излучения в

классическом ультрарелятивистском случае
▶ Вывод необходимых формул
▶ Получение их неклассических аналогов, предложенных авторами статьи
▶ Анализ и описание изменений, обзор используемых методов
▶ Анализ и критика выводов статьи
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Теоретическое введение
Спектр излучения релятивистской заряженной частицы при движении по

окружности с сохранением Лоренц-инвариантности
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точное решение уравнений Максвелла для точечного поля одной частицы,
записанное в калибровке Лоренца.

Φ(⃗x, t) =

[
e

(1− β⃗n⃗)R

]
ret

, (3)

A⃗(⃗x, t) =

[
eβ

1− β⃗n⃗)R

]
ret

, (4)
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Теоретическое введение

При этом, как следует из решений волновых уравнений для них в случае
переменных во времени полей с помощью функции Грина, потенциалы также
могут быть представлены как

Aµ(⃗x, t) = e
∫

βµ(t′)
R(t′′)

δ

[
t′ +

R(t′)
c

− t
]
dt′, (5)

, откуда электрическое поле можно представить в виде:

E(x, t) = e[
(n− β)(1− β2)

κ3R2
]ret +

e
c
[
n

κ3R
×
{
(n− β⃗)× ⃗̇β

}
]ret, (6)

, а магнитное поле связано с напряженностью электрического поля простым
соотношением

B⃗ = n⃗× E⃗. (7)
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Теоретическое введение

Энергия, излучаемая зарядом, движущимся с релятивистской скоростью,
распределена по широкому диапазону частот. Для точного расчёта ширины
частотного спектра воспользуемся теоремой Парсеваля из теории интегралов
Фурье. Соотношение для мощности излучения в единицу телесного угла имеет
общий вид

dP(t)
dΩ

=
∣∣∣⃗A(t)∣∣∣2 , (8)

Полная энергия, излучаемая в единицу телесного угла, определяется
интегрированием этого по времени

dW
dΩ

=

∫ ∞

−∞

∣∣∣⃗A(t)∣∣∣2 dt. (9)
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Теоретическое введение

С помощью преобразования Фурье можно выразить этот результат в виде
интеграла по частотам. Введем Фурье-амплитуду A⃗(ω) функции A⃗(t)

A⃗(ω) =
1√
2π

∫ ∞

−∞
A⃗(t)eiωtdt (10)

и обратное преобразование

A⃗(t) =
1√
2π

∫ ∞

−∞
A⃗(ω)e−iωtdt (11)

Тогда формулу (9) можно переписать в виде

dW
dΩ

=
1
2π

∫ ∞

−∞
dt

∫ ∞

−∞
dω

∫ ∞

−∞
dω′A⃗∗(ω′) · A⃗(ω)ei(ω′−ω)t. (12)
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Теоретическое введение

Получим в итоге

A⃗(ω) =
(

e2

8π2c

) 1
2
∫ ∞

−∞
eiω

{
t′+ Rt′

c

} n⃗× [
(⃗n− β⃗)× ⃗̇β

]
κ2

dt′, (13)

а затем

A⃗(ω) =
(

e2

8π2c

) 1
2
∫ ∞

−∞
eiω

{
t′+ n⃗·⃗r(t′)

c

} n⃗× [
(⃗n− β⃗)× ⃗̇β

]
κ2

dt′ (14)

и

dI(ω)
dΩ

=
e2

4π2c

∣∣∣∣∣∣∣
∫ ∞

−∞

n⃗×
[
(⃗n− β⃗)× ⃗̇β

]
(1− β⃗ · n⃗)2

eiω
{
t′+ n⃗·⃗r(t′)

c

}
dt′

∣∣∣∣∣∣∣
2

(15)
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Теоретическое введение

Интегрирование по частям приводит к следующему выражению для
спектральной интенсивности:

dI(ω)
dΩ

=
e2ω2

4π2c

∣∣∣∣∫ ∞

−∞
n× (n× β)eiω{t−[n·r(t)/c]}dt

∣∣∣∣2 (16)

Для определения частотного и углового распределения энергии необходимо
вычислить этот интеграл. Преобразовав с учетом малости углов θ и близости
рассматриваемого времени к t = 0, разложив на ортогональные составляющие,
получим:

dI(ω)
dΩ

=
e2ω2

4π2c
∣∣−e⃗∥A∥(ω) + e⃗⊥A⊥(ω)

∣∣2, (17)

где амплитуды определяются соотношениями:
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Теоретическое введение

A∥(ω) ≈
c
ϱ

∫ ∞

−∞
t · exp

{
i
ω

2
[(
1
γ2

+ θ2)t +
c2t3

3ϱ2
]

}
dt (18)

A⊥(ω) ≈ θ

∫ ∞

−∞
exp

{
i
ω

2
[(
1
γ2

+ θ2)t +
c2t3

3ϱ2
]

}
dt (19)

Произведя замену переменной x = ct/ρ[(1/γ2) + θ2]−
1
2 и вводя параметр

ξ =
ωϱ

3c
(
1
γ2

+ θ2)
3
2 , (20)

можно преобразовать интегральные представления для A∥(ω) и A⊥(ω) к виду

A∥(ω) =
c
ϱ
(
1
γ2

+ θ2)

∫ ∞

−∞
x · exp

{
i
3
2
(ξ)(x +

1
3
x3)

}
dx (21)

A⊥(ω) = θ(
1
γ2

+ θ2)

∫ ∞

−∞
exp

{
i
3
2
(ξ)(x +

1
3
x3)

}
dx (22) 10



Теоретическое введение

Интегралы и выражаются через функции Эйри, или модифицированные
функции Бесселя: ∫ ∞

0
x · sin[3

2
(ξ)(x +

1
3
x3)]dx =

1√
3
K 2
3 (ξ)

(23)∫ ∞

0
cos[

3
2
(ξ)(x +

1
3
x3)]dx =

1√
3
K 1
3 (ξ)

(24)

В результате энергия, излученная в единицу телесного угла в единичном
интервале частот, оказывается равной

dI(ω)
dΩ

=
e2

3π2c
(
ωϱ

c2
)(
1
γ2

+ θ2)2[K22
3
(ξ) +

θ2

(1/γ2) + θ2
K21
3
(ξ)] (25)

Первое слагаемое в квадратных скобках соответствует излучению,
поляризованному в плоскости орбиты, второе – излучению, поляризованному
перпендикулярно этой плоскости.
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Теоретическое введение

Интегрируем выражение по всем частотам и найдём угловое распределение
энергии ∫ ∞

0

dI(ω)
dΩ

dω =
7
16
e2

ϱ

1
[(1/γ2) + θ2]

5
2
[1+

5
7

θ2

(1/γ2) + θ2
] (26)

Как следует из свойств модифицированных функций Бесселя, интенсивность
излучения пренебрежимо мала при ξ ≫ 1. Это соответствует случаю больших
углов; чем выше частота, тем меньше критический угол, вне пределов которого
интенсивность излучения пренебрежимо мала. Таким образом, излучение
сосредоточено в основном вблизи плоскости движения, причём область заметного
излучения тем меньше, чем выше отношение частоты к величине c/ϱ. Однако
если частота ω становится очень большой, то параметр ξ будет большим для всех
углов.
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Теоретическое введение

Следовательно, на таких частотах полная излученная энергия пренебрежимо
мала. Критическая частота ωc, при превышении которой излучение в любом
направлении становится пренебрежимо малым, может быть определена из
условия ξ = 1

2 и θ = 0. Это приводит к соотношению Критическая частота ωc,
при превышении которой излучение в любом направлении становится
пренебрежимо малым, может быть определена из условия ξ = 1

2 и θ = 0. Это
приводит к соотношению

ωc =
3
2
γ3

(
c
ϱ

)
=
3
2

(
E
mc2

)3 c
ϱ
, (27)

которое и является определяющей лоренц-инвариантной формулой в
рассматриваемой статье и в нашей работе. Здесь и заканчивается рассмотрение
классической электродинамической теории, откуда мы переходим к
гипотетическим построениям для нарушений лоренц-инвариантности.
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Практическая часть
Вывод необходимых формул для описания излучения релятивистской

заряженной частицы при движении по окружности с нарушением

Лоренц-инвариантности

Преобразуем сначала последнюю формулу таким образом, чтобы получить
исходную лоренц-инвариантную формулу критической частоты излучения.
Мгновенный радиус кривизны:

ϱ =
v2

v̇⊥
≈ c2

v̇⊥
, (28)

где v̇⊥ - поперечная составляющая ускорения.релятивистский второй закон
Ньютона с учетом ультрарелятивизма:

evB ≈ ecB = mv̇⊥γ, (29)

где B - перпендикулярная скорости частицы составляющая магнитного поля,
откуда

v̇⊥ =
ecB
mγ

(30)

и

ωc =
3
2
γ3

(
c
ϱ

)
=
3
2
γ3

(
eB
mγ

)
=
3
2
eBγ2

m
, (31)
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Практическая часть

v̇⊥ =
ecB
mγ

(32)

и

ωc =
3
2
γ3

(
c
ϱ

)
=
3
2
γ3

(
eB
mγ

)
=
3
2
eBγ2

m
. (33)

Теперь найдем зависимые от перехода к условиям нарушения инвариантности
элементы. Угол открытия направленного вперед паттерна излучения θ
пропорционален γ−1. Тогда можем переписать

3
2
γ3
c
ϱ
=
3
2
γ2c
ϱθ

, (34)

где, воспользовавшись определением γ, получим
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Практическая часть

3
2
c
ϱθ

1
1− v2

c2
=
3
2

c3

ϱθ(c− v)(c+ v)
, (35)

откуда в ультрарелятивистском пределе

3
2

c3

ϱθ(c− v)(c+ v)
≈ 3
2

c3

ϱθ(c− v)2c
=
3
4

c2

ϱθ(c− v)
. (36)

c, строго говоря, тоже не будет являться константой в случае нарушения
инвариантности. Однако поскольку энергии, переносимые фотонами из
Крабовидной туманности, совершенно несравнимы с энергиями релятивистских
электронов, на практике мы можем пренебречь влиянием изменившихся
дисперсионных соотношений для безмассовых частиц по сравнению с массовыми,
тогда

ωc =
3
4

1
ϱθ(c− v)

=
3
4

1
R(E)δ(E)

1
c(ωc)− v(E)

, (37)
16



Практическая часть

где последняя форма соответствует полученной в [3]. Наконец, выведем
конечную формулу для критической частоты в лоренц-неинвариантном случае.
Как уже было упомянуто, угол θ пропорционален γ−1, коэффициент же следует
выбирать так, чтобы в лоренц-инвариантном случае формула переходила в уже
известную. Повторим, что изменение электромагнитного поля при нарушении
инвариантности слишком незначительно при сравнении порядков энергий,
поэтому δ(E) по-прежнему можно считать пропорциональным γ−1(E). Далее для
поиска чувствительных к нарушению величин нам потребуется ввести
гипотетические дисперсионные соотношения для неинвариантного случая. В
статье используются следующие:

ω2(k) = k2 + ξ
k3

M
, (38)

E2(p) = m2 + p2 + η
p3

M
, (39)
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Практическая часть

Итак, радиус R(E) при заданной энергии определяется уравнением движения
электрона в магнитном поле. Чтобы определить степень влияния
неинвариантности на эту величину, используем дисперсионное соотношение в
качестве функции Гамильтона. Тогда запишем вместо импульса p⃗− eA⃗, где A⃗ -
векторный потенциал магнитного поля. Получим уравнение движения

A⃗
[
1+

3ηE
2M

](e
E

)
v⃗ × B⃗, (40)

где учтен только наименьший порядок η и ультрарелятивизм в E ≫ m. Однако,
поскольку E ≪ m, нарушение инвариантности вносит очень малые изменения в
уравнение вращения, и с хорошей точностью радиус можно считать связанным с
магнитным полем и энергией электрона стандартной ультрарелятивистской
формулой R(E) = E

eB .
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Практическая часть

Поскольку в ультрарелятивистском случае

γ2 =
1

1− v2
c2

=
c2

c2 − v2
=

c2

(c− v)(c+ v)
≈ c2

(c− v)2c
=

c
2(c− v)

, (41)

последний множитель может быть записан в системе счисления, где
инвариантная скорость света равна 1, как 2γ2(E). Таким образом, получим
конечную формулу для критической частоты:

ωc =
3
2
eBγ3(E)

E
=
3
2
eB
m
mγ(E)
E

γ2(E), (42)

где последняя форма соответствует представленной в статье.
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Практическая часть

Далее авторами предлагается вывести разницу c(ω) и v(E) из дисперсионных
соотношений, с предложенным ответом без учета высших порядков:

c(ω)− v(E) = ξ
ω

M
+

M2

2E2
− η

E
M
, (43)

что с учетом пренебрежения ξ дает:

γ(E) ≈
(
m2

E2
− 2η

E
M

)− 1
2

. (44)

Затем, поскольку эта формула ограничена сверху, предлагается, подставив ее в
конечную формулу, найти максимум критической частоты, равный в статье

ωmaxc = 0, 34
eB
m

(
−ηm
M

)− 2
3
, (45)

на основе которого авторами и определяются ограничения на условия
существования нарушений лоренц-инвариантности. 20



Проблемы

Ключевая проблема: неопределенность выбора групповой или фазовой скорости
в ходе вывода ключевой формулы. В одной части статьи γ = E

m , что верно только
для фазовой скорости: релятивистский импульс p = γmv, по предположению
m = E

γ , тогда p
γv =

E
γ , отсюда v = E

p , что, в соответствии с E = ℏω и p = ℏk дает

vph = ω
k . В других же частях как в явном виде, так и при введении γ = (1− v2

c2 )
− 1
2

используется групповая скорость vgr = dE
dp . В лоренц-инвариантном случае в

вакууме две скорости всегда равны. Однако, оказывается, только этому случаю и
будет соответствовать их неразличимость. Действительно,
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Проблемы

dE
dp = E

p (46)

Ede = pdp (47)
1
2d(E

2) = 1
2d(p

2) (48)
d(E2 − p2) = 0, (49)

откуда следует, что дисперсионное соотношение для электрона может выглядеть
лишь как E2 = p2 + C, где C - произвольная постоянная, что соответствует
лоренц-инвариантному соотношению E2 = m2 + p2, в отличие от
модифицированного соотношения. Таким образом, несмотря на то, что позже
авторами статьи вводится модифицированный гамма-фактор, при выводе самой
ключевой формулы используются по очереди противоречащие друг другу
определения скоростей, что может повлиять как на саму формулу, так и на
последствия ее применения, то есть непосредственные выводы статьи. 22



Кроме того, само соотношение для лоренц-неинвариантного гамма-фактора
ставится под вопрос весьма неясным выводом разности групповых скоростей,
которое не следует из дифференцирования дисперсионных соотношений в
соответствии с определением групповой скорости. Возможно, для вывода
применялись какие-то неуказанные в статье методы, либо же, чего нельзя
исключать, вновь ошибочно применялась эквивалентность между групповой и
фазовой скоростями.
Более того, в предложенном в [1] выводе ключевой формулы, на который
опирается статья, заключение о том, что при заданной величине приложенной
силы излучение при поперечном ускорении в γ2 раз превышает излучение для
случая продольного ускорения исходит из ряда преобразований, основанных на
лоренц-инвариантном обобщении формулы Лармора. В связи с этим, строго
говоря, также возникает вопрос о применимости полученных заключений к
ситуации с нарушением инвариантности. В завершение, нами был проведен
небольшой литературный обзор, по итогам которого было обнаружено, что
статья [3] уже критиковалась за используемые методы и полученные результаты,
в частности, в [4], где, однако, большее внимание было уделено более глубоким
онтологическим вопросам. 23



Заключение

В ходе изучения принятой теории синхротронного излучения и ее
лоренц-неинвариантных альтернатив, а также критического анализа статьи были
обнаружены некоторые серьезные недочеты или проблемы в методологии
авторов статьи, из которых ключевые были связаны с нетождественностью
фазовой и групповой скоростей ультрарелятивистских объектов при нарушениях
лоренц-инвариантности. Однако, поскольку статья достаточно лаконична и
опускает множество интересующих нас моментов, однозначного заключения о
справедливости или несправедливости ее выводов сделать нельзя. В дальнейшем
нами планируется продолжить ее исследование и, уже с учетом всех данных,
использованных авторами статьи, попытаться однозначно получить результат и
объяснить его.
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