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1 Введение

1.1 Постановка задачи
В данной работе уделяется внимание понятиям квазиимпульса, квазиэнергии и

квазимомента импульса. Целью работы является анализ полученных результатов
для квазиипульса и применение похожих подходов для рассмотрения квазимомен-
та импульса. Кроме того, требуется рассмотреть существование квазиэнергии для
периодического гамильтониана осциллятора с частотой, зависящей от времени.
Задачи работы можно сформулировать так:
1. Доказать существование квазимомента импульса для дискретных симметрий
(при инвариантности гамильтониана относительно вращения на некоторый угол).
2. Найти оператор и собственные значения оператора квазимомента импульса.
3. Анализ изученного понятия квазиэнергии проводится для доказательства суще-
ствования квазиэнергии в случае ω = ω(t) и V (x) = l2ω2(t) · (1− cosx) (требуется
найти собственные функции гамильтониана в этом случае и собственные значе-
ния).
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1.2 Теорема Нётер
Под группой преобразований будем подразумевать совокупность преобразова-

ний [8]: {
t∗ = f0(t, q1, . . . , qn, a1, . . . , ar) = f0(t, q, a),

q∗i = fi(t, q1, . . . , qn, a1, . . . , ar) = fi(t, q, a)(i = 1, 2, . . . , n).

Здесь назовём P ∗(t∗, q∗) - образ точки P (t, q), а преобразования запишем сле-
дующим образом: T1q = q∗, T−1

1 q∗ = q. Рассмотрим такие преобразования при
условии, что выполняется ассоциативный закон T3(T2T1) = (T3T2)T1, существует
тождественное преобразование T0, такое, что T0T1 = T1T0 = T1, а также существу-
ет обратное преобразвание T−1

1 , такое, что T1T−1
1 = T−1

1 T1 = T0. Если выполнены
эти условия, то говорят, что эти преобразования образуют r-параметрическую
группу преобразования Gr, называемую группой Ли.
Требуемые нам теоремы для решения задач теоретической механики можно сфор-
мулировать следующим образом.
Пусть задано бесконечно малое преобразование:

t∗ = t+
r∑

α=1
εαζ

α
0 (t, q, q̇),

q∗i (t
∗) = qi(t) +

r∑
α=1

εαζ
α
i (t, q, q̇) (i = 1, 2, ..., n)

для группы Ли Gr. В таком случае, если функции Лагранжа L и L1 будет удовле-
творять условию:

t2∫
t1

L(t, q, q̇)dt =
t∗2∫

t∗1

L1(t
∗, q∗, q̇∗)dt∗, (1)

и позволяют получить одни и те же уравнения движения, то тогда будет суще-
ствовать ровно r независимых первых интегралов движения уравнения Лагранжа
в виде:

L · ζα0 +
n∑

i=1

∂L
∂q̇i

· ζαi + λα = Cα (α = 1, 2, ..., r), (2)

где ζαi := ζαi − q̇iζ
α
0 .

Доказательство (полное приведено в книге [8]):
Запишем вариацию действия в виде:

∆I =

t2∫
t1

r∑
α=1

εα[
d

dt
(Lζα0 +

n∑
i=1

∂L
∂q̇i

ζ
α

i )−
n∑

i=1

(
d

dt

∂L
q̇i

− ∂L
∂qi

)ζ
α

i ]dt, (3)
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где ζαi := ζαi − q̇iζ
α
0 . Пусть интеграл I =

t2∫
t1

L(t, q, q̇)dt инвариантен в смысле (1).

Тогда его вариация удовлетворяет условию:

∆I +

t2∫
t1

[
d

dt
·∆λ]dt = 0. (4)

Заменим ∆I выражением (3). Получим следующее выражение:

t2∫
t1

r∑
α=1

εα[
d

dt
(L · ζα0 +

n∑
i=1

∂L
∂q̇i

· ζαi + λα)−
n∑

i=1

(
d

dt

∂L
∂q̇i

· −∂L
∂qi

)ζ
α

i ]dt = 0. (5)

εα независимы, а интервал интегрирования берётся произвольно, из чего следу-
ет, что вдоль траектории:

d

dt
[L · ζα0 +

n∑
i=1

∂L
∂q̇i

· ζαi + λα] = 0 (α = 1, 2, . . . , r). (6)

Из выражения (6) и будет следовать искомое утверждение:

L · ζα0 +
n∑

i=1

∂L
∂q̇i

· ζαi + λα = Cα (α = 1, 2, . . . , r). (7)

Таким образом, получили r линейно независимых первых интегралов уравнения
Лагранжа d

dt
∂L
∂q̇i

− ∂L
∂qi

= 0. Теорема Нётер доказана.
Важнейшими следствиями из теоремы Нётер являются законы сохранения. В
классической механике законы сохранения энергии, импульса и момента импуль-
са выводятся из однородности/изотропности лагранжиана системы — функция
Лагранжа не меняется со временем сама по себе и не изменяется переносом или
поворотом системы в пространстве (непрерывные симметрии). В сущности, это
будет означает то, что при рассмотрении некоторой замкнутой системв в лабора-
тории будут получены одни и те же результаты вне зависимости от её расположе-
ния и от времени проведения эксперимента. Если существуют другие симметрии
лагранжиана системы, то они могут соответствовать и другим сохраняющимся в
данной системе величинам (интегралам движения).
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2 Основные понятия и модельные задачи

2.1 Квазиимпульс. Теорема Блоха
Начать следует с того, что можно разделить все симметрии на две категории:

пространственные симметрии и временные симметрии. К первым будут относиться
величины, связанные с импульсом и моментом импульса, а ко вторым - с энергией.
Начать можно с квазиимпульса и с модельной задачи на введение понятия ква-
зиимпульса, где мы рассматриваем трансляцию не на произвольный вектор, а на
конкретный вектор (или на его линейную комбинацию с целыми коэффициента-
ми).
Ионы в идеальном кристалле расположены таким образом, что образуют регуляр-
ную периодическую структуру, поэтому необходимо рассмотреть задачу о частице
в потенциале U(r), который имеет периодичность решётка Бравэ, то есть имеет-
ся набор элементарных трансляций, с помощью которых может быть получена
вся бесконечная кристаллическая решётка (в случае электрона в атоме). Потен-
циал периодический, то есть: U(r +R) = U(r). Обычный импульс сохраняется в
том случае, когда потенциал инвариантен относительно трансляции на любой век-
тор. Вообще квазивеличины возникают в том случае, когда имеются дискретные
симметрии, то есть квазиимпульс существует, когда потенциал инвариантен отно-
сительно трансляции на линейную комбинацию определённого вектора, называе-
мого вектором решётки. Нам необходимо изучить общие свойства одночастичного
уравнения Шрёдингера:

HΨ = (− ℏ2

2m
∇2 + U(r))Ψ = EΨ, (8)

обусловленные периодичностью потенциала U . Из его периодичности вытекает
следующее свойство стационарных состояний рассматриваемых нами частиц, на-
зываемое Теоремой Блоха:
Собственные состояния ψ одночастичного гамильтониана H = −ℏ2∇2

2m + U(r) при
всех R из решётки Бравэ, могут быть выбраны с учётом периодического потенциа-
ла U(r+R) = U(r) таким образом, что их волновые функции будут представлять
собой плоскую волну, умноженную на периодическую функцию с периодичностью
решётки Бравэ [3], [7]. Математически это можно записать так:

ψnk(r) = eikrunk(r), (9)

где функции unk - периодичны и могут быть записаны следующим образом:

unk(r+R) = unk(r). (10)

Волновые функции в виде (10) называют функциями Блоха. Однако стоит от-
метить, что амплитуды ψnk (9) являются плоскими волнами из-за члена eikr, то
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есть периодическими функциями не будут.
Из выражений выше также может следовать равенство:

ψnk(r+R) = eikRψnk(r), (11)

Альтернативная формулировка: Собственные состояния Ψ оператора H
можно выбрать таким образом, чтобы с каждым из них был связан некоторый
волновой вектор k, и для любого вектора R в решётке Бравэ выполнялось следу-
ющее равенство:

Ψ(r+R) = eikRΨ(r). (12)
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2.2 Квазиэнергия системы, подвергающейся периодическо-
му воздействию

Перейдём к рассмотрению временных симметрий, то есть трансляций на неко-
торый промежуток времени. Если этот промежуток времени произволен, то мы
говорим о законе сохранения энергии, если же это справедливо только для опре-
делённых промежутков времени (так называемых периодов), то можно говорить
о следующей модельной задаче.
Рассмотрим квантовую систему, на которую будет действовать периодически ме-
няющаяся во времени сила. Предположим, что гамильтониан представляет собой
сумму слагаемого, не зависящего от времени (H0), и зависящего от времени (H1).
Если зависящее от времени слагаемое не много меньше, чем сам гамильтониан, то
нельзя будет воспользоваться теорией возмущения.
Из групповых соображений для гамильтониана вида H = H0 + H1, периодиче-
ски зависящего от времени в виде H(t+ T ) = H(t), выберем среди всех решений
уравнения Шрёдингера:

iℏ
∂Ψ

∂t
= HΨ (13)

такие волновые функции Ψα(t), что будет выполняться соотношение:

Ψα(t+ T ) = Ψα(t) · e−iα. (14)

Так как выбор самих функций напоминает выбор функций теоремы Блоха, то
будет естественно назвать квазиэнергией величину [4]:

ε =
ℏα
T
, T =

2π

ω
. (15)

Квазиэнергия будет возникать в том случае, когда имеет место трансляция по
времени на период T . Выберем для анализа волновую функцию с какой-то квази-
энергией ε (пусть она будет периодической). Запишем её в виде:

Ψε(x, t) = uϵ(x, t) · e−
iεt
ℏ , uε(x, t+ T ) = uε(x, t). (16)

Отсюда следует, что для разных квазиэнергий ε2 − ε1 ̸= mℏω ортогональность
волновых функций этих двух состояний есть условие независимости от времени t.
В противном же случае суперпозиция двух таких решений есть решение с той же
квазиэнергией (определённой с точностью до аддитивной постоянной mℏω).
Перейдём к практическому применению рассмотренной теории. Классическая за-
дача - задача об осцилляторе. Рассмотрим осциллятор с постоянной частотой с
действующей внешней силой f(t):

i
∂Ψ

∂t
= −1

2

∂2Ψ

∂x2
+ [

1

2
ω2
0 · x2 − f(t)x] ·Ψ, f(t+ T ) = f(t). (17)
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Решение (спектр энергий) имеет вид, полученный в [4]:

εn = (n+
1

2
) · ω0 −

1

2T

T∫
0

f(t)η(t)dt, (18)

где η(t) выражается в следующем виде. Решаем уравнние Шрёдингера для осцил-
лятора с переменной частотой ω(t), на который действует сила f(t):

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
+ [

1

2
ω2(t)x2 − f(t)x]ψ. (19)

Сделаем подстановку Хусими:

ψ(x, t) = ei(η̇x1+σ(t))ϕ(x1, t), x1 = x− η(t), (20)

где η(t), σ(t) - неизвестные функции. При подстановке в уравнение получим:

i
∂ϕ

∂t
= −1

2

∂2ϕ

∂x21
+

1

2
ω2x21ϕ+ (η̈ + ω2η − f)x1ϕ+ (σ̇ − 1

2
η̇2 +

1

2
ω2η2 − fη)ϕ. (21)

Отсюда ϕ(x) удовлетворяет уравнению (19) c f = 0 при выполнении условий:
η̈ + ω2η = f(t), η(−∞) = η̇(−∞) = 0,

σ(t) =
t∫

−∞
L(t′)dt′.

Здесь L - классический лагранжиан:

L =
1

2
η̇2 − 1

2
ω2η2 + fη.

Исходя из написанного выше, собственные функции записываются так [4]:

Ψn(x, t) = Φn(x− η(t), ω0)e
−i[(n+ 1

2 )·ω0t− 1
2

t∫
0

fηdt′]
, (22)

где Φn - стационарные состояния гармонического осциллятора с постоянной ча-
стотой ω0:

Φn(x, ω0) = (
1

2n · n!
·
√
ω0

π
)
1
2e−

1
2 ·ω0x

2

Hn(
√
ω0x), (23)

где Hn - полиномы Эрмита: Hn = (−1)neω0x
2 dn

dxne
−ω0x

2.
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2.3 Численное решение уравнения Шрёдингера для нахож-
дения квазиэнергии

Рассмотрим потенциал V (x, t) = m·l2 ·ω2(t)·(1−cosx). Здесь ω(t)2 = ω2
0+ϵ·cos t.

Уравнение Шрёдингера с гамильтонианом H = p2

2m + V (x, t) запишется в виде:

i
∂

∂t
Ψ = − 1

2m

∂2

∂x2
Ψ+ V (x, t)Ψ (24)

Вспомним, что Ψ(x, t) = e−iεtu(x, t). Подставив в уравнение Шрёдингера (24),
получим:

εu+ i
∂u

∂t
= − 1

2m

∂2u

∂x2
+ V u. (25)

Фунция u(x, t) удовлетворяет следующим периодическим и граничным услови-
ям:

u(x+ 2π, t) = u(x, t), u(x, t) = u(x, t+ T ).

Решение будем рассматривать на отрезке [−π, π]. Для нахождения спектра энер-
гий, положим ∂u

∂t = 0. Получим аналог уравнения теплопроводности:

εu = − 1

2m
u

′′
+ V u (26)

εu(x, t) = − 1

2m
u

′′
(x, t) +m · l2 · ω2(t) · (1− cosx)u(x, t) (27)

Здесь предполагаем, что ω2(t) = ω2
0+ϵ·cos(νt). Можем положить три константы

равными единице: m = 1, ℏ = 1, ω0 = 1.
Проэволюционируем стационарные состояния для гармонического осциллятора
(это будут состояния в начальный момент времени):

Φn(x) =
1√

2n · n!
· (mω
πℏ

)1/4 · exp
(
−mωx

2

2ℏ

)
·Hn(

√
mω

ℏ
x), (28)

что при трёх константах, равных единице, даст:

Φn(x) =
1√

2n · n!
· ( 1
π
)1/4 · exp

(
−x

2

2

)
·Hn(x). (29)

В результате получим:

Φ̃n = U(T, tN−1) . . . U(t1, 0)Φn. (30)

С другой стороны, проэволюционированные состояния можно записать следу-
ющим образом:

Φ̃n = U(T, 0)Φn =
∑
k

ankΦk. (31)
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Коэффициенты разложения ищутся следующим образом:

ank =

L∫
−L

Φ̃nΦkdx. =
∑
j

Φ̃k(xj)Φk(xj)h (32)

Запись волновых функций:

Ψ(x, 0) = cnΦn(x); Ψ(x, T ) =
∑
n,k

cnankΦk = e−iεTΨ(x, 0) (33)

Коэффициенты разложения будут представлять собой диагональную матрицу
с элементами λi на диагонали, где |λi| ≈ 1:

ank
diag−→


λ1 0 . . . 0
0 λ2 . . . 0
. . . . . . . . . . . .
0 0 . . . λN

 . (34)

Из (33) видно, что аргументом комплексной величины λi можно назвать выра-
жение:

arg(λi) = −εiT. (35)

Итак, собственные значения akn назовём λi, а собственные функции (собствен-
ные вектора) - vi. Таким образом, спектр энергий будет искаться в виде:

εi = −arg(λi)
T

, (36)

где λi =
≈1

|λi| ·e−iεiT . Собственные функции же будут выражаться комбинацией соб-
ственных векторов и стационарных состояний гармонического осциллятора:

Ψi(x, 0) =
∑
n

vni Φn. (37)
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2.4 Реализация вычислений
Для решения полученного уравнения, воспользуемся разностной схемой Кранка-

Николсона, аппроксимация оператора эволюции [5] запишется следующим обра-
зом:

U(tk+1, tk) = (I + i
τ

2
H(tk +

τ

2
))−1 · (I − i

τ

2
H(tk +

τ

2
)). (38)

Докажем утверждение выше следующим образом. Операторы координаты и им-
пульса и гамильтониана в безразмерном случае могут быть записаны так:

x = x, p = −i ∂
∂x
,

H = −1

2

∂2

∂x2
+ V (x, t) (39)

При задании симметричной координатной сетки в пределах (−L,L) в виде:

xk = −L+ kh, k ∈ (0, N), (40)

где N - число интервалов сетки. Приближённые равенства для производных со
вторым порядком точности запишутся следующим образом [5]:

∂f(x)

∂x
=

1

2h
(f(x− h) + f(x+ h)) +O(h2), (41)

∂2f(x)

∂x2
=

1

h2
(f(x− h)− 2f(x) + f(x+ h)) +O(h2). (42)

Тогда можем записать матрицы операторов координаты и импульса, воспользо-
вавшись (40):

xik = xkδik, pik = − i

2h
(δi,k+1 − δi,k−1), (43)

где δik - символ Кронеккера. Тогда гамильтониан можно записать в виде:

Hik = − 1

2h2
(δi,k+1 + δi,k−1) + (V (xk) +

1

h2
)δik. (44)

При этом для аппроксимации оператора эволюции выглядит следующим обра-
зом [5]:

U(tk+1, tk) = (I + i
τ

2
H(tk +

τ

2
))−1 · (I − i

τ

2
H(tk +

τ

2
)) +O(τ 3), (45)

что и совпадает с выражением (38).
Для начала нужно проверить, работает ли программа, на примере потенциала x2

2 .
В этом случае мы знаем, что модуль волновой функции не меняется при эволюции:
Меняется же в этом случае только аргумент.
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Рис. 1: Потенциал x2

2 в начальный момент времени, n = 20

Рис. 2: Потенциал x2

2 в проэволюционированном случае, n = 20

Рис. 3: Зависимость аргумента от времени для x2

2 , n = 20

Для случая нашего потенциала V (x, t) = m · l2 · ω2(t) · (1 − cosx) получаем
следующие графики:
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Рис. 4: Спектр энергий для x2

2

Рис. 5: Потенциал V (x, t) = m · l2 · ω2(t) · (1− cosx) в начальный момент времени

Рис. 6: Потенциал V (x, t) = m · l2 · ω2(t) · (1 − cosx) в проэволюционированном
случае

Были также получены собственные функции для пяти различных начальных
собственных состояний гармонического осциллятора:
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Рис. 7: Зависимость аргумента от времени для V (x, t) = m · l2 · ω2(t) · (1− cosx)

Рис. 8: Собственная функция при n = 0

Рис. 9: Собственная функция при n = 1
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Рис. 10: Собственная функция при n = 5

Рис. 11: Спектр квазиэнергий для V (x, t) = m · l2 · ω2(t) · (1− cosx)

2.5 Квазимомент импульса
Вернёмся снова к пространственным симметриям. Как мы помним, изотроп-

ность пространства приводит к закону сохранения момента импульса. Найдём
аналогичную величину для дискретных симметрий. Назовём оператором поворота
R(χ) величину, связанную с углом поворота в пространстве соотношением:

R(χ) ≡ e−
i
ℏLχn (46)

Оператор поворота R(χ) действует в пространстве волновых функций (так же,
как и оператор L - оператор углового момента, векторный эрмитов оператор, ко-
торый в квантовой механике имеет смысл полного момента квантовой частицы).
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Он связан с оператором поворота r, действующим в пространстве V3 следующим
образом:

R(χ) ·Ψ(x, y, z) = Ψ(x cos(χ) + y sin(χ), y cos(χ)− x sin(χ), z)), (47)

R(χ)Ψ(x⃗) = Ψ(r−1x⃗). (48)

Вектором поворота вокруг оси n назовём χ := χ · n.
Здесь предполагаем, что поворот происходит из l-системы координат в s-систему.
Связь между векторами состояний в декартовых системах координат можно за-
писать следующим образом:

|Ψ, s⟩ = R(χ) |Ψ, l⟩ (49)

Формально это соотношение можно вывести при помощи уравнения Шрёдингера:
Так как R(χ) отображает пространство векторов |Ψ, l⟩ в |Ψ, s⟩, то из сохранения

Рис. 12: Оператор поворота в декартовой СК

во времени нормировки состояний:

⟨Ψ, s|Ψ, s⟩ = ⟨Ψ, l|R†(χ)R(χ)|Ψ, l⟩ = ⟨Ψ, l|Ψ, l⟩ (50)

будет видно, что оператор поворота будет унитарным, так как R†(χ)R(χ) = 1.
Подставим теперь такое определение в уравнение Шрёдингера:

{iℏ ∂
∂t
R(χ)−HR(χ)} |Ψ, l⟩ = 0, (51)

откуда и получаем искомое соотношение (46), похожее на оператор эволюции для
трансляции времени.
Решением уравнения Шрёдингера будут обе функции: и в l-системе координат, и
в s-системе координат (это следует из изотропности пространства). Тогда можем
получить цепочку равенств. С одной стороны:

H |Ψ, s⟩ = iℏ
∂ |Ψ, s⟩
∂t

= HR(χ) |Ψ, l⟩ (52)
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С другой стороны:

iℏ
∂ |Ψ, s⟩
∂t

= iℏR(χ)
∂ |Ψ, l⟩
∂t

= R(χ)H |Ψ, l⟩ (53)

По определению операторной экспоненты (так как вводили оператор поворота
как (46)):

R(χ) =
∞∑
n=0

1

k!
(− i

ℏ
Lχ)k, (54)

Из предыдущей строчки видно, что гамильтониан будет коммутировать с опера-
тором поворота:

[H,R(χ)] = 0, (55)

Отсюда следует коммутативность:

[H,L] = 0.

Для удобства и краткости будем называть R(χ) ≡ RΦ, а также можно будет
ввести оператор l = L

ℏ , где ℏ = 1, то есть l = L. В квантовой механике традиционно
измеримы квадрат углового момента и одна из его компонент (традиционно z) -
будет показано ниже.
Аргумент любой функции f(χ) смещается на Φ. Запишем это следующим образом:

RΦf(χ) = f(χ+ Φ). (56)

В силу периодичности нашего гамильтониана, запишем, учитывая, что Φ - период,
причём у нас есть симметрия именно относительно поворота Φ = 2π

n :

RΦH |Ψ, l⟩ := RΦHΨ = H(χ+ Φ)Ψ(χ+ Φ) = H(χ)Ψ(χ+ Φ) = HRΦΨ. (57)

Уравнение (57) выполняется тождественно для любой функции Ψ, поэтому

RΦH = HRΦ. (58)

В сущности, выражение (57) показывает, что эти операторы коммутируют меж-
ду собой. Также, применяя последовательно оператор поворота два раза, знаем,
что применение оператора поворота два раза можно менять местами (изотроп-
ность пространства относительно поворота):

RΦRΥΨ(χ) = RΥRΦΨ(χ) = Ψ(χ+ Φ+Υ).

Обозначим композицию операторов поворота в виде:

RΦRΥΨ = RΥRΦΨ = RΦ+ΥΨ. (59)
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Из соотношений (58) и (59) видно, что гамильтонианH и операторы RΦ для всех
Φ образуют набор коммутирующих операторов. Тогда собственные состояния H
выберем таким образом, чтобы они являлись также и собственными состояниями
всех RΦ. Запишем:

HΨ = EΨ, (60)

RΦΨ = ζ(Φ)Ψ. (61)

Здесь собственными значениями оператора поворота ζ(Φ) назвали величины,
удовлетворяющие соотношению:

RΦRΥΨ = RΥRΦΨ = ζ(Φ)RΥΨ = ζ(Φ)ζ(Υ)Ψ. (62)

С другой стороны, мы можем записать условие на периоды этих собственных
значений:

RΥRΦΨ = RΦ+ΥΨ = ζ(Φ + Υ)Ψ, (63)

Тогда для собственных значений должно выполняться:

ζ(Φ + Υ) = ζ(Φ)ζ(Υ).

Выразим период оператора в виде периодической функции собственного значе-
ния:

ζ(ei) = ei·2πχi,

выбрав соответствующим образом χi. Тогда, если Φ = e1 · n1 + e2 · n2 + e3 · n3, то:

ζ(Φ) = ζ(e1)
n1 · ζ(e2)n2 · ζ(e3)n3. (64)

Последнее равенство эквивалентно:

ζ(Φ) = eiLΦ. (65)

Таким образом, получаем, что для поворота на угол Φ справедливо разложение
собственного значения ζ(Φ) по базису ζ(ei). Выполняется цепочка равенств:

RΦΨ(χ) = Ψ(χ+ Φ) = ζ(Φ)Ψ(χ) = eiLΦΨ(χ), (66)

то есть разложение по Блоховским функциям в форме (12). Тогда будет спра-
ведливо сохранение квазимомента импульса во внешнем периодическом поле при
возникновении симметрии на угол Φ = 2π

n . Подчеркнем, что истинного сохраняю-
щегося момента импульса в этом случае вообще говоря нет, так как во внешнем
поле закон сохранения момента импульса не будет имеет места в общем случае.
Закон сохранения момента импульса записывается следующим образом: сумма мо-
ментов импульса всех тех системы остаётся постоянной, если воздействующие на
данную систему моменты внешних сил будут скомпенсированы. Кроме того, если
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в цилиндрических координатах сохраняется обобщённый импульс по ϕ, то будет
сохраняться проекция момента импульса. А узнать, сохраняется ли весь момент
импульса, можно по виду потенциальной энергии: если она зависит только от r,
то сохраняется. Замечательно, однако, что в периодическом поле частицу тем не
менее можно характеризовать некоторым постоянным вектором.
Перейдём к нахождению собственных значений и собственных функций операто-
ра квазиимпульса. Рассмотрим сначала классический момент импульса. Оператор
момента импульса можно ввести следующим образом:

L = [r× p] = −iℏ[r×∇]. (67)

Нетрудно заметить, что если L = Lxex + Lyey + Lzez, то коммутаторы будут
иметь вид:

[Lx, Ly] = iℏLz, [Ly, Lz] = iℏLx, [Lz, Lx] = iℏLy (68)

Найдём собственные значения оператора проекции момента импульса [9]:

LzΨ = lzΨ, −iℏ∂Ψ
∂χ

= lzΨ

Ψm = Ce
i
ℏ lzχ

Уже писал выше, что можно определить СЗ и СФ для оператора проекции
момента импульса на ось z. Так как функция периодическая, то Ψm(χ) = Ψm(χ+
2π). Отсюда последует, что:

Lz = mℏ,m = ±1,±2,±3, ... (69)

Из условия нормировки собственные функции:

Ψm(χ) =
1√
2π
eimχ. (70)

Воспользуемся комплексными комбинациями [9]: L+ = Lx+iLy, L− = Lx−iLy.

L2 = L+L− + L2
z + Lz

Собственную функцию оператора момента импульса назовём Φm. Тогда из ком-
мутационных соотношений (68) видно:

LzL±Φm = (mℏ± 1)L±Φm (71)

Φm+1 = const · L+Φm, Φm−1 = const · L−Φm (72)

Отсюда видно, что собственные значения оператора момента импульса имеют
вид L2 = ℏ2 · l(l + 1). Здесь l - это максимальная проекция момента импульса на
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ось z в единицах ℏ.
Коммутаторы проекций момента импульса отличны от нуля, то есть любые 2 про-
екции момента импульса не могут быть одновременно измеримы. Отсюда следует
важный вывод: две любые проекции момента импульса не могут одновременно
иметь определенные значения. Следовательно, и сам вектор момента импульса не
имеет определенного направления в пространстве. Определенное значение имеют
одновременно абсолютная величина момента импульса (квадрат момента импуль-
са сохраняется) и одна из его проекций.
Вернёмся к тому, что гамильтониан коммутирует с оператором поворота (55). То-
гда во внешнем поле собственные функции операторов H и L должны совпадать,
а между собственными значениями должна быть функциональная связь:

E = E(Lq).

Найдём общий вид оператора квазимомента импульса Lq:

dLq

dt
=

1

iℏ
[LqH −HLq] (73)

Между L и Lq также должна существовать определённая связь: в предельном слу-
чае отсутствия внешнего поля квазимомент импульса должен переходить в момент
импульса. Будем рассматривать только проекцию на ось z. Из этого условия видно
для проекции, что:

Lz = −iℏ(x ∂
∂y

− y
∂

∂x
) (74)

В полярных координатах (было показано выше):

x = r sin θ cosχ, y = r sin θ sinχ, z = r cos θ

Lz,q = −iℏ(x ∂
∂y

− y
∂

∂x
) + iℏΘ(χ) = −iℏ ∂

∂χ
+ iℏΘ(χ) (75)

Наличие добавки Θ обеспечит коммутацию Lz,q и H. Запишем волновую функ-
цию через Блоховские функции и назовём её Ψq(χ). Здесь функция u(χ) - перио-
дическая:

Ψ(χ) = RΦu = u(χ+ Φ) = ζ(Φ)u = eimχu(χ)

Уравнение на поиск собственных значений:

Lz,qΨ(χ) = mΨ(χ)

Lz,qΨ(χ) = (−iℏ ∂

∂χ
+ iℏΘ(χ)) · (eimχu(χ))

Lz,qΨ(χ) = −iℏ ∂

∂χ
· (eimχu(χ)) + iℏΘ(χ)eimχu(χ) =
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= −i · imℏΨ(χ)− iℏeimχ ∂

∂χ
u(χ) + iℏΘ(χ)Ψ(χ) =

= mℏΨ(χ) + iℏ(Θ(χ)− ∂

∂χ
(lnu(χ))Ψ(χ) = mΨ(χ) (76)

Проделав эти операции, приходим к аналогичному результату для собственных
значений обычного момента импульса:

Lz,q = mℏ. (77)

Кроме того, получили выражение для добавки Θ(χ):

Θ(χ) =
∂

∂χ
lnu(χ). (78)

То есть для систем с дискретными симметриями существует проекция квази-
момента импульса, собственные значения которого выражаются формулой (77).
Если в теореме Блоха [7] для электрона в кристаллической решётке условие на
квазиволновой вектор ставилось в виде:

(k, aj) =
2π

Nj
· pj, (79)

где pj ∈ Z, а aj - вектор трансляции решётки, то в данном случае из условия
периодичности следует, что m принимает набор целых значений Z (как и в случае
обычного момента импульса).
Оператор проекции квазимомента импульса в таком случае будет иметь вид:

Lz,q = −iℏ ∂

∂χ
+ iℏΘ(χ) = −iℏ ∂

∂χ
+ iℏ(

∂

∂χ
lnu(χ)). (80)

Несмотря на нелинейную добавку, оператор Lz, q будет линейным. Мы его за-
даём действием на конкретные базисные функции, то есть действуем именно в
этом базисе. Приведём пример: назовём A некторый оператор, который действует
следующим образом:

Av1 = A

(
x1

x2

)
=

(
lnx1

lnx2

)
(81)

Аналогично:
Av2 = A

(
y1

y2

)
=

(
ln y1

ln y2

)
(82)

Тогда:

A(αv1 + βv2) = α

(
lnx1

lnx2

)
+ β

(
ln y1

ln y2

)
. (83)
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В нашем случае запишется так:

Lz,qΨ(χ) = −iℏ ∂

∂χ
Ψ(χ) + iℏΘ(χ)Ψ(χ) = −iℏ ∂

∂χ
Ψ(χ) + iℏ(

∂

∂χ
lnu(χ))Ψ(χ). (84)

То есть условие линейности запишется следующим образом:

Lz,q(αΨ1+βΨ2) = α · (−iℏ ∂

∂χ
Ψ1+ iℏ(

∂

∂χ
lnu1)Ψ1)+β · (−iℏ

∂

∂χ
Ψ2+ iℏ(

∂

∂χ
lnu2)Ψ2)

(85)
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3 Итоги работы
В процессе выполнения работы были изучены понятия квазиимпульса, квази-

энергии и квазимомента импульса. Были приведены законы сохранения классиче-
ских трёх величин: импульса, энергии и момента импульса как следствие теоремы
Нётер. Кроме того, была рассмотрена теорема Блоха для периодической струк-
туры. В случае квантовой системы с дискретной симметрии по времени (транс-
ляции на период T ) были найдены собственные фунции гамильтониана для дан-
ного случая осциллятора с потенциалом V (x, t) = m · l2 · ω2(t) · (1 − cosx), где
ω(t)2 = ω2

0 + ϵ · cos t, а также спектр квазиэнергий.
Помимо этого, была рассмотрена задача о введении квазимомента импульса. Были
определены собственные значения оператор проекции момента импульса.
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