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1 Аннотация
В данной работе рассматривается решение одномерного уравнения Шредингера для потенциала 𝛼/𝑥2 и
вычисляется квадрат модуля усредненной траектория квазиклассического движения в потенциале 𝛼/𝑥2
через когерентные состояний данной системы.

Как было показано в статье [1] квадрат модуля усредненной траектория квазиклассического движения
в потенциале 𝛼/𝑥2 связан с термодинамикой черной дыры. В данной статье путем численного решения
нестационарного уравнения Шредингера для данного потенциала, был получен квадрат модуля усреднен-
ной траектория квазиклассического движения . Полученный результат сравнивается с результатом статьи
[1].

2 Введение

2.1 Связь потенциала 𝛼/𝑥2 с температурой черной дыры
В статье [1] была показана связь квантово-механического уравнения Шрёдингера с потенциалом 𝛼/𝑥2 с
термодинамикой черной дыры.

Покажем, что проблема скалярного поля рядом с пространством-временем черной дыры (более точно в
любом пространстве времени, где горизонт событий описывается пределом Риндлера (радиальной частью
решения Шварцшильда) [6]) может быть сведена к проблеме движения квантово-механической частицы в
потенциале 𝛼/𝑥2, где в данном контексте |𝑋|2 - квадрат модуля усредненной траектории квазиклассиче-
ского движения в потенциале 𝛼/𝑥2, который имеет смысл рождения частиц в квантовой теории и d|𝑋|2

d𝑡
–

производная квадрата модуля усредненной траектория квазиклассического движения в потенциале 𝛼/𝑥2 ,
которая имеет смысл степени рождения частиц горизонтом событий.

Рассмотрим скалярное поле в 1 + 1 пространстве и времени с метрикой:

d𝑠2 = 𝐵(𝑟)d𝑡2 −𝐵−1(𝑟)d𝑟2 (1)

где 𝐵(𝑟) имеет простой ноль в 𝑟 = 𝑟0 и 𝐵′(𝑟) = d𝐵
d𝑟

не равно нулю и конечно в точке 𝑟0. Исчезновение 𝐵(𝑟)
в точке 𝑟0 говорит о присутствии горизонта событий. Рядом с горизонтом событий разложим 𝐵(𝑟) как:

𝐵(𝑟) = 𝐵′(𝑟0)(𝑟 − 𝑟0) +𝒪[(𝑟 − 𝑟0)
2] ≈ 𝐵′(𝑟0)(𝑟 − 𝑟0) (2)

Заметим, что в случае Шварцшильда 𝐵′(𝑟0) = 𝑟−1
0 где 𝑟0 = 2𝑀– радиус Шварцшильда.

Уравнение поля для скалярного поля Φ(𝑡, 𝑟):

(︂
□+

𝑚2
0𝑐

2

ℏ2

)︂
Φ = 0 (3)

где □−оператор Д’Аламбера. □ = ∆− 1
𝑐2

𝜕2

𝜕𝑡2
.

C метрикой написанной в уравнении (1)

𝑐−2𝐵(𝑟)−1𝜕2𝑡Φ− 𝜕𝑟(𝐵(𝑟)𝜕𝑟Φ) = −𝑚2
0𝑐

2ℏ−2Φ (4)

Подставляя в уравнение (4) в качестве Φ :

Φ(𝑟, 𝑡) = 𝑒−i𝜔𝑡 𝜓(𝑟)√︀
𝐵(𝑟)

(5)
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получим что 𝜓(𝑟) удовлетворяет уравнению:

−ℏ2

2

d2𝜓(𝑟)

d𝑟2
− 𝛼

(𝑟 − 𝑟0)2
𝜓(𝑟) = 0 (6)

где 𝛼 = ℏ2𝜔2

2𝑐2[𝐵′(𝑟0)]2
рядом с горизонтом события.

Для метрики Шварцшильда 𝛼 =
ℏ2𝜔2𝑟20
2𝑐2

Таким образом введя 𝑥 = (𝑟 − 𝑟0), и 𝛼̃ = 𝛼/𝑚 уравнение (6) превращается в уравнение Шредингера для
частицы в обратно квадратичном потенциале −𝛼̃/𝑥2:

− ℏ2

2𝑚

d2𝜓(𝑥)

d𝑥2
− 𝛼̃

𝑥2
𝜓(𝑥) = ℰ𝜓(𝑥) (7)

Также устремим ℰ → 0

Таким образом проблема скалярного поля в фоне Шварцшильда эквивалентна квантово-механиче-
ской задаче о движении частицы в обратном квадратичном потенциале вблизи начала координат.

Теперь покажем связь с температурой черной дыры:

Сведя проблему скалярного поля в фоне Шварцшильда к квантово-механической задаче о движении
частицы в обратном квадратичном потенциале, определим параметры в потенциале:

𝑉 (𝑥) =
ℏ2

2𝑚

(︂
𝛼2 +

1

4

)︂
1

𝑥2
= −ℏ2𝜔2𝑟20

2𝑚𝑐2
1

𝑥2
(8)

что в высокочастотном пределе выражает 𝛼 как:

𝛼 =

(︂
𝜔2𝑟20
𝑐2

− 1

4

)︂1/2

≈ 𝜔𝑟0
𝑐

(9)

Далее в статье [1] путем громоздких вычислений интеграла по траекториям и переходя к предельным
случаям связанным к движению вблизи горизонта событий было получено выражение для d|𝑋|2/d𝑡 :

d|𝑋(𝑡)|2

d𝑡
=

(︂
4ℏ
𝑚𝛼

)︂(︂
𝛼2 +

1

4

)︂[︂
𝑁 +

1

2

]︂
(10)

где 𝑁 = 1
𝑒2𝜋𝛼−1

Подставляя (9) в (10) и учитывая что 𝑟0 = 2𝑀 получим:

d|𝑋(𝑡)|2

d𝑡
=

8𝐺𝑀

𝑚𝑐3

[︂
ℏ𝜔

(︂
𝑁 +

1

2

)︂]︂
(11)

где
𝑁 =

1

𝑒2𝜋𝛼 − 1
=

1

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1
(12)

С температурой данной в виде:

𝑇 =
ℏ𝑐3

4𝜋𝐺𝑀𝑘𝐵
=

1

4𝜋𝑀
(13)

Заметим что температура (13) дважды больше стандартной температуры Хокинга, это объясняется исполь-
зованием сингулярных координат в горизонте событий.
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2.2 Поиск когерентных состояний
2.2.1 Постановка задачи

В настоящей статье была поставлена задача получить выражение для d|𝑋|2/d𝑡, где X - усредненная тра-
ектория квазиклассического движения в потенциале 𝑎/𝑥2, избежав громоздких вычислений интеграла по
траекториям.

Первоначально было предпринята попытка получить это выражение аналогично [2] построив когерентное
состояние |𝜀(𝑡)⟩ и вычислить 𝑋(𝑡) = ⟨𝜀(𝑡)|𝑥|𝜀(𝑡)⟩, а затем |𝑋|2 и |𝑋|2/d𝑡.

2.2.2 Когерентные состояния

Когерентное состояние - состояние квантовой системы, по своим свойствам максимально близкое к клас-
сическому состоянию. В когерентном состоянии минимизируется соотношение неопределеннности:

∆𝐴 ∆𝐵 =
ℏ
2
|⟨𝐶⟩| (14)

Используя [7] покажем:

Рассмотрим эрмитовы операторы𝐴 = 𝐴†, 𝐵̂ = 𝐵̂† со сдвигом на их среднее значение в заданном состоянии
|Ψ⟩

𝛼̂ = 𝐴− 𝐴, 𝑏̂ = 𝐵̂ − 𝐵̄ : 𝐴 = ⟨Ψ|𝐴|Ψ⟩, 𝐵̄ = ⟨Ψ|𝐵̂|Ψ⟩ (15)

Коммутатор операторов
[𝐴, 𝐵̂] = iℏ𝐶 (16)

после сдвига не изменяется, так что
[𝛼̂, 𝑏̂] = iℏ𝐶 (17)

Средние операторов 𝛼̂ и 𝑏̂ по построению равны нулю:

⟨Ψ|𝛼̂|Ψ⟩ = ⟨Ψ|𝐴− 𝐴|Ψ⟩ = 0, ⟨Ψ|𝑏̂|Ψ⟩ = ⟨Ψ|𝐵̂ − 𝐵̄|Ψ⟩ = 0 (18)

в то время как их дисперсии совпадают с дисперсиями 𝐴, 𝐵̂:

(∆𝛼)2 = ⟨Ψ|𝛼̂2|Ψ⟩ = ⟨Ψ|(𝐴− 𝐴)2|Ψ⟩ = (∆𝐴)2 (19)

(∆𝑏)2 = ⟨Ψ|𝑏̂2|Ψ⟩ = ⟨Ψ|(𝐵̂ − 𝐵̄)2|Ψ⟩ = (∆𝐵)2 (20)

Составим вектор
|Φ⟩ = (𝑎̂− i𝜉𝑏̂)|Ψ⟩ (21)

где 𝜉 ∈ R - вещественное число, и найдем его неотрицательную норму

⟨Φ|Φ⟩ ⩾ 0 (22)

так что в виду эрмитовости операторов

⟨Ψ|(𝑎̂− i𝜉𝑏̂)†(𝑎̂− i𝜉𝑏̂)|Ψ⟩ = ⟨Ψ|𝑎̂2 − i𝜉(𝑎̂𝑏̂− 𝑏̂𝑎̂) + 𝜉2𝑏̂2|Ψ⟩ ⩾ 0 (23)

что с учетом коммутатора [︁
𝛼̂, 𝑏̂

]︁
= iℏ𝐶 (24)

дает полином по 𝜉:
𝜉2(∆𝐵)2 + ℏ⟨𝐶⟩𝜉 + (∆𝐴)2 ⩾ 0 (25)

Другими словами, это квадратное уравнение по 𝜉 либо не имеет вещественных корней, либо два веществен-
ных корня совпадают. Такая ситуация имеет место тогда и только тогда, когда дискриминант неположителен

𝒟 ⩽ 0 ⇔ ℏ2⟨𝐶⟩2 − 4(∆𝐴)2(∆𝐵)2 ⩽ 0 (26)

5



Откуда получаем соотношение неопределенностей для дисперсий (флуктуаций) наблюдаемых (эрмитовых)
величин 𝐴 и 𝐵

∆𝐴 ∆𝐵 ⩾
ℏ
2
|⟨𝐶⟩|, или ∆𝐴 ∆𝐵 ⩾

1

2
|⟨[𝐴,𝐵]⟩| (27)

Очевидно что соотношение неопределенностей минимизируется, если детерминант равен нулю и суще-
ствует единственный вещественный корень для параметра 𝜉 = 𝛾 ∈ R. При этом значении параметра
составленный нами вектор состояния |Φ⟩ имеет нулевую норму, а значит, и сам он равен нулю, |Φ⟩ = 0, т.е.

(𝑎̂− i𝛾𝑏̂)|Ψ⟩ = 0 ⇔ (𝐴− 𝐴)|Ψ⟩ = i𝛾(𝐵̂ − 𝐵̄)|Ψ⟩, 𝛾 ∈ R (28)

Примечательно, что это уравнение линейно по операторам наблюдаемых величин. Равенство нулю детер-
минанта определяет значение 𝛾, так как уравнение принимает вид

ℏ2⟨𝐶⟩2𝜉2 + 4(∆𝐴)2⟨𝐶⟩𝜉 + 4(∆𝐴)4 = 0 (29)

с единственным корнем

𝛾 = −2
(∆𝐴)2

ℏ⟨𝐶⟩
, ⇒ |𝛾| = ∆𝐴

∆𝐵
; ⟨𝐶⟩ ≠ 0 (30)

Поскольку для заданного состояния ⟨𝐶⟩ - некоторое число, то физический смысл параметра 𝛾 сводится к
тому, что он пропорционален дисперсии наблюдаемой 𝐴.

Гамильтониан гармонического осциллятора:

𝐻̂ = ℏ𝜔𝐻̂𝒬, 𝐻̂𝒬 =
1

2

{︁
𝒫2 + 𝒬̂2

}︁
(31)

где

𝒫 =
𝑝

𝑝𝑜𝑠𝑐
, 𝑝𝑜𝑠𝑐 =

√
𝑚𝜔ℏ

𝒬̂ =
𝑞

𝑞𝑜𝑠𝑐
, 𝑞𝑜𝑠𝑐 =

√︂
ℏ
𝑚𝜔

ℋ̂𝒬 =
𝐻̂

𝐸𝑜𝑠𝑐

, 𝐸𝑜𝑠𝑐 =
𝑝2𝑜𝑠𝑐
𝑚

= ℏ𝜔

а коммутационные соотношения принимают вид[︁
𝒬̂,𝒫

]︁
= i, 𝒫𝒬 = −i

𝜕

𝜕𝒬
(32)

Мы показали, что соотношение неопределенностей двух наблюдаемых 𝐴 и 𝐵̂ минимизируется, если в
гильбертовом пространстве квантовых состояний существует такое состояние |Ψ⟩, что верно (28) и (30)

Для операторов 𝒬̂ и𝒫 согласно уравнению (28), где𝐴 ↦→ 𝒬̂ и 𝐵̂ ↦→ 𝒫 , введем состояние |𝛼⟩ в координатном
представлении ⟨𝒬|𝛼⟩ ≡ 𝜓𝛼(𝒬), которое минимизирует соотношение неопределенностей со средними
значениями ⟨𝒬⟩ ≡ ⟨𝛼|𝒬|𝛼⟩ ≡ 𝒬0 и ⟨𝒫⟩ ≡ ⟨𝛼|𝒫|𝛼⟩ ≡ 𝒫0, и, следовательно,

(𝒬−𝒬0)𝜓𝛼(𝒬) = i𝛾

(︂
−i

𝜕

𝜕𝒬
−𝒫0

)︂
𝜓𝛼(𝒬) ⇔

(︂
𝒬− 𝛾

𝜕

𝜕𝒬

)︂
𝜓𝛼(𝒬) = (𝒬0 − i𝛾𝒫0)𝜓𝛼(𝒬) (33)

Это обыкновенное дифференциальное уравнение легко решается в общем виде, так как

d𝜓𝛼

𝜓𝛼

= d𝒬1

𝛾
(𝒬−𝒬0 + i𝛾𝒫0), (34)
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откуда
𝜓𝛼(𝒬) = 𝜓0e

(𝒬−𝒬0)
2

2𝛾
+i𝒫0𝒬 (35)

и с учетом

𝛾 = −2i
(∆𝒬)2

⟨[𝒬̂,𝒫 ]⟩
= −2(∆𝒬)2 (36)

находим

𝜓𝛼(𝒬) = 𝜓0e
− (𝒬−𝒬0)

2

4(Δ𝒬)2
+i𝒫0𝒬 (37)

Итак, для произвольной системы мы можем изготовить состояния гауссового типа, которое минимизиру-
ет соотношение неопределенностей координата-импульс в начальный момент времени. Но это не значит
что составленный таким образом волновой пакет сохранит это свойство минимизации в ходе эволюции:
волновой пакет может расплыться, причем зависимость произведения дисперсий от времени определяет-
ся как гамильтонианом физической системы, так и параметрами начального состояния. Особый интерес
представляют системы для которых можно построить динамически устойчивые волновые функции, мини-
мизирующие соотношение неопределенностей координата-импульс во все моменты времени.

Итак, расплывание волнового пакета, минимизирующего соотношение неопределенностей координата-
импульс, зависит, во-первых, от величины параметра 𝛾, который входит в уравнение (33) и связан с пара-
метром сжатия

|𝜁| def
= −1

2
ln (−𝛾) (38)

а во-вторых, от гамильтониана системы, задающего эволюцию волнового пакета.

Квантовые состояния, представляющие из себя нерасплывающиеся со временем гауссовы волновые па-
кеты, в максимальной степени соотсветствуют движению исходной классической системы. Именно такие
квантовые состояния называются когерентными.

Так как по определению когерентное состояние максимально близко к классическому, по найденным
волновым функциям описывающим когерентные состояния вычисляется:

|⟨𝑋⟩|2 =

⃒⃒⃒⃒
⃒⃒

∞∫︁
−∞

𝜓*(𝑥) 𝑥 𝜓(𝑥) d𝑥

⃒⃒⃒⃒
⃒⃒
2

(39)

тогда |⟨𝑋⟩|2 ≈ |𝑋|2, где |𝑋|2 - квадрат модуля усредненной траектории квазиклассического движения в
потенциале 𝛼/𝑥2,

2.2.3 Связь с задачей 𝐻 = −𝑑2𝑥/2 + 𝑥2/2 + 𝑔2𝑥−2

Приведем выкладки из [2], где потенциал отличается от потенциала рассматриваемого в данной статье на
слагаемое пропорциональное 𝑥2/2 и коэффициентом перед 𝑥−2:

𝐻 = 𝐻0 + 𝑉

𝐻0 = −1

2

d2

d𝑥2
+
𝑥2

2
= 𝑎+𝑎− +

1

2
, 𝑉 = 𝑔𝑥−2 (40)

где 𝑎+ = 1√
2

(︀
𝑥− d

d𝑥

)︀
- оператор рождения, 𝑎− = 1√

2

(︀
𝑥+ d

d𝑥

)︀
- оператор уничтожения.

Так как операторы
𝐵+

2 =
(︀
𝑎+

)︀2 − 𝑔2/𝑥2, 𝐵−
2 =

(︀
𝑎−

)︀2 − 𝑔2/𝑥2 (41)

удовлетворяют соотношениям [︀
𝐻,𝐵+

2

]︀
= 2𝐵+

2 ,
[︀
𝐻,𝐵−

2

]︀
= −2𝐵−

2 (42)
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[︀
𝐵−

2 , 𝐵
+
2

]︀
= 4𝐻 (43)

то 𝐻, 𝐵+
2 , 𝐵

−
2 являются генераторами алгебры Ли группы 𝑆𝑈(1, 1).

Связь операторов 𝐻, 𝐵+
2 , 𝐵

−
2 со стандартными генераторами 𝐾0, , 𝐾1, 𝐾2 алгебры 𝑆𝑈(1, 1) задается

формулами:
𝐾0 = 𝐻/2, 𝐾+ = 𝐾1 + 𝑖𝐾2 = −𝐵+

2 /2 (44)

𝐾− = 𝐾1 − 𝑖𝐾2 = −𝐵2/2 (45)

Система когерентных состояний |𝜁⟩, |𝜁| < 1, в гильбертовом пространстве H квадратично интегрируемых
функций на полуоси 0 < 𝑥 <∞ имеет вид:

|𝜁⟩ = (1− |𝜁|2)𝑘
∑︁
𝑛

√︃
Γ(𝑛+ 2𝑘)

Γ(𝑛+ 1)Γ(2𝑘)
𝜁𝑛|𝑛⟩ (46)

где 𝑘 = (1/2 + 𝛼)/2, 𝛼 возникает из 𝐸0 = 𝛼 + 1/2, 𝐸0-нулевой энергетический уровень

Когерентное состояние |𝜁⟩ при этом можно определить как состояние, аннулируемое оператором:

̃︀𝐾− = exp(𝜁𝐾+)𝐾−exp(−𝜁𝐾+) = 𝐾− − 2𝜁𝐾0 + 𝜁2𝐾+ (47)

̃︀𝐾−|𝜁⟩ = 0 (48)

Отсюда получаем :

⟨𝑥|𝜁⟩ ≡ 𝜓𝜁(𝑥) =

√
2

Γ(2𝑘)

(1− |𝜁|2)𝑘

(1− 𝜁)2𝑘
𝑥𝛼exp

[︂
−1

2

1 + 𝜁

1− 𝜁
𝑥2
]︂

(49)

После неудачной попытки факторизовать𝐻 = d2
𝑥+𝛼𝑥

−2, (в разделе 4 будет показано, что для интересую-
щего нас параметра 𝛼 это сделать нельзя ) была предпринята попытка численно найти волновые функции
и энергетические уровни для уравнения Шредингера с потенциалом 𝑎/𝑥2.
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3 Численное решение стационарного уравнения Шредингера

3.1 Описание алгоритмов
Существует несколько численных методов решения уравнения Шредингера, которое является краевой
задачей Штурма-Лиувилля. Среди них можно назвать метод конечных разностей, метод стрельбы, метод
Монте-Карло и другие.

В данной работе был выбранметод конечных разностей.Метод конечныхразностей (finite difference method)
- это численный метод решения дифференциальных уравнений, который основан на аппроксимации произ-
водных функции на некоторой сетке. Основная идея метода заключается в том, чтобы заменить дифферен-
циальное уравнение на конечную систему алгебраических уравнений, используя значенияфункции на сетке
и ее производные. Кроме того, метод конечных разностей является относительно простым и вычислительно
эффективным методом, который может быть легко реализован в виде компьютерной программы.

Для решения задачи на конечном интервале [𝑎, 𝑏] сетку можно задать следующим образом:

𝑥𝑖 = 𝑎+ 𝑖∆𝑥, 𝑖 = 1, 2, . . . , 𝑁 − 1 (50)

где 𝑁 - число узлов сетки, ∆𝑥 - шаг сетки.

Производные функции можно аппроксимировать разностными формулами на сетке. Например, для первой
производной можно использовать центральную разностную формулу:

𝑓 ′(𝑥𝑖) ≈
𝑓(𝑥𝑖+1)− 𝑓(𝑥𝑖−1)

2∆𝑥
(51)

А для второй производной можно использовать центральную разностную формулу второго порядка:

𝑓 ′′(𝑥𝑖) ≈
𝑓(𝑥𝑖+1)− 2𝑓(𝑥𝑖) + 𝑓(𝑥𝑖−1)

(∆𝑥)2
(52)

Подставляя эти формулы в уравнениеШредингера и аппроксимируя потенциал на сетке получаем систему
линейных уравнений, которую можно решить численно.

Метод конечных разностей имеет ряд преимуществ. Он относительно прост в реализации, эффективен с
точки зрения вычислительных ресурсов, и может быть легко применен к задачам с различными граничными
условиями и на произвольной геометрии. Однако, при использовании этого метода необходимо следить за
выбором шага сетки, чтобы обеспечить достаточную точность решения.

3.2 Применение метода конечных разностей
Рассмотрим стационарное уравнение Шредингера:

− ℏ2

2𝑚

d2𝜓(𝑥)

d𝑥2
+ 𝑉 (𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥) (53)

Потенциал в настоящей работе неограничен снизу, поэтому решение уравнениеШредингера производится
с двумя параметрами регуляризации 𝛽 и 𝐿.

Первый параметр регуляризации 𝛽 отвечает за устранение −∞ в нуле:

𝑉 (𝑥) =
𝛼

𝑥2 + 𝛽
(54)

Устремляя 𝛽 к 0 предполагается, что нижний уровень будет сходиться к верному (для задачи без регуля-
ризации).
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Второй параметр регуляризации отвечает за установление граничных условий 𝜓(−∞) = 0 и 𝜓(∞) = 0.
Устремляя 𝐿 к∞ мы получаем решение задачи наR, решая задачу на интервале 𝑥 ∈

[︀−𝐿
2
, 𝐿
2

]︀
с граничными

условиями 𝜓
(︀
−𝐿

2

)︀
= 𝜓

(︀
𝐿
2

)︀
= 0. Используя метод конечных разностей (52), мы можем аппроксимировать

производные в уравнении Шредингера на сетке с шагом ∆𝑥:

− ℏ2

2𝑚

𝜓𝑖+1 − 2𝜓𝑖 + 𝜓𝑖−1

(∆𝑥)2
+

𝛼

𝑥2 + 𝛽
𝜓𝑖 = 𝐸𝜓𝑖, 𝑖 = 1, 2, . . . , 𝑁 − 1 (55)

где 𝜓𝑖 = 𝜓(𝑥𝑖), 𝑥𝑖 = −𝐿
2
+ 𝑖∆𝑥, и 𝑁 - число узлов сетки. Группируя множители к системе линейных

уравнений вида 𝐻𝜓 = 𝐸𝜓, где 𝐻 - трехдиагональная матрица

− ℏ2

2𝑚

𝜓𝑖+1

(∆𝑥)2
+

ℏ2

2𝑚

(︂
1

(∆𝑥)2
+

𝛼

𝑥2 + 𝛽

)︂
𝜓𝑖 −

ℏ2

2𝑚

𝜓𝑖−1

(∆𝑥)2
= 𝐸𝜓𝑖 (56)

Вид трехдиагональной матрицы 𝐻:

𝐻 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1 𝑐1 0 0 . . . 0
𝑎2 𝑏2 𝑐2 0 . . . 0
0 𝑎3 𝑏3 𝑐3 . . . 0
... ... . . . . . . . . . ...
0 . . . 0 𝑎𝑁−2 𝑏𝑁−2 𝑐𝑁−2

0 . . . 0 0 𝑎𝑁−1 𝑏𝑁−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑎𝑖 = 𝑐𝑖 = − ℏ2

2𝑚(∆𝑥)2
, 𝑏𝑖 =

ℏ2

𝑚(∆𝑥)2
+

𝛼

𝑥2 + 𝛽
. (57)

После применения метода конечных разностей к уравнению Шредингера, мы получили систему линейных
уравнений, которую можно представить в виде трехдиагональной матрицы. Эта матрица является также
является симметричной, а решение задачи сводится к нахождению ее собственных значений и собственных
векторов.

После запуска программы для различных точностей разбиения отрезка и различных параметров регуляри-
зации было выяснено, что вне зависимости от 𝑎 < − ℏ2

8𝑚
, 𝑎 > − ℏ2

8𝑚
, 𝑎 = − ℏ2

8𝑚
(смысл этих соотношений c

точностью до домножения на константу ℏ2
2𝑚

показан в [3], [4], [5] и приведен в разделе 4) нижний уровень
энергии 𝐸0 зависит от параметра регуляризации 𝛽 :
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Рис. 1: Зависимость модуля нулевого уровня энергии |𝐸0| от параметра регуляризации 𝛽

На графике видно, что при устремлении к нулю параметра регуляризации 𝛽 нижний уровень энергии не
имеет предела. Это означает что, данный подход не применим к данному вырожденному потенциалу.

4 Параметр 𝛼
В работах [3], [4], [5] рассматривается факторизация гамильтониана на R+:

𝐻̂ = −𝑑2𝑥 + 𝛼𝑥−2 (58)

Оказывается что𝐻 можно факторизовать (представить как 𝐻̂ = 𝑏̂𝑎̂, где 𝑏̂ = 𝑎̂†) в зависимости от параметра
𝛼. В статье [4] рассматриваются следующие 4 случая:

• 𝛼 ⩾ 3/4

• −1/4 < 𝛼 < 3/4

• 𝛼 = −1/4

• 𝛼 < −1/4

Оказывается что для параметра𝛼 < −1/4,𝐻 - не представим как произведение двух взаимно-сопряженных
операторов и число отрицательных собственных значений бесконечно.

Для случая −1/4 ⩽ 𝛼 < 3/4 число отрицательных собственных значений не превышает единицы.

И для 𝛼 > 3/4 нет отрицательных собственных значений.

Так как нас интересует случай 𝛼 < −1/4, именно он рассматривается в [1], мы не можем решить поставлен-
ную задачу как в разделе 2.2.3. Поэтому величины |𝑋|2 и d|𝑋|2/d𝑡 находятся путем численного решения
нестационарного уравнения Шредингера.
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5 Численное решение нестационарного уравнения Шредингера

5.1 Постановка задачи
Как было показано в 2.2.2, минимальное соотношение неопределенностей имеет гауссов пакет. Для вы-
числения |𝑋|2 и d|𝑋(𝑡)|2/d𝑡 было решено нестационарное уравнение Шредингера с начальным условием
𝜓0 - волновая функция в момент времени 𝑡 = 0 имеет вид:

𝜓0 = 𝑁e−𝜁(𝑥−𝑥0)2 , 𝑁 =
1

𝐿/2∫︀
−𝐿/2

(e−𝜁(𝑥−𝑥0)2) (e−𝜁(𝑥−𝑥0)2)
*
d𝑥

(59)

где 𝜁 отвечает за локализацию волнового пакета (для корректной работы алгоритма волновая функция
должна „хорошо “ убывать на расстоянии 𝐿/2 от начала координат), 𝑥0 отвечает за сдвиг волнового
пакета (тем самым можно проследить процесс падения частицы на центр).

5.2 Описание методов
5.2.1 Метод конечных разностей

Определив 𝛽 и 𝐿 аналогично 3.2, нестационарное уравнение Шредингера для потенциала 𝑉 (𝑥) = 𝛼
𝑥2+𝛽

:

iℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = − ℏ2

2𝑚

𝜕2

𝜕𝑥2
𝜓(𝑥, 𝑡) +

𝛼

𝑥2 + 𝛽
𝜓(𝑥, 𝑡) (60)

с граничными условиями :

𝜓

(︂
−L

2
, 𝑡

)︂
= 𝜓

(︂
L

2
, 𝑡

)︂
= 0 (61)

𝜓(𝑥, 0) = 𝜓0 (59) (62)

Аналогично 3.2 пространственную область дискретизируем равномерной сеткой с шагом ∆𝑥, временную
область дискретизируем равномерной сеткой с шагом ∆𝑡 так что:

𝜓𝑚
𝑗 = 𝜓

(︂
−L

2
+ 𝑗∆𝑥,𝑚∆𝑡

)︂
(63)

Учитывая
𝜕2

𝜕𝑥2
𝜓(𝑥, 𝑡) =

𝜓𝑚
𝑗+1 − 2𝜓𝑚

𝑗 + 𝜓𝑚
𝑗−1

∆𝑥2
(64)

𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) =

𝜓𝑚+1
𝑗 − 𝜓𝑚

𝑗

∆𝑡
(65)

и положив ℏ = 1 получим разностную аппроксимацию нестационарного уравнения Шредингера:

i
𝜓𝑚+1
𝑗 − 𝜓𝑚

𝑗

∆𝑡
= − 1

2𝑚

𝜓𝑚
𝑗+1 − 2𝜓𝑚

𝑗 + 𝜓𝑚
𝑗−1

∆𝑥2
+ 𝑉𝑗𝜓

𝑚
𝑗 (66)

𝜓𝑚+1
𝑗 = 𝜓𝑚

𝑗 +
i

2𝑚

∆𝑡

∆𝑥2
(𝜓𝑚

𝑗+1 − 2𝜓𝑚
𝑗 + 𝜓𝑚

𝑗−1)− i∆𝑡𝑉𝑗𝜓
𝑚
𝑗 (67)

Таким образом, разностная схема сводит задачу решения нестационарного уравненияШредингера к задаче
решения системы алгебраических уравнений на каждом временном слое.

Условие устойчивости для сходимости явного метода - d𝑡
d𝑥2 мало.
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5.2.2 Аппроксимация оператора эволюции схемой Кранка-Николсона

Для решения нестационарного уравнения Шредингера:

iℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = 𝐻̂𝜓(𝑥, 𝑡) (68)

можно использовать оператор эволюции, который связывает волновую функцию в начальный момент вре-
мени 𝑡0 с волновой функцией в момент времени 𝑡:

𝜓(𝑥, 𝑡) = 𝑈̂(𝑡, 𝑡0)𝜓(𝑥, 𝑡0) (69)

В работе [8] была произведена аппроксимация оператора эволюции на временной сетке

[0, 𝑇 ], 𝑡𝑗 = 𝑗∆𝑡, 𝑗 = 0, 1, 2, . . . , 𝐽 𝐽∆𝑡 = 𝑇 (70)

получаем:

𝑈̂(𝑡𝑗+1, 𝑡𝑗) =

(︂
𝐼 + i

∆𝑡

2
𝐻̂

)︂−1(︂
𝐼 − i

∆𝑡

2
𝐻̂

)︂
(71)

где 𝐼- единичная матрица, 𝐻̂ - гамильтониан. Тогда решение на временном слое 𝑡𝑘+1 выражается через
решение на слое 𝑡𝑘 с помощью

𝜓(𝑡𝑗+1) = 𝑈̂(𝑡𝑗+1, 𝑡𝑗)𝜓(𝑡𝑗) (72)

Главным достоинством этого метода является унитарность оператора 𝑈̂(𝑡𝑗+1, 𝑡𝑗), которая обеспечивает
устойчивость и сходимость численной схемы. Гамильтониан 𝐻 (57) такой же как и в разделе 3.2.
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5.3 Результаты работы численных методов
5.3.1 Результаты методом конечных разностей

Было сравнены численные и теоретические результаты для гармонического осциллятора. Результат срав-
нения показал корректность работы программы. При запуске программы для потенциала −1/𝑥2 и при
уменьшении параметра регуляризации были получены „характерные осцилляции “:

Рис. 2: Характерные осцилляции квадрата модуля волновой функции

Это свидетельствуют о том, что явная схема метода конечных разностей не применима к данной проблеме.
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5.3.2 Результаты методом аппроксимации оператора эволюции

Было сравнены численные и теоретические результаты для гармонического осциллятора. Результат срав-
нения показал корректность работы программы.

При запуске программы было обнаружено что при при уменьшении 𝛽 - параметра регуляризации отвеча-
ющего за устранение −∞ в нуле, и при увеличении 𝐿 - параметра регуляризации отвечающего за краевые
условия(𝜓(−∞) = 𝜓(∞) = 0) результаты расчетов сходятся. Из этого нельзя сделать вывод, что решение
сойдется к решению задачи без параметров регуляризации, так как уменьшая параметр регуляризации
𝛽, ∆𝑥 должно быть порядка 𝛽. Вычислительная мощность обычного ПК не позволяет производить рас-
чет с разбиением больше 1000 точек на единичный отрезок поэтому при уменьшении 𝛽 = 1 × 10−7 до
𝛽 = 1× 10−30 результат работы программы изменяется незначительно.

Тем не менее для для фиксированного 𝐿 = 10 приведем результат работы программы для различных 𝛽:

Рис. 3: Параметр регуляризации 𝛽 = 1× 10−5
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Рис. 4: Параметр регуляризации 𝛽 = 1× 10−10

На рисунке 4 расположено:

1.1. Зависимость 𝑋 от 𝑡, где 𝑋- усредненная траектория квазиклассического движения.

1.2. Зависимость |𝑋|2 от 𝑡, где |𝑋|2- квадрат модуля усредненной траектория квазиклассического движе-
ния.

2.1. Потенциал 𝑉 (𝑥) = 𝛼
𝑥2+𝛽

.

2.2. Зависимость d|𝑋(𝑡)|2
d𝑡

- производная квадрата модуля усредненной траектория квазиклассического
движения.

3.1. Волновая функция в момент времени 𝑡 = 0.

3.2. Квадрат модуля волновой функции в момент времени 𝑡 = 𝑇/3, где 𝑇 - время до которого произво-
дится расчет.

4.1. Квадрат модуля волновой функции в момент времени 𝑡 = 𝑇 · 2/3.

4.2. Квадрат модуля волновой функции в момент времени 𝑡 = 𝑇 .
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Рис. 5: Параметр регуляризации 𝛽 = 1× 10−15
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Рис. 6: Параметр регуляризации 𝛽 = 1× 10−15,точность разбиения - 1000 точек на единичный отрезок

На 3, 4, 5, 6 видна зависимость полученного решения (в частности ⟨d|𝑋(𝑡)|2
d𝑡

⟩) от параметра 𝛽 и точности
разбиения.

По сравнении с 5.2.1 и 3.2 метод аппроксимации оператора эволюции схемой Кранка-Николсона показал
наилучшую сходимость.

На 3, 4, 5, 6 центр волновой функции смещен на 𝑥0 = 0.2 -это позволяет проследить процесс падения
частицы на центр.

Полученный результат необычен, предполагалось, что частица почти моментально упадет на центр. Для
выяснения этого приведем результат работы программы с параметрами 6, но для большего времени расчета:
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Рис. 7: Параметр регуляризации 𝛽 = 1 × 10−15, точность разбиения - 1000 точек на единичный отрезок,
время расчета- 100секунд (временной шаг был увеличен в 10 раз, это делает график более размытым).

.

Исходя из 7 мы не наблюдаем падения на центр.

6 Сравнение теоретических и численных результатов
Выразим связь между 𝛼 и 𝜔,𝑀,𝑚 используя (8), (13) и соотношение 𝑟0 = 2𝑀

𝑉 (𝑥) =
ℏ2

2𝑚

(︂
𝑎2 +

1

4

)︂
1

𝑥2
= −ℏ2𝜔2𝑟20

2𝑚𝑐2
1

𝑥2
(73)

𝑇 =
ℏ𝑐3

4𝜋𝐺𝑀𝑘𝐵
=

1

4𝜋𝑀
(74)

𝛼num =
ℏ2𝜔2𝑟20
2𝑚𝑐2

=
2ℏ2𝜔2𝑀2

𝑚𝑐2
(75)

Также выразим связь между d|𝑋(𝑡)|2
d𝑡

и 1/𝑇 используя (11) и (12)

d|𝑋(𝑡)|2

d𝑡
=

8𝐺𝑀

𝑚𝑐3

[︂
ℏ𝜔

(︂
𝑁 +

1

2

)︂]︂
(76)

𝑁 =
1

𝑒2𝜋𝛼 − 1
=

1

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1
(77)
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d|𝑋(𝑡)|2

d𝑡
=

8𝐺 1
4𝜋𝑇

𝑚𝑐3

[︂
ℏ𝜔

(︂
1

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1
+

1

2

)︂]︂
(78)

Учитывая что
ℏ = 𝑐 = 𝐺 = 𝑘𝐵 = 1 (79)

d|𝑋(𝑡)|2

d𝑡
=

2𝜔

𝑇𝜋𝑚

(︂
1

𝑒𝜔/𝑇 − 1
+

1

2

)︂
(80)

при 𝜔/𝑇 ≫ 1
1

𝑒𝜔/𝑇 − 1
≈ 0 ⇒ d|𝑋(𝑡)|2

d𝑡
=

2𝜔

𝑇𝜋𝑚

(︂
1

2

)︂
=

𝜔

𝜋𝑚

1

𝑇
(81)

d|𝑋(𝑡)|2

d𝑡
=

𝜔

𝜋𝑚

1

𝑇
, так как 𝑇 =

1

4𝜋𝑀
⇒ d|𝑋(𝑡)|2

d𝑡
=

4𝜔𝑀

𝑚
(82)

Мы получили, что зависимость d|𝑋(𝑡)|2
d𝑡

от 𝜔𝑀
𝑚

должна быть линейной.

При запуске программы было обнаружено, что d|𝑋(𝑡)|2
d𝑡

зависит от времени. Это не позволяет сравнить
результат с теоретическим.Усредненное по времени d|𝑋(𝑡)|2

d𝑡
существенно зависит от параметров временного

разбиения отрезка.
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На данном этапе работы была обнаружена ошибка в статье [1]:

𝑉 (𝑥) =
ℏ2

2𝑚

(︂
𝛼2 +

1

4

)︂
1

𝑥2
= −ℏ2𝜔2𝑟20

2𝑚𝑐2
1

𝑥2
(83)

что выражает 𝛼 в высокочастотном пределе как:

𝛼 =

(︂
𝜔2𝑟20
𝑐2

− 1

4

)︂1/2

≈ 𝜔𝑟0
𝑐

(84)

Подставляя (9) в (10) и учитывая что 𝑟0 = 2𝑀 получим:

d|𝑋(𝑡)|2

d𝑡
=

8𝐺𝑀

𝑚𝑐3

[︂
ℏ𝜔

(︂
𝑁 +

1

2

)︂]︂
(85)

где
𝑁 =

1

𝑒2𝜋𝛼 − 1
=

1

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1
(86)

С температурой данной в виде:

𝑇 =
ℏ𝑐3

4𝜋𝐺𝑀𝑘𝐵
=

1

4𝜋𝑀
(87)

так как 𝑟0 = 2𝑀

𝑎 =

(︂
𝜔2𝑟20
𝑐2

− 1

4

)︂1/2

=

(︂
4𝜔2𝑀2

𝑐2
− 1

4

)︂1/2

(88)

Учитывая что
ℏ = 𝑐 = 𝑘𝐵 = 1 (89)

𝛼 =

√︂
4𝜔2𝑀2 − 1

4
(90)

так как √
1 + 𝑥 ≈ 1 +

𝑥

2
+ · · · , при 𝑥→ 0 (91)

получаем что

𝛼 = 2𝑀𝜔

√︃
1 +

(−1)

(4𝑀𝜔)2
, где

(−1)

(4𝑀𝜔)2
→ 0 (92)

отсюда следует что:

𝛼 = 2𝑀𝜔

√︃
1 +

(−1)

(4𝑀𝜔)2
≈ 2𝑀𝜔

(︂
1 +

(−1)

32𝑀2𝜔2

)︂
≈ 2𝑀𝜔 (93)

В формуле 84 мы видим, что в статье [1] пренебрегают 1
4
по сравнению с 4𝜔2𝑀2

Но так как, учитывая 𝑇 = 1
4𝜋𝑀

𝑁 =
1

𝑒ℏ𝜔/𝑘𝐵𝑇 − 1
=

1

𝑒4𝜋𝜔𝑀 − 1
(94)

При больших𝑀 ·𝜔 слагаемым𝑁 в формуле 85 можно пренебречь, тем самым он не является планковским.

В то же время если не пользоваться𝑀 · 𝜔 ≫ 1 спектр не получается планковским, так как выражение 84
больше несправедливо.
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7 Итоги работы
• Предпринята попытка свести задачу к 2.2.3 .

• Получено численное решение нестационарного уравнения Шредингера. Установлена расходимость
решения от параметра регуляризации 𝛽 1.

• Были проанализированы работы [3], [4], [5]. Выяснилось что гамильтониан H нельзя факторизовать
при рассматриваем в статье [1] параметре 𝛼.

• Поставлена задача 5.1.

• Двумяметодами получено численное решение нестационарного уравненияШредингера. Установлена
расходимость метода конечных разностей для данного потенциала 2. Установлена сходимость метода
аппроксимации оператора эволюции схемойКранка-Николсона для доступных для расчета параметра
𝛽 .

• Была исследована зависимость поведения решения от параметра регуляризации 𝛽 3, 4, 5, 6.

• Было указано необычное поведение решения при смещении центра гауссового пакета 3, 4, 5, 6,7.

• Была найдена ошибка в статье [1].

8 Вывод
Для последующего численного рассмотрении потенциала 1/𝑥2 написанную программу следует модифици-
ровать следующим образом:

• Так как в настоящей программе производится равномерное разбиение отрезка 𝐿, что является боль-
шим недостатком программы так как производится расчет с огромной точностью (500-1000 точек на
единичный интервал) для участка [−𝐿

2
, 𝜖] ∪ [𝜖, 𝐿

2
] и недостаточной точностью для интервала [𝜖, 𝜖], где

𝜖-малая величина, следует использовать неравномерное разбиение отрезка 𝐿,такое что число точек
возрастает при приближении к 0.

• Оптимизировать программу для повышения скорости работы (использовать параллельные вычисле-
ния, выбрать другой язык программирования).

Это позволит получить более точные результаты и выяснить сходятся ли численные результаты при даль-
нейшем стремлении параметра регуляризации 𝛽 к 0 и стремлении параметра регуляризации 𝐿 к∞.
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9 Приложение
import numpy as np
from scipy.linalg import inv
import matplotlib.pyplot as plt
import cmath

AccuracyOfSplitting = 200 #Number Of Nodes Per Unit Interval
LengthOfHole = 10.0 # Length Of Hole (Must be greater than 10)
Mass = 1.0 # Mass Of a Particle
M_for_a=10 # M Comparison With Black Hole Temperature
w_for_a=10# w Comparison With Black Hole Temperature
a =2*M_for_a*M_for_a*w_for_a*w_for_a # Coefficient before -1/x^2
DeltaT=1e-3 # Time Step
Correction_For_Potential = 1.0e-20 #Regularization Parametr For Potential
Correction_For_Wave_Function=0.01 # Shift Initial Wave Function To The Right

NumberOfNodes = int(AccuracyOfSplitting * LengthOfHole) + 1 #Calculating ->
#The Number Of Nodes For Splitting a Segment Into Nodes
NumberOfTimeNodes = NumberOfNodes # (This Equality Does Not Carry Any Sense)->
#You Can Choose Any Number Of Time Nodes For Calculation

DeltaX = 1 / float(AccuracyOfSplitting) # Space Step

n1 = NumberOfNodes # Does Not Mean Anything n1 Is Just Shorter

Potential_X = np.zeros(n1) # Array Creation
Potential_Y = np.zeros(n1) # Array Creation

for i1 in range(n1):
Potential_X[i1] = -LengthOfHole / 2 + i1 / float(AccuracyOfSplitting)

# From NowOn It Just Means X Coordinate Not Only For Potential But ->
#For The Whole Programm

for i1 in range(n1):
Potential_Y[i1] = -a / ((Potential_X[i1] * Potential_X[i1]) + \
Correction_For_Potential)
# Y Coordinate For Potential
#Potential_Y[i1] = Mass*w**2*(Potential_X[i1]**2)*0.5
# Y Coordinate For Potential (For Comparison With Theory)

mainDiag = np.zeros(n1) # Array Creation
subDiag = np.zeros(n1 - 1) # Array Creation

for i in range(n1):
mainDiag[i] = (1 / (DeltaX * DeltaX)) + Potential_Y[i] # Creation ->

#The Main Diagonal Of The Hamiltonian

for i in range(n1 - 1):
subDiag[i] = (-1 / (DeltaX * DeltaX * 2)) # Creation The Subdiagonal Of
#The Hamiltonian
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H = np.zeros((n1, n1)) # 2D Array Creation For Hamiltonian

np.fill_diagonal(H, mainDiag) # Filling In The Main Diagonal Of The Hamiltonian
np.fill_diagonal(H[1:], subDiag) # Filling In The Subdiagonal Of The Hamiltonian
np.fill_diagonal(H[:, 1:], subDiag) # Filling In The Subdiagonal Of The Hamiltonian

Correction_For_Wave_Function_arr = np.ones(n1) * Correction_For_Wave_Function # ->
#Shift Initial Wave Function To The Right

# Next Two Lines For Comparison With Harmonic Oscillator
#psi0_no = np.zeros(len(Potential_X))
#psi0_no = (((Mass*w/(np.pi*1))**0.25)*np.exp(-0.5*Mass*w*Potential_X**2) + np.sqrt
#((1/2))*((Mass*w/(np.pi*1))**0.25)*np.exp(-0.5*Mass*w*Potential_X**2)*2*Potential_X)
#/np.sqrt(2)

psi0_no = np.exp(-10*(Potential_X-Correction_For_Wave_Function_arr)**2/2)
# Unnormolized Wave Function

Norma = 0.0 #Initial Norma Value

for m in range(0,NumberOfNodes-1):
Norma+= psi0_no[m]**2 *DeltaX # Norma Calculation

#print(Norma)

psi0 =psi0_no /np.sqrt(Norma) # Normalization

psi = np.zeros([NumberOfTimeNodes,NumberOfNodes]) # 2D Array Creation ->
#For Wave Functions In Different Time Periods
psi = psi.astype(complex) # complex type for 2D Arrray
psi[0] = psi0 # Setting Initial Wave Function (t=0)

HHH=(inv(np.identity(NumberOfNodes)+(1j*DeltaT/2)*H))@(np.identity(NumberOfNodes)-\
(1j*DeltaT/2)*H) # The Crank-Nicolson method
for i in range(0, NumberOfTimeNodes-1):

psi[i+1,:]=HHH@psi[i,:] #Calculating Next Wave Function Using Crank-Nikolson

#arg=[cmath.phase(psi[i][int(NumberOfNodes/2)+3]) for i in range(NumberOfNodes)]#->
#Rudiment

X_2=np.zeros(NumberOfTimeNodes) # abs(X) To The Power Of Two Array Creation
X=np.zeros(NumberOfTimeNodes) # X To The Power Of Two Array Creation
for i in range(0, NumberOfTimeNodes-1):

for m in range(0,NumberOfNodes-1):
X[i]+= ((( -LengthOfHole / 2 + m / float(AccuracyOfSplitting)))*\

(((psi[i][m]).conjugate())*psi[i][m])*DeltaX).real
# Calculating X Average

X_2=abs(X)**2 # abs(X) To The Power Of Two Array Calculation
DX_2=np.zeros(NumberOfTimeNodes) # Derivative Of abs(X) To The Power Of Two ->
#Array Creation
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for i in range(0, NumberOfTimeNodes-1):
DX_2[i]= (X_2[i+1]-X_2[i])/DeltaT # Derivative Of abs(X) To The Power Of ->

# Two ArrayCalculation
Medium_DX_2 = 0.0

for i in range(0, NumberOfTimeNodes-10): # -10 Is The Crutch For Graphs
Medium_DX_2+= DX_2[i]* i* DeltaT

Medium_DX_2=Medium_DX_2/(NumberOfTimeNodes-10*DeltaT) #Medium Of Derivative ->
# Of abs(X) To The Power Of Two Array Calculation

#Next two lines Are For Plots (With Some Initial Parametrs Works Fist ->
# line With Others Works Second Line)
Time = np.arange(0, 0 + DeltaT *NumberOfNodes, DeltaT)
#Time = np.arange(0, 0 + DeltaT * NumberOfTimeNodes, DeltaT)

# PLot Creation(If You Are Using Something Other Than Jupyter Make dpi Less)
fig, axs = plt.subplots(4, 2, figsize=(21.2132, 15),dpi=500)

axs[0, 0].plot(Time[:-2], X[:-2])
axs[0, 0].set_xlabel('$t$')
axs[0, 0].set_ylabel('$X$')
axs[0, 0].legend(["График зависимости $X$ от $t$ "],fontsize=10,\
loc=(0.5, 1.01))

axs[0, 1].plot(Time[:-2], X_2[:-2])
axs[0, 1].set_xlabel('$t$')
axs[0, 1].set_ylabel('$|X|^2$')
axs[0, 1].legend(["График зависимости $|X|^2$ от $t$ "],fontsize=10,\
loc=(0.5, 1.01))

axs[1, 1].plot(Time[:-2], DX_2[:-2])
axs[1, 1].set_xlabel('$t$')
axs[1, 1].set_ylabel('$d|X|^2/dt$')
axs[1, 1].legend(['График зависимости $d|X|^2/dt$ от $t, < d|X|^2/dt > $ = ' + str\
(Medium_DX_2)],fontsize=10,loc=(0.1, 1.01))

axs[1, 0].plot(Potential_X,Potential_Y)
axs[1, 0].set_xlabel('$x$')
axs[1, 0].set_ylabel('$V(x)$')
axs[1, 0].legend(["График потенциала $V$"],fontsize=10,loc=(0.1, 1.01))

axs[2, 0].plot(Potential_X, psi0)
axs[2, 0].set_xlabel('$x$')
axs[2, 0].set_ylabel('$\psi(0)$')
axs[2, 0].legend(["График $\psi(0)$ - волновая функция в момент времени $t =0$"],\
fontsize=10,loc=(0.1, 1.01))

axs[2, 1].plot(Potential_X,psi[int(NumberOfTimeNodes/3)]*\
(psi[int(NumberOfTimeNodes/3)].conjugate()))
axs[2, 1].set_xlabel('$x$')
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axs[2, 1].set_ylabel('$\psi($'+str(int(NumberOfTimeNodes/3)*DeltaT)\
+'$)$'+'$*\psi ^{\dag}($'+str(int(NumberOfTimeNodes/3)*DeltaT)+'$)$')
axs[2, 1].legend(['График модуля квадрата $\psi($'+\
str(int(NumberOfTimeNodes/3)*DeltaT)+\
'$)$ - волновая функция в момент времени $t = $'\
+str(int(NumberOfTimeNodes/3)*DeltaT)],\
fontsize=10,loc=(0.1, 1.01))

axs[3, 0].plot(Potential_X,psi[int(NumberOfTimeNodes*(2/3))]*\
(psi[int(NumberOfTimeNodes*(2/3))].conjugate()))
axs[3, 0].set_xlabel('$x$')
axs[3, 0].set_ylabel('$\psi($'+str(int(NumberOfTimeNodes\
*(2/3))*DeltaT)+'$)$'+'$*\psi ^{\dag}($'\
+str(int(NumberOfTimeNodes*(2/3))*DeltaT)+'$)$')
axs[3, 0].legend(['График модуля квадрата $\psi($'+\
str(int(NumberOfTimeNodes*(2/3))*DeltaT)\
+ '$)$ - волновая функция в момент времени $t = $'\
+str(int(NumberOfTimeNodes*(2/3))*\
DeltaT)],fontsize=10,loc=(0.1, 1.01))

axs[3, 1].plot(Potential_X,psi[int(NumberOfTimeNodes-10)]*\
(psi[int(NumberOfTimeNodes-10)].conjugate()))
axs[3, 1].set_xlabel('$x$')
axs[3, 1].set_ylabel('$\psi($'+str(round(float((NumberOfTimeNodes-10)\
*DeltaT),4))+'$)$'+'$*\psi ^{dag}($'+str(round(float((NumberOfTimeNodes-10)\
*DeltaT),4))+'$)$')
axs[3, 1].legend(['График модуля квадрата $\psi($'+\
str(round(float((NumberOfTimeNodes-10)\
*DeltaT),4))\
+ '$)$ - волновая функция в момент времени $t = $'\
+str(round(float((NumberOfTimeNodes-10)\
*DeltaT),4))]\
,fontsize=10,loc=(0.1, 1.01))

fig.suptitle('Параметры: $\omega =$'+str(w_for_a)+\
' $, M =$'+str(M_for_a)+', LengthOfHole\
='+str(LengthOfHole)+', NodesPerUnitInterval='+\
str(AccuracyOfSplitting)+', Mass='+str(Mass)+\
', CorrerctionForPotential='\
+str(Correction_For_Potential)+ ', DeltaT='+str(DeltaT) +\
', CorrectionForWaveFunction=' \
+str(Correction_For_Wave_Function),fontsize=13)

plt.tight_layout()
plt.show()

# Программа может не компилироваться из-за отстуствия отступов ->
#после "for" после копирования

Выше приведен код для программы 5.2.2.
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