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1. Введение 
   Есть большое количество доказательств, указывающих на существование 
темной материи (dark matter) во Вселенной, в дополнение к обычной видимой. 
Эти доказательства включают: кривые вращения галактик в скоплениях и звезд в 
галактиках, эффект гравитационного линзирования, анизотропия космического 
микроволнового фона. 

   Согласно наблюдениям, темная материя не испускает электромагнитное 
излучение и не взаимодействует с ним, но оказывает гравитационное влияние на 
поведение астрофизических систем, находящихся на различных 
космологических масштабах. 

   Существует много теорий, расширяющих Стандартную Модель, 
предлагающих кандидатов на роль частиц ТМ и описывающих их появление во 
Вселенной. В данной работе рассмотрим некоторые из моделей и получим 
ограничения на массу частиц. 

 

2. Основные свойства темной материи 
2.1 Классификация темной материи 

Предполагается, что частицы темной материи находились в термодинамическом 
равновесии с обычным веществом (барионами, электронами, фотонами) на 
ранних этапах эволюции Вселенной. В какой-то момент времени, имея 
определенную температуру 𝑇𝑇𝑓𝑓 (freeze-out) они вышли из равновесия и с тех пор 
распространяются свободно. В зависимости от соотношения массы 𝑀𝑀𝑥𝑥 и 
температуры отсоединения, темную материю делят на горячую, теплую и 
холодную. 

В случае 𝑇𝑇𝑓𝑓 ≪ 𝑀𝑀𝑥𝑥 говорят о холодной темной материи. Она представляет собой 
тяжелые (масса ~ 1 ГэВ) нерелятивистские на ранней стадии Вселенной 
частицы. В рамках такой модели первоначально формируются 
мелкомасштабные структуры, которые в последствии сливаются в более 
крупные под воздействием гравитационных сил. Эта теория хорошо согласуется 
с наблюдениями крупномасштабным структур Вселенной, хотя и имеет свои 
недостатки. 

Если 𝑇𝑇𝑓𝑓 ≳ 𝑀𝑀𝑥𝑥, то рассматриваются два варианта: 𝑀𝑀𝑥𝑥 ≲ 1 эВ и 𝑀𝑀𝑥𝑥 ≳ 1 эВ.  
В первом случае говорится о горячей темной материи, состоящей из легких 
релятивистских на момент выхода из равновесия с барионным веществом 
частиц. Согласно такой модели, структуры Вселенной образуются нисходящим 
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образом, то есть появившиеся первыми сверхскопления распадаются на более 
мелкие составляющие. При таком раскладе у галактик было бы недостаточно 
времени, чтобы образоваться, что противоречит существующим наблюдениям. 
Поэтому на сегодняшний день горячая темная материя практически исключена 
из кандидатов.  
В настоящее время наиболее подходящей является теплая темная материя, для 
которой справедливо 𝑀𝑀𝑥𝑥 > 1 эВ. Такие частицы имеют средние между горячей и 
холодной темной материи скорости, хотя в ранней стадии Вселенной они и были 
релятивистскими. 

 

2.2 Свидетельства существования темной материи 

Наиболее убедительное и прямое свидетельство существование темной материи 
было получено из наблюдения кривых вращения галактик: зависимость 
круговых скоростей звезд от расстояния до галактического центра. 
В предположении кругового движения, распределение скоростей ʋ(R) в 
зависимости от расстояния R от центра Галактики до звезды следует из закона 
Ньютонa 

𝑣𝑣2(𝑅𝑅) =
𝐺𝐺 ⋅ 𝑀𝑀(𝑅𝑅)

𝑅𝑅
, 𝑀𝑀(𝑅𝑅) = 4𝜋𝜋� 𝜌𝜌(𝑟𝑟)𝑟𝑟2 𝑑𝑑𝑟𝑟

𝑅𝑅

0

 

где G – гравитационная постоянная, M(R) - полная масса внутри круговой 
области радиуса R,  𝜌𝜌(𝑟𝑟) – распределение плотности вещества. 
Для областей, заполненных светящимся веществом, вклад только видимых 
объектов давал бы 𝑣𝑣(𝑅𝑅)~√𝑅𝑅, а вне области наблюдаемого галактического диска 
скорость вращения отдаленных звезд должна уменьшаться как 1

√𝑅𝑅
 – т. е. на 

графике должен быть ярко выраженный пик с дальнейшим спадом по 
характерной зависимости. Но экспериментально для областей, не слишком 
близких к центру Галактики, были получены «плоские» ротационные кривые, 
где 𝑣𝑣(𝑅𝑅)~𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 и никакого убывания скорости не происходит. 
Объяснить расхождение между теоретическим предсказанием и наблюдениями, 
при этом не нарушая известные законы физики, можно было выдвинув 
предположение о том, что видимое вещество погружено в облако большого 
размера – гало – которое представляет собой скрытую массу. Это вещество 
состоит из неких частиц, невзаимодействующих с фотонами, влияние которых 
проявляется только в гравитационном взаимодействии. Несмотря на то, что 
количество темной материи во Вселенной огромно, как ее свойства, так и ее 
природа все еще до конца и не изучены. 
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3. Фазовая плотность 
3.1 Понятие фазовой плотности 

С точки зрения наблюдений, величина функции распределения гало в 
галактиках может быть оценена фазовой плотностью – отношением плотности 
числа частиц к объему, занимаемому системой в импульсном пространстве. В 
астрофизике под фазовой плотностью понимают величину 𝑄𝑄 = 𝜌𝜌

𝜎𝜎3
 , где 𝜎𝜎2 =

⟨(𝛥𝛥𝛥𝛥)2⟩ – дисперсия одномерной скорости. Если положить распределение по 
скоростям изотропным, то одномерная скорость связана с абсолютной 
соотношением 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎2 = 𝑣𝑣𝑥𝑥2 + 𝑣𝑣𝑦𝑦2 + 𝑣𝑣𝑧𝑧2 = 3𝑣𝑣2. Считается, что в центральной части 
гало дисперсия скорости также изотропна и однородна, и справедливо 
соотношение 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎2 = 3𝜎𝜎2. 

Величина 𝑄𝑄 имеет размерность 𝑀𝑀⨀ пк3⁄
(км с)⁄ 3  . Характерные ее значения для 

сферических карликовых галактик лежат в пределах (10-4 – 10-5) 𝑀𝑀⨀ пк3⁄
(км с)⁄ 3 , для 

более крупных эллиптических галактик или карликов с ярко выраженных 
вращением 𝑄𝑄 ~ (10-8 – 10-6) 𝑀𝑀⨀ пк3⁄

(км с)⁄ 3  , а для самых крупных объектов (скоплений) 

фазовая плотность имеет оценку порядка (10-13 – 10-11) 𝑀𝑀⨀ пк3⁄
(км с)⁄ 3 . 

На практике измеряется дисперсия скоростей звезд в гало. Именно эти данные 
используются для определения распространения частиц в импульсном 
пространстве. Полагается, что скорости частиц темной материи не должны 
существенно отличаться от собственных скоростей звезд, т.к. они движутся в 
одном гравитационном потенциале гало. 

 

3.2 Оценки из наблюдений 

Рассмотрим газ изотропно распределенных частицы массы m, образующихся в 
условии равновесия. Они имеют концентрацию и давление 

𝑛𝑛 =
𝑔𝑔
ℎ3
�𝑓𝑓(𝑝𝑝)𝑑𝑑3𝑝𝑝              𝑃𝑃 =

𝑔𝑔
ℎ3
�

𝑝𝑝2

3𝐸𝐸0
𝑓𝑓(𝑝𝑝)𝑑𝑑3𝑝𝑝 

где 𝑔𝑔 – число степеней свободы, 𝑑𝑑3𝑝𝑝 = 4𝜋𝜋𝑝𝑝2𝑑𝑑𝑑𝑑 – элемент объема в импульсном 
пространстве, а первоначальная функция распределения 

𝑓𝑓(𝑝𝑝) =
1

exp (𝐸𝐸 − 𝜇𝜇
𝑘𝑘𝑘𝑘 ) ± 1
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имеет вид распределение Ферми-Дирака (+) или Бозе-Эйнштейна (-) с 
химическим потенциалом 𝜇𝜇. Энергия 𝐸𝐸 связана с импульсом 𝑝𝑝 и массой частицы 
𝑚𝑚 соотношением 𝐸𝐸2 = (𝜌𝜌𝜌𝜌)2 + 𝑚𝑚2𝑐𝑐4. 

Частицы, которые отделились от плазмы в период ранней Вселенной при 
температуре 𝑇𝑇𝐷𝐷 (decoupling), испытывают изменение импульса пропорционально 
расширению Вселенной 𝑝𝑝 = 𝑝𝑝𝐷𝐷

𝑎𝑎𝐷𝐷
𝑎𝑎

 , где 𝑎𝑎 = 𝑎𝑎(𝑡𝑡) – космологический 
масштабный коэффициент (cosmic scale factor), а 𝑎𝑎𝐷𝐷 = 𝑎𝑎(𝑡𝑡𝐷𝐷) – его значение в 
момент разделения. В свою очередь концентрация изменяется как 𝑛𝑛~𝑎𝑎−3. Из 
этого следует, что функция 𝑓𝑓(𝑝𝑝) после отсоединения связана с распределением в 
момент отделения как 𝑓𝑓(𝑝𝑝) = 𝑓𝑓𝐷𝐷(𝑝𝑝𝑝𝑝 𝑎𝑎𝐷𝐷)⁄ . Т.к. после момента разделения 
частицы могут двигаться как с большими скоростями, так и быть 
нерелятивистскими, то функция распределения имеет два вида. Для 
ультрарелятивистского разделения (где  𝐸𝐸 ≈ 𝑝𝑝𝑝𝑝,𝑇𝑇 = 𝑇𝑇𝐷𝐷𝑎𝑎𝐷𝐷 𝑎𝑎,   𝜇𝜇 = 𝜇𝜇𝐷𝐷𝑎𝑎𝐷𝐷 𝑎𝑎⁄⁄ ) 
справедливо соотношение 

𝑓𝑓𝑅𝑅(𝑝𝑝) =
1

𝑒𝑒
𝑝𝑝𝑝𝑝−𝜇𝜇
𝑘𝑘𝑘𝑘 ± 1

 

А для второго случая (𝐸𝐸 − 𝜇𝜇 ≈ 𝑝𝑝2

2𝑚𝑚
− 𝜇𝜇𝑘𝑘𝑘𝑘𝑘𝑘 , 𝜇𝜇𝑘𝑘𝑘𝑘𝑘𝑘 ≡ 𝜇𝜇 −𝑚𝑚𝑐𝑐2 = 𝜇𝜇𝑘𝑘𝑘𝑘𝑘𝑘,𝐷𝐷(𝑎𝑎𝐷𝐷 𝑎𝑎)⁄ 2,   

𝑇𝑇 = 𝑇𝑇𝐷𝐷(𝑎𝑎𝐷𝐷 𝑎𝑎⁄ )2 ) функция имеет вид 

𝑓𝑓𝑁𝑁(𝑝𝑝) =
1

𝑒𝑒𝑒𝑒𝑒𝑒�
𝑝𝑝2
2𝑚𝑚 − 𝜇𝜇𝑘𝑘𝑘𝑘𝑘𝑘

𝑘𝑘𝑘𝑘 � ± 1

 

Распределение мелкозернистой функции фазовой плотности сохраняется во 
времени (согласно теореме Лиувилля). Этот факт означает, что распределение 
фазовой плотности в момент отделения может быть напрямую связано с 
измерениями фазовых плотностей темной материи, проводимыми в данный 
момент. 

Учитывая, что для нерелятивистского случая (𝐸𝐸0 ≈ 𝑚𝑚𝑐𝑐2 ,𝑝𝑝 = 𝑚𝑚𝑚𝑚) 

𝑄𝑄 =
𝜌𝜌
𝜎𝜎3

=
𝑚𝑚𝑚𝑚

(1
3 ⟨𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎

2⟩)3 2⁄
 ,    𝑃𝑃 =

𝑚𝑚𝑚𝑚�𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎2 �
3

 

получим 𝑄𝑄 = (𝑚𝑚𝑚𝑚)5∕2

(𝑃𝑃)3∕2  . Подставив исходные интегралы для 𝑛𝑛 и 𝑃𝑃, уравнение 

приобретает вид 
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𝑄𝑄 =
(3𝑐𝑐2)3 2⁄ 𝑚𝑚4𝑔𝑔

ℎ3
4𝜋𝜋

[∫𝑓𝑓(𝑝𝑝)𝑝𝑝2𝑑𝑑𝑑𝑑]5 2⁄

[∫𝑓𝑓(𝑝𝑝)𝑝𝑝4𝑑𝑑𝑑𝑑]3 2⁄  

Приняв 𝑐𝑐 = ℏ = 1, получим для частиц типа X выражение 

𝑄𝑄𝑋𝑋 = 𝑞𝑞𝑋𝑋𝑔𝑔𝑋𝑋𝑚𝑚𝑋𝑋
4  

 Безразмерный коэффициент 𝑞𝑞𝑋𝑋 в случае тепловых фермионов и 𝜇𝜇 = 0 
принимает значение 

𝑞𝑞𝑇𝑇 =
4𝜋𝜋

(2𝜋𝜋)3
[∫𝑑𝑑𝑑𝑑(𝑝𝑝2 𝑒𝑒𝑝𝑝 + 1)⁄ ]5 2⁄

[∫𝑑𝑑𝑑𝑑(𝑝𝑝4 𝑒𝑒𝑝𝑝 + 1)⁄ ]3/2 = 0.0019625 

Аналогичные вычисления для вырожденных (degenerate) фермионов при 𝑇𝑇 =
0, 𝜇𝜇 ≫ 𝑚𝑚 дает такое же выражения для 𝑄𝑄, но с другим коэффициентом 

𝑞𝑞𝑑𝑑 =
4𝜋𝜋

(2𝜋𝜋)3
�∫ 𝑝𝑝2 𝑑𝑑𝑝𝑝1
0 �

5∕2

�∫ 𝑝𝑝4 𝑑𝑑𝑝𝑝1
0 �

3∕2 = 0.036335 

Значения коэффициента 𝑞𝑞 получены в результате вычисления полных 
интегралов по функции распределения для различных случаев. В такой ситуации 
фазовая плотность зависит от индивидуальных свойств частиц, в то время как 
космологические параметры (температура отделения, текущая температура, 
плотности) в уравнение не входят. Тот факт, что числовые коэффициенты 
зависят от типа частиц (бозоны/фермионы), их вырожденности, делает величину 
𝑄𝑄 потенциально точной и удобной для определения и измерения свойств частиц 
темной материи. Таким образом, используя оценки фазовой плотности из 
экспериментальных данных, можно получить оценку для массы (в кэВ) частиц в 
конкретной модели. 

 

4. Ограничения на массу 
Вернемся к выражению для фазовой плотности, вида 

𝑄𝑄 =
(3𝑐𝑐2)3 2⁄ 𝑚𝑚4𝑔𝑔

ℎ3
4𝜋𝜋

[∫𝑓𝑓(𝑝𝑝)𝑝𝑝2𝑑𝑑𝑑𝑑]5 2⁄

[∫𝑓𝑓(𝑝𝑝)𝑝𝑝4𝑑𝑑𝑑𝑑]3 2⁄  

Заметим, что для �𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎2 � = 𝑚𝑚2�𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎2 � 

𝑛𝑛
(⟨𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎2 ⟩)3∕2 =

[∫𝑓𝑓(𝑝𝑝)𝑑𝑑3𝑝𝑝]5∕2

[∫𝑓𝑓(𝑝𝑝)𝑝𝑝2 𝑑𝑑3𝑝𝑝]3∕2 ~𝑓𝑓ℎ𝑎𝑎𝑎𝑎𝑎𝑎 
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где 𝑓𝑓ℎ𝑎𝑎𝑎𝑎𝑎𝑎 – современная функция распределения. Тогда 

𝑄𝑄 =
𝑚𝑚4𝑛𝑛

��13𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎
2 ��

3 2⁄ = 33 2⁄ 𝑚𝑚4𝑓𝑓ℎ𝑎𝑎𝑎𝑎𝑎𝑎 

Современная функция распределения не может превышать максимум 
первоначальной, т.е. 

𝑄𝑄
33/2𝑚𝑚4 = 𝑓𝑓ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ≤ max�𝐹𝐹(𝑝𝑝)� =

𝑔𝑔
2ℎ3

 

Тогда с учетом ℏ = 1 оценка для массы принимает вид 

𝑚𝑚
1 кэВ

> �
2(2𝜋𝜋)3

33 2⁄ 𝑔𝑔
�
1 4⁄

�
𝑄𝑄

𝑀𝑀⨀/пк3
(км с⁄ )3

�

1 4⁄

≈ �
102

𝑔𝑔
�
1 4⁄

�
𝑄𝑄

𝑀𝑀⨀/пк3
(км с⁄ )3

�

1 4⁄

 

 

5. Заключение 
В данной работе были рассмотрены основные понятия, использующиеся в 
космологии для изучения гало галактик, а также предпосылки и несоответствия 
теоретических предсказаний и наблюдений, которые привели к идее введения 
темной материи. Разные модели представления позволили описать поведение 
частиц в момент образования и связать функции их распределения с 
получаемыми в данный момент наблюдениями и рассчитанными из них 
значениями фазовой плотности.  
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